Skip to main content
Log in

Enhancement of joint properties and reduction of intermetallics in FSW of highly dissimilar Al/Ti alloys

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

In this research work, welding of highly dissimilar aluminum alloy (6061-T6) and titanium alloy (Ti6Al4V) has been carried out using copper (Cu) interlayer with the friction stir welding (FSW) process by varying the tool rotation speed and tool traverse speed. FSW is a welding technique in which the plates to be joined are plastically deformed due to friction by a non-expendable rotating tool and welded as the tool traverses along the length of the plates. In the absence of any interlayer, the welded joint of the alloys, as mentioned above, failed along the joining surface due to the formation of the intermetallics, leading to low strength and brittleness. High strength and good quality joints are obtained using a Cu interlayer between the two alloys and a tapered tool at a lower tool rotation speed, and traverse speed due to appropriate deformation, uniform mixing, and effective temperature rise during welding. Also, using the interlayer between the Al and Ti alloys enhanced the joint strength by reducing the formation of Al3Ti intermetallic. Other non-optimal conditions resulted in wormhole defects and intermetallics formation, thus resulting in degraded joint quality and strength. The joint welded at optimum welding conditions failed in a pure ductile manner, while the others were either in hybrid or brittle mode. Tool rotation and traverse speeds are found to be crucial for proper mechanical mixing as they impact the weld’s structure, phase development, and mechanical characteristics. Furthermore, the optimal process parameters were validated with the help of ANOVA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Abbass MK, Hussein SK, Khudhair AA (2016) Optimization of mechanical properties of friction stir spot welded joints for dissimilar aluminum alloys (AA2024-T3 and AA 5754–H114). Arab J Sci Eng 41:4563–4572. https://doi.org/10.1007/s13369-016-2172-9

    Article  CAS  Google Scholar 

  2. Gadakh VS, Badheka VJ, Mulay AS (2021) Solid-state joining of aluminum to titanium : a review. J Mater Des Appl 235(8):1757–1799. https://doi.org/10.1177/14644207211010839

    Article  CAS  Google Scholar 

  3. Bang KS, Lee KJ, Bang HS, Bang HS (2011) Interfacial microstructure and mechanical properties of dissimilar friction stir welds between 6061–T6 aluminum and Ti-6%Al-4% V alloys. Mater Trans 52:974–978. https://doi.org/10.2320/matertrans.L-MZ201114

    Article  CAS  Google Scholar 

  4. Aonuma M, Nakata K (2011) Dissimilar metal joining of 2024 and 7075 aluminium alloys to titanium alloys by friction stir welding. Mater Trans 52:948–952. https://doi.org/10.2320/matertrans.L-MZ201102

    Article  CAS  Google Scholar 

  5. Kar A, Choudhury SK, Suwas S, Kailas SV (2018) Effect of niobium interlayer in dissimilar friction stir welding of aluminum to titanium. Mater Charact 145:402–412. https://doi.org/10.1016/j.matchar.2018.09.007

    Article  CAS  Google Scholar 

  6. Balamurugan S, Jayakumar K, Subbaiah K (2021) Influence of friction stir welding parameters on dissimilar joints AA6061-T6 and AA5052-H32. Arab J Sci Eng 46:11985–11998. https://doi.org/10.1007/s13369-021-05773-7

    Article  CAS  Google Scholar 

  7. Zhu Z, Lee KY, Wang X (2012) Ultrasonic welding of dissimilar metals, AA6061 and Ti6Al4V. Int J Adv Manuf Technol 59:569–574. https://doi.org/10.1007/s00170-011-3534-9

    Article  Google Scholar 

  8. Miao Y, Ma Z, Yang X et al (2018) Experimental study on microstructure and mechanical properties of AA6061 / Ti-6Al-4V joints made by bypass-current MIG welding-brazing. J Mater Process Tech 260:104–111. https://doi.org/10.1016/j.jmatprotec.2018.05.019

    Article  CAS  Google Scholar 

  9. Casalino G, Ostuni SD, Guglielmi P et al (2017) Optik mechanical and microstructure analysis of AA6061 and Ti6Al4V fiber laser butt weld. Opt - Int J Light Electron Opt 148:151–156. https://doi.org/10.1016/j.ijleo.2017.08.138

    Article  CAS  Google Scholar 

  10. Wang P, Chen Z, Hu C et al (2020) Effects of annealing on the interface microstructures and mechanical properties of hot roll bonded Ti6Al4V / AA6061 clad sheets. Integr Med Res 9:11813–11825. https://doi.org/10.1016/j.jmrt.2020.08.070

    Article  CAS  Google Scholar 

  11. Velu PS, Hynes NRJ, Vignesh NJ (2019) Joining of AA 6061/Ti–6Al–4V with zinc interlayer using friction welding process. J Brazilian Soc Mech Sci Eng 41:1–13. https://doi.org/10.1007/s40430-019-2029-8

    Article  CAS  Google Scholar 

  12. Wei Y, Aiping W, Guisheng Z, Jialie R (2008) Formation process of the bonding joint in Ti/Al diffusion bonding. Mater Sci Eng A 480:456–463. https://doi.org/10.1016/j.msea.2007.07.027

    Article  CAS  Google Scholar 

  13. Wu A, Song Z, Nakata K et al (2015) Interface and properties of the friction stir welded joints of titanium alloy Ti6Al4V with aluminum alloy 6061. Mater Des 71:85–92. https://doi.org/10.1016/j.matdes.2014.12.015

    Article  CAS  Google Scholar 

  14. Kimura M, Nakamura S, Kusaka M et al (2005) Mechanical properties of friction welded joint between Ti-6Al-4V alloy and Al-Mg alloy (AA5052). Sci Technol Weld Join 10:666–672. https://doi.org/10.1179/174329305X57455

    Article  CAS  Google Scholar 

  15. Khanna N, Sharma P, Bharati M, Badheka VJ (2020) Friction stir welding of dissimilar aluminium alloys AA 6061–T6 and AA 8011–h14: a novel study. J Brazilian Soc Mech Sci Eng 42:1–12. https://doi.org/10.1007/s40430-019-2090-3

    Article  CAS  Google Scholar 

  16. Garg A, Raturi M, Bhattacharya A (2020) Strength, failure and microstructure development for friction stir welded AA6061-T6 joints with different tool pin profiles. CIRP J Manuf Sci Technol 29:99–114. https://doi.org/10.1016/j.cirpj.2020.03.001

    Article  Google Scholar 

  17. Mustafa SE, Ali M, Iqbal A et al (2021) Formulation and analysis of cost-effective environment-friendly metal cutting nanofluids using zinc oxide on turning of AISI 52100 steel using MQL. Eng Res Express 3. https://doi.org/10.1088/2631-8695/abd0e1

  18. Sahu PK, Pal S (2017) Mechanical properties of dissimilar thickness aluminium alloy weld by single/double pass FSW. J Mater Process Technol 243:442–455. https://doi.org/10.1016/j.jmatprotec.2017.01.009

    Article  CAS  Google Scholar 

  19. Threadgill PL (2007) Terminology in friction stir welding. Sci Technol Weld Join 12:357–360. https://doi.org/10.1179/174329307X197629

    Article  Google Scholar 

  20. Hussein S, Tahir A, Al-Obaidi M (2022) Evaluation the efects of welding parameters on tri-dissimilar friction.pdf. Weld World 66:2315–2332. https://doi.org/10.1007/s40194-022-01360-y

    Article  Google Scholar 

  21. Chen YC, Nakata K (2009) Microstructural characterization and mechanical properties in friction stir welding of aluminum and titanium dissimilar alloys. Mater Des 30:469–474. https://doi.org/10.1016/j.matdes.2008.06.008

    Article  CAS  Google Scholar 

  22. Yu M, Zhao H, Jiang Z et al (2019) Microstructure and mechanical properties of friction stir lap AA6061-Ti6Al4V welds. J Mater Process Tech 270:274–284. https://doi.org/10.1016/j.jmatprotec.2019.03.007

    Article  CAS  Google Scholar 

  23. Shehabeldeen TA, Yin Y, Ji X, Shen X (2021) Investigation of the microstructure, mechanical properties and fracture mechanisms of dissimilar friction stir welded aluminium / titanium joints. J Mater Res Technol 11:507–518. https://doi.org/10.1016/j.jmrt.2021.01.026

    Article  CAS  Google Scholar 

  24. Zhou L, Yu M, Zhao H et al (2020) Dissimilar friction stir welding of AA6061 and Ti6Al4V alloys : a study on microstructure and mechanical properties. J Manuf Process 48:119–126. https://doi.org/10.1016/j.jmapro.2019.09.043

    Article  Google Scholar 

  25. Yu M, Zhao H, Xu F et al (2021) Effects of ultrasonic on friction stir Al – Ti welds : a comparative study. Sci Technol Weld Join 26:551–558. https://doi.org/10.1080/13621718.2021.1968233

    Article  CAS  Google Scholar 

  26. Yue Y, Zhang Z, Ji S et al (2018) Friction stir lap welding of 6061–T6 Al to Ti-6Al-4V using low rotating speed. Int J Adv Manuf Technol 96:2285–2291. https://doi.org/10.1007/s00170-018-1769-4

    Article  Google Scholar 

  27. Dressler U, Biallas G, Alfaro Mercado U (2009) Friction stir welding of titanium alloy TiAl6V4 to aluminium alloy AA2024-T3. Mater Sci Eng A 526:113–117. https://doi.org/10.1016/j.msea.2009.07.006

    Article  CAS  Google Scholar 

  28. Song Z, Nakata K, Wu A et al (2014) Influence of probe offset distance on interfacial microstructure and mechanical properties of friction stir butt welded joint of Ti6Al4V and A6061 dissimilar alloys. Mater Des 57:269–278. https://doi.org/10.1016/j.matdes.2013.12.040

    Article  CAS  Google Scholar 

  29. Zhou L, Yu M, Zhao H et al (2019) Dissimilar friction stir welding of AA6061 and Ti6Al4V alloys: a study on microstructure and mechanical properties. J Manuf Process 48:119–126. https://doi.org/10.1016/j.jmapro.2019.09.043

    Article  CAS  Google Scholar 

  30. Shankar S, Chattopadhyaya S, Mehta KP, Vilaça P (2022) Influence of copper plate positioning, zero tool offset, and bed conditions in friction stir welding of dissimilar Al-Cu alloys with different thicknesses. CIRP J Manuf Sci Technol 38:73–83. https://doi.org/10.1016/j.cirpj.2022.04.001

    Article  Google Scholar 

  31. Sundar A, Kumar A, Kishore K (2022) Investigation of material flow, microstructure evolution, and texture development in dissimilar friction stir welding of Al6061 to Ti6Al4V. Mater Today Commun 33:104424. https://doi.org/10.1016/j.mtcomm.2022.104424

    Article  CAS  Google Scholar 

  32. Nagu K, Kumar A (2022) Effect of brass interlayer on microstructure, mechanical and corrosion behaviour of friction stir welded AA6061-T6 alloy. Proc Inst Mech Eng Part C J Mech Eng Sci 236:5412–5427. https://doi.org/10.1177/09544062211061480

    Article  CAS  Google Scholar 

  33. Abu-Okail M, Abu-Oqail A, Ata MH (2020) Effect of friction stir welding process parameters with interlayer strip on microstructural characterization and mechanical properties. J Fail Anal Prev 20:173–183. https://doi.org/10.1007/s11668-020-00813-0

    Article  Google Scholar 

  34. Dong SK, Lin S, Zhu H et al (2022) Effect of Ni interlayer on microstructure and mechanical properties of Al/Mg dissimilar friction stir welding joints. Sci Technol Weld Join 27:103–113. https://doi.org/10.1080/13621718.2021.2014742

    Article  CAS  Google Scholar 

  35. Peng P, Wang W, Zhang T et al (2022) Effects of interlayer metal on microstructures and mechanical properties of friction stir lap welded dissimilar joints of magnesium and aluminum alloys. J Mater Process Technol 299. https://doi.org/10.1016/j.jmatprotec.2021.117362

  36. Saleh M, Liu H, Ushioda K, Fujii H (2022) Effect of Zn interlayer on friction stir butt welding of A1100 and SUS316L stainless steel. Sci Technol Weld Join 27:361–373. https://doi.org/10.1080/13621718.2022.2053398

    Article  CAS  Google Scholar 

  37. Meshram SD, Madhusudhan Reddy G (2015) Friction welding of AA6061 to AISI 4340 using silver interlayer. Def Technol 11:292–298. https://doi.org/10.1016/j.dt.2015.05.007

    Article  Google Scholar 

  38. Kumar R, Balasubramanian M (2015) Experimental investigation of Ti-6Al-4V titanium alloy and 304L stainless steel friction welded with copper interlayer. Def Technol. https://doi.org/10.1016/j.dt.2014.10.001

    Article  Google Scholar 

  39. Mokabberi SR, Movahedi M, Kokabi AH (2018) Effect of interlayers on softening of aluminum friction stir welds. Mater Sci Eng A 727:1–10. https://doi.org/10.1016/j.msea.2018.04.093

    Article  CAS  Google Scholar 

  40. Zhang Z, Huang J, Yao C, Zhang X (2022) Effect of Ag alloying on the microstructure and mechanical properties of laser welded-brazed Ti/Al dissimilar joints. Mater Sci Eng A 848:143359. https://doi.org/10.1016/j.msea.2022.143359

    Article  CAS  Google Scholar 

  41. Zhang Z, Huang J, Fu J et al (2022) Microstructure and mechanical properties of laser welded-brazed titanium/aluminum joints assisted by titanium mesh interlayer. J Mater Process Technol 302:117502. https://doi.org/10.1016/j.jmatprotec.2022.117502

    Article  CAS  Google Scholar 

  42. Chen YH, Ni Q, Ke LM (2012) Interface characteristic of friction stir welding lap joints of Ti/Al dissimilar alloys. Trans Nonferrous Met Soc China (English Ed) 22:299–304. https://doi.org/10.1016/S1003-6326(11)61174-6

    Article  CAS  Google Scholar 

  43. Shehabeldeen TA, El-shafai NM, El-mehasseb IM et al (2021) Improvement of microstructure and mechanical properties of dissimilar friction stir welded aluminum / titanium joints via aluminum oxide nanopowder. Vacuum 188:110216. https://doi.org/10.1016/j.vacuum.2021.110216

    Article  CAS  Google Scholar 

  44. Abdollah-Zadeh A, Saeid T, Sazgari B (2008) Microstructural and mechanical properties of friction stir welded aluminum/copper lap joints. J Alloys Compd 460:535–538. https://doi.org/10.1016/j.jallcom.2007.06.009

    Article  CAS  Google Scholar 

  45. Xue P, Xiao BL, Ni DR, Ma ZY (2010) Enhanced mechanical properties of friction stir welded dissimilar Al-Cu joint by intermetallic compounds. Mater Sci Eng A 527:5723–5727. https://doi.org/10.1016/j.msea.2010.05.061

    Article  CAS  Google Scholar 

  46. Sahu PK, Pal S, Pal SK, Jain R (2016) Influence of plate position, tool offset and tool rotational speed on mechanical properties and microstructures of dissimilar Al/Cu friction stir welding joints. J Mater Process Technol 235:55–67. https://doi.org/10.1016/j.jmatprotec.2016.04.014

    Article  CAS  Google Scholar 

  47. Kar A, Suwas S, Kailas SV (2019) Significance of tool offset and copper interlayer during friction stir welding of aluminum to titanium. Int J Adv Manuf Technol 100:435–443. https://doi.org/10.1007/s00170-018-2682-6

    Article  Google Scholar 

  48. Dixit S, Madhu HC, Kailas SV, Chattopadhyay K (2017) Role of insert material on process loads during FSW. Int J Adv Manuf Technol 91:3427–3435. https://doi.org/10.1007/s00170-016-9974-5

    Article  Google Scholar 

  49. Li B, Zhang Z, Shen Y et al (2014) Dissimilar friction stir welding of Ti-6Al-4V alloy and aluminum alloy employing a modified butt joint configuration: influences of process variables on the weld interfaces and tensile properties. Mater Des 53:838–848. https://doi.org/10.1016/j.matdes.2013.07.019

    Article  CAS  Google Scholar 

  50. Nawaz Ahmad G, Padman J, Shahid Raza M et al (2018) Analyzing the effect of tool pin design and process parameters on the microstructural and mechanical properties of Friction Stir Welded 6061 Aluminium alloy. IOP Conf Ser Mater Sci Eng 377. https://doi.org/10.1088/1757-899X/377/1/012059

  51. Biswas P, Kumar DA, Mandal NR (2012) Friction stir welding of aluminum alloy with varying tool geometry and process parameters. Proc Inst Mech Eng Part B J Eng Manuf 226:641–648. https://doi.org/10.1177/0954405411424111

    Article  CAS  Google Scholar 

  52. Hynes NRJ, Velu PS (2018) Effect of rotational speed on Ti-6Al-4V-AA 6061 friction welded joints. J Manuf Process 32:288–297. https://doi.org/10.1016/j.jmapro.2018.02.014

    Article  Google Scholar 

  53. Shouzheng W, Yajiang L, Juan W et al (2014) Microstructure and joining mechanism of Ti/Al dissimilar joint by pulsed gas metal arc welding. Int J Adv Manuf Technol 70:1137–1142. https://doi.org/10.1007/s00170-013-5290-5

    Article  Google Scholar 

  54. Chen S, Yang D, Li M et al (2016) Laser penetration welding of an overlap titanium-on-aluminum configuration. Int J Adv Manuf Technol 87:3069–3079. https://doi.org/10.1007/s00170-016-8732-z

    Article  Google Scholar 

  55. Rajakumar S, Balasubramanian V (2016) Diffusion bonding of titanium and AA 7075 aluminum alloy dissimilar joints—process modeling and optimization using desirability approach. Int J Adv Manuf Technol 86:1095–1112. https://doi.org/10.1007/s00170-015-8223-7

    Article  Google Scholar 

  56. Plaine AH, Suhuddin UFH, Alcântara NG, dos Santos JF (2017) Microstructure and mechanical behavior of friction spot welded AA6181-T4/Ti6Al4V dissimilar joints. Int J Adv Manuf Technol 92:3703–3714. https://doi.org/10.1007/s00170-017-0439-2

    Article  Google Scholar 

  57. Mishra RS, Ma ZY (2005) Friction stir welding and processing. Mater Sci Eng R Reports 50:1–78. https://doi.org/10.1016/j.mser.2005.07.001

    Article  CAS  Google Scholar 

  58. Sujata M, Bhargava S, Sangal S (1997) On the formation of TiAl3 during reaction between solid Ti and liquid Al. J Mater Sci Lett 16:1175–1178. https://doi.org/10.1007/bf02765402

    Article  CAS  Google Scholar 

  59. Song Z, Nakata K, Wu A, Liao J (2013) Interfacial microstructure and mechanical property of Ti6Al4V/A6061 dissimilar joint by direct laser brazing without filler metal and groove. Mater Sci Eng A 560:111–120. https://doi.org/10.1016/j.msea.2012.09.044

    Article  CAS  Google Scholar 

  60. Barekatain H, Kazeminezhad M, Kokabi AH (2014) Microstructure and mechanical properties in dissimilar butt friction stir welding of severely plastic deformed aluminum AA 1050 and commercially pure copper sheets. J Mater Sci Technol 30:826–834. https://doi.org/10.1016/j.jmst.2013.11.007

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Subir Chowdhury School of Quality and Reliability, Indian Institute of Technology, Kharagpur, for providing all the funding required to carry out the research work. The authors also acknowledge the support of the Department of Ocean Engineering and Naval Architecture for providing the experimental setup for conducting the experiments and the Central Research Facility of IIT Kharagpur for providing facilities for XRD analysis and microstructural and mechanical tests. The authors also acknowledge the support of the Department of Metallurgical and Materials Engineering, IIT Kharagpur, for providing polishing facilities and Optical Microscope to conduct microstructural study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saed Enam Mustafa.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Recommended for publication by Commission III - Resistance Welding, Solid State Welding, and Allied Joining Process

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mustafa, S.E., Rai, R.N. & Firoz, R. Enhancement of joint properties and reduction of intermetallics in FSW of highly dissimilar Al/Ti alloys. Weld World 67, 1393–1410 (2023). https://doi.org/10.1007/s40194-023-01493-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-023-01493-8

Keywords

Navigation