Skip to main content
Log in

Effect of Active Gas on Weld Shape and Microstructure of Advanced A-TIG-Welded Stainless Steel

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

Advanced A-TIG method was conducted to increase the weld penetration and compared with the conventional TIG welding process. A two-pipeline setup was designed to apply Ar + CO2 mixed gas as the outer layer, while pure argon was applied as the inner layer to prevent any consumption of the tungsten electrode. The results indicate that the presence of active gas in the molten pool led to the change in the temperature coefficient of surface tension so that the Marangoni convection turns inward and forms a deep weld zone. The increase in gas flow rate causes a decrease in the weld efficiency which is attributed to the increase in oxygen content in the weld pool and the formation of a thicker oxide layer on the weld surface. Moreover, the stir and the temperature fluctuation, led by double shielding gas, create more homogeneous nucleation sites in the molten pool so that a fine grain microstructure was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. W. Lucas, M.H. Rodwell, Weld. Revolut. 8, 185 (1987)

    Google Scholar 

  2. S.P. Lu, H. Fujii, K. Nogi, J. Mater. Sci. 26, 170 (2010)

    Google Scholar 

  3. B. Arivazhagan, M. Vasudevan, J. Manuf. Process. 18, 55 (2015)

    Article  Google Scholar 

  4. A.R. Khalifeh, A. Dehghan, E. Hajjari, Acta Metall. Sin. (Engl. Lett.) 26, 721 (2013)

    Article  Google Scholar 

  5. M. Manikandan, N. Arivazhagan, M. Nageswara Rao, G. Madhusudhan Reddy, Acta Metall. Sin. (Engl. Lett.) 28, 208 (2015)

    Article  Google Scholar 

  6. Y.L. Xu, Z.B. Dong, Y.H. Wei, C.L. Yang, Theor. Appl. Fract. Mech. 48, 2178 (2007)

    Article  Google Scholar 

  7. P. Vasantharaja, M. Vasudevan, J. Nucl. Mater. 421, 117 (2012)

    Article  Google Scholar 

  8. K. Tseng, C. Hsu, J. Mater. Process. Technol. 211, 503 (2011)

    Article  Google Scholar 

  9. T. Wen, S. Liu, S. Chen, L. Liu, C. Yang, Trans. Nonferr. Met. Soc. China 25, 397 (2015)

    Article  Google Scholar 

  10. Q. Zhu, Y. Lei, Y. Wang, W. Huang, B. Xiao, Y. Ye, Fusion Eng. Des. 89, 2964 (2014)

    Article  Google Scholar 

  11. A. Bîrdeanu, C. Ciucă, A. Puicea, J. Mater. Process. Technol. 212, 890 (2012)

    Article  Google Scholar 

  12. T. Cunha, C. Enrique, Ultrasonics 56, 201 (2015)

    Article  Google Scholar 

  13. S.H. Zhang, Y.F. Shen, H.J. Qiu, Opt. Laser Technol. 48, 381 (2013)

    Article  Google Scholar 

  14. B. Emde, M. Huse, J. Hermsdorf, S. Kaierle, V. Wesling, L. Overmeye, Phys. Proc. 56, 646 (2014)

    Article  Google Scholar 

  15. S.P. Lu, H. Fujii, H. Sugiyama, M. Tanaka, K. Nogi, Metall. Mater. Trans. A 34, 1901 (2003)

    Article  Google Scholar 

  16. C.R. Heiple, P. Burgardt, Weld. J. 64, 159 (1985)

    Google Scholar 

  17. S.P. Lu, H. Fujii, K. Nogi, T. Sato, Sci. Technol. Weld. Join. 12, 689 (2007)

    Article  Google Scholar 

  18. Y. Zou, R. Ueji, H. Fujii, Mater. Sci. Eng. A 620, 140 (2015)

    Article  Google Scholar 

  19. S.P. Lu, M.P. Qin, W.C. Dong, J. Mater. Process. Technol. 213, 229 (2013)

    Article  Google Scholar 

  20. M. Häßler, S. Rose, U. Füssel, H.I. Schneider, C. Werner, Weld. World Le Soudage Dans Le Monde 59, 71 (2015)

    Article  Google Scholar 

  21. Y. Morisada, H. Fujii, X.K. Ni, Mater. Des. 54, 526 (2014)

    Article  Google Scholar 

  22. ASFMH Committee, G.F. Vander Voort, Metallography and microstructures, in ASM Handbook, vol. 9 (ASM International, Materials Park, OH, 2004)

  23. D.S. Howse, W. Lucas, Sci. Technol. Weld. Join. 5, 189 (2000)

    Article  Google Scholar 

  24. H. Taimatsu, K. Nogi, K. Ogino, J. High. Temp. Soc. 18, 14 (1992)

    Google Scholar 

  25. D.J. Li, S.P. Lu, D.Z. Li, Y.Y. Li, J. Mater. Sci. Technol. 30, 922 (2014)

    Article  Google Scholar 

  26. M. Tanaka, M. Ushio, J.J. Lowke, Vacuum 73, 381 (2004)

    Article  Google Scholar 

  27. C.C. Silvaa, H.C. de Mirandaa, H.B. de Sant’Anab, J.P. Fariasa, Mater. Charact. 60, 346 (2009)

    Article  Google Scholar 

  28. J. Brooks, J. Williams, A. Thompson, Metall. Trans. A 14, 1271 (1983)

    Article  Google Scholar 

  29. X.J. Di, S.J. Deng, B.S. Wang, Mater. Des. 66, 169 (2015)

    Article  Google Scholar 

  30. J.W. Elmer, S.M. Allen, T.W. Eagar, Metall. Trans. A 20, 2106 (1989)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Nakhaei.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakhaei, R., Khodabandeh, A. & Najafi, H. Effect of Active Gas on Weld Shape and Microstructure of Advanced A-TIG-Welded Stainless Steel. Acta Metall. Sin. (Engl. Lett.) 29, 295–300 (2016). https://doi.org/10.1007/s40195-016-0381-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-016-0381-6

Keywords

Navigation