Skip to main content
Log in

Effect of Active Gas on Weld Shape and Microstructure of Highly Efficient TIG Welded A516 Low Carbon Steel

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

A highly efficient TIG welding method was performed to increase the weld penetration and compared with the conventional TIG welding process. A double-shielded gas flow system was designed to apply Ar + CO2 mixed gas as the outer layer, while the inner layer remained pure argon to impede oxidation of the electrode. The results demonstrate that the addition of the active gas to the molten pool controls the Marangoni convection on the liquid pool surface so that the weld shape changes from a shallow shape to a deep and narrow weld pool owing to the change in direction of Marangoni convection. The increase in CO2 content from 0.5 to 2 % leads to the reduction in the weld depth which is due to the formation of a thick oxide layer on the weld pool surface and reduction in the interface between the shielding gas and the weld pool. Moreover, Preheating of the samples causes the formation of deeper fusion zone profiles which can be attributed to the slow cooling rate and the increase of heat concentration in the weld pool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Huang H, Tsai W, and Lee J T, Electrochem Acta 41 (1996) 1191.

    Article  Google Scholar 

  2. Huang H, Tsai W, and Lee J T, Corros Sci 36 (1994) 1027.

  3. Aliasa S K, Abdullaha B, Jaffara A, Latipa S A, Kasolanga S, Izhama M F, and Ghania M A, Procedia Eng 68 (2013) 525.

    Article  Google Scholar 

  4. Lu S P, Fujii H, and Nogi K, J Mater Sci 26 (2010) 170.

    Google Scholar 

  5. Lucas W, and Rodwell M H, Weld Rev 8 (1987) 185.

    Google Scholar 

  6. Gurevich S M, Zamokov V N, and Kushirenko N A, Autom Weld USSR 18 (1965) 1.

    Google Scholar 

  7. Emde B, Huse M, Hermsdorf J, Kaierle S, Wesling V, and Overmeye L, Phys Procedia 56 (2014) 646.

    Article  Google Scholar 

  8. Xu Y L, Dong Z B, Wei Y H, and Yang C L, Theor Appl Fract Mech 48 (2007) 2178.

    Article  Google Scholar 

  9. Shen J, Zhai D, Liu K, and Cao Z, Trans Nonfer Metals Soc China 24 (2014) 2507.

    Article  Google Scholar 

  10. Vasantharaja P, and Vasudevan M, J Nucl Mater 421 (2012) 117.

    Article  Google Scholar 

  11. Tseng K, and Hsu C, J Mater Process Technol 211 (2011) 503.

    Article  Google Scholar 

  12. Leconte S, Paillard P, and Saindrenan J, Sci Technol Weld Join 11 (2006) 43.

    Article  Google Scholar 

  13. Ahmadi E, and Ebrahimi A R, J Mater Eng Perform 24 (2015) 1065.

    Article  Google Scholar 

  14. Heiple C R, and Burgardt P, Weld J 64 (1985) 159.

    Google Scholar 

  15. Fujii H, Sato T, Lua S, and Nogi K, Mater Sci Eng A 495 (2008) 296.

    Article  Google Scholar 

  16. Zou Y, Ueji R, and Fujii H, Mater Sci Eng A 620 (2015) 140.

    Google Scholar 

  17. Zou Y, Ueji R, and Fujii H, Mater Charact 91 (2011) 42.

    Article  Google Scholar 

  18. Lu S P, Qin M P, and Dong W C, J Mater Process Technol 213 (2013) 229.

    Article  Google Scholar 

  19. Häßler M, Rose S, Füssel U, Schneider H-I, and Werner C, Weld World 59 (2015) 71.

    Article  Google Scholar 

  20. Li D, Lu S, Dong W, Li D, and Li Y, J Mater Process Technol 212 (2012) 128.

    Article  Google Scholar 

  21. Lin M L, and Eagar T W, Weld J 64 (1985) 163.

    Google Scholar 

  22. Howse D S, and Lucas W, Sci Technol Weld Join 5 (2000) 189.

    Article  Google Scholar 

  23. Taimatsu H, Nogi K, and Ogino K, J High Temp Soc 18 (1992) 14.

    Google Scholar 

  24. Díaz-Fuentes M, Iza-Mendia A, and Gutiérrez I, Metall Mater Trans A 34 (2003) 2505.

    Article  Google Scholar 

  25. Qiu Ch, Lan L, Zhao D, Gao X, and Du L, Acta Metall Sin 26 (2013) 49.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehran Mirzaei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirzaei, M., Khodabandeh, A. & Najafi, H. Effect of Active Gas on Weld Shape and Microstructure of Highly Efficient TIG Welded A516 Low Carbon Steel. Trans Indian Inst Met 69, 1723–1731 (2016). https://doi.org/10.1007/s12666-016-0832-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-016-0832-9

Keywords

Navigation