Skip to main content
Log in

Role of insert material on process loads during FSW

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

In FSW, insert materials are often used to both control the loading conditions as well as to trace the nature of materials flow. This current study aims at understanding the role played by inserts materials by using two different materials, copper and tin as inserts. The copper and tin have higher and lower melting points respectively as compared to aluminum. The metal strips are sandwiched between aluminum plates and friction stir welded at two different rotational speeds. The process loads and torque were recorded during the welding and compared with that obtained for normal butt-welding of aluminum sheets. In the case of copper insert, copper gets distributed in the matrix and it is possible to trace the flow of copper inside the aluminum. In the case of tin, it melts during the welding. The molten tin is squeezed out of faying surface and coats tool shoulder. This lowers the friction and which in turn lowers the torque (55%) and the consequent heat generation. The resultant reduction of temperature in the weld leads to higher tangential and normal loads. Compared to the case without insert, the normal loads for FSW processing with tin insert were higher by 2.2 times and tangential loads were higher by 5.5 times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mishra RS, Ma ZY (2005) Friction stir welding and processing. Mater Sci Eng R Rep 50:1–78. doi:10.1016/j.mser.2005.07.001

    Article  Google Scholar 

  2. Barnes T, Pashby I (2000) Joining techniques for aluminium spaceframes used in automobiles. J Mater Process Technol 99:62–71. doi:10.1016/S0924-0136(99)00367-2

    Article  Google Scholar 

  3. Zhao H, White DR, DebRoy T (1999) Current issues and problems in laser welding of automotive aluminium alloys. Int Mater Rev 44:238–266. doi:10.1179/095066099101528298

    Article  Google Scholar 

  4. Nadammal N, Kailas SV, Suwas S (2015) A bottom-up approach for optimization of friction stir processing parameters; a study on aluminium 2024-T3 alloy. Mater Des 65:127–138. doi:10.1016/j.matdes.2014.09.005

    Article  Google Scholar 

  5. Thomas WM, Threadgill PL, Nicholas ED (1999) Feasibility of friction stir welding steel. Sci Technol Weld Join 4:365–372. doi:10.1179/136217199101538012

    Article  Google Scholar 

  6. Murr LE, Li Y, Flores RD et al (1998) Intercalation vortices and related microstructural features in the friction-stir welding of dissimilar metals. Mater Res Innov 2:150–163. doi:10.1007/s100190050078

    Article  Google Scholar 

  7. Al-Roubaiy AO, Nabat SM, Batako ADL (2014) Experimental and theoretical analysis of friction stir welding of Al–Cu joints. Int J Adv Manuf Technol 71:1631–1642. doi:10.1007/s00170-013-5563-z

    Article  Google Scholar 

  8. Carlone P, Astarita A, Palazzo GS et al (2015) Microstructural aspects in Al–Cu dissimilar joining by FSW. Int J Adv Manuf Technol 79:1109–1116. doi:10.1007/s00170-015-6874-z

    Article  Google Scholar 

  9. Chen YC, Nakata K (2009) Microstructural characterization and mechanical properties in friction stir welding of aluminum and titanium dissimilar alloys. Mater Des 30:469–474. doi:10.1016/j.matdes.2008.06.008

    Article  Google Scholar 

  10. Dressler U, Biallas G, Alfaro Mercado U (2009) Friction stir welding of titanium alloy TiAl6V4 to aluminium alloy AA2024-T3. Mater Sci Eng A 526:113–117. doi:10.1016/j.msea.2009.07.006

    Article  Google Scholar 

  11. Sheikh-Ahmad JY, Ozturk F, Jarrar F, Evis Z (2016) Thermal history and microstructure during friction stir welding of Al–Mg alloy. Int J Adv Manuf Technol. doi:10.1007/s00170-015-8239-z

    Google Scholar 

  12. Aonuma M, Nakata K (2012) Dissimilar metal joining of ZK60 magnesium alloy and titanium by friction stir welding. Mater Sci Eng B 177:543–548. doi:10.1016/j.mseb.2011.12.031

    Article  Google Scholar 

  13. Uzun H, Dalle Donne C, Argagnotto A et al (2005) Friction stir welding of dissimilar Al 6013-T4 to X5CrNi18-10 stainless steel. Mater Des 26:41–46. doi:10.1016/j.matdes.2004.04.002

    Article  Google Scholar 

  14. Schneider J, Radzilowski R (2014) Welding of very dissimilar materials (Fe-Al). JOM 66:2123–2129. doi:10.1007/s11837-014-1134-5

    Article  Google Scholar 

  15. Kumar N, Yuan W, Mishra RS (2015) Friction stir welding of dissimilar alloys and materials. Butterworth-Heinemann, UK

    Book  Google Scholar 

  16. Robson JD, Cui S, Chen ZW (2010) Incipient melting during friction stir processing of AZ91 magnesium castings. Mater Sci Eng A 527:7299–7304. doi:10.1016/j.msea.2010.07.093

    Article  Google Scholar 

  17. Yan J, Sutton MA, Reynolds AP (2005) Process–structure–property relationships for nugget and heat affected zone regions of AA2524–T351 friction stir welds. Sci Technol Weld Join 10:725–736. doi:10.1179/174329305X68778

    Article  Google Scholar 

  18. Long T, Tang W, Reynolds AP (2007) Process response parameter relationships in aluminium alloy friction stir welds. Sci Technol Weld Join 12:311–317. doi:10.1179/174329307X197566

    Article  Google Scholar 

  19. Inada K, Fujii H, Ji YS et al (2010) Effect of gap on FSW joint formation and development of friction powder processing. Sci Technol Weld Join 15:131–136. doi:10.1179/136217109X12568132624244

    Article  Google Scholar 

  20. Chang W-S, Rajesh SR, Chun C-K, Kim H-J (2011) Microstructure and mechanical properties of hybrid laser-friction stir welding between AA6061-T6 Al alloy and AZ31 Mg alloy. J Mater Sci Technol 27:199–204. doi:10.1016/S1005-0302(11)60049-2

    Article  Google Scholar 

  21. Shiri SG, Sarani A, Hosseini SRE, Roudini G (2013) Diffusion in FSW joints by inserting the metallic foils. J Mater Sci Technol 29:1091–1095. doi:10.1016/j.jmst.2013.07.003

    Article  Google Scholar 

  22. Lee R-T, Liu C-T, Chiou Y-C, Chen H-L (2013) Effect of nickel coating on the shear strength of FSW lap joint between Ni–Cu alloy and steel. J Mater Process Technol 213:69–74. doi:10.1016/j.jmatprotec.2012.07.014

    Article  Google Scholar 

  23. Seidel TU, Reynolds AP (2001) Visualization of the material flow in AA2195 friction-stir welds using a marker insert technique. Metall Mater Trans A 32:2879–2884. doi:10.1007/s11661-001-1038-1

    Article  Google Scholar 

  24. Schmidt HNB, Dickerson TL, Hattel JH (2006) Material flow in butt friction stir welds in AA2024-T3. Acta Mater 54:1199–1209. doi:10.1016/j.actamat.2005.10.052

    Article  Google Scholar 

  25. Colligan K (1999) Material flow behavior during friction welding of aluminum. Weld J 75:229s–237s

    Google Scholar 

  26. Kang SH, Han HN, Oh KH et al (2009) Investigation of the material flow and texture evolution in friction-stir welded aluminum alloy. Met Mater Int 15:1027–1031. doi:10.1007/s12540-009-1027-2

    Article  Google Scholar 

  27. Doude HR, Schneider JA, Nunes AC (2014) Influence of the tool shoulder contact conditions on the material flow during friction stir welding. Metall Mater Trans A 45:4411–4422. doi:10.1007/s11661-014-2384-0

    Article  Google Scholar 

  28. J.A. Schneider, A.C. Nunes, Jr (2006) Influence of processing parameters on the flow path in friction stir welding. ntrs.nasa.gov

  29. Schneider J, Beshears R, Nunes AC (2006) Interfacial sticking and slipping in the friction stir welding process. Mater Sci Eng A 435-436:297–304. doi:10.1016/j.msea.2006.07.082

    Article  Google Scholar 

  30. Shinoda T, Kondo Y (1997) Friction stir welding of aluminium plate. Weld Int 11:179–184. doi:10.1080/09507119709451948

    Article  Google Scholar 

  31. Hwang Y-M, Kang Z-W, Chiou Y-C, Hsu H-H (2008) Experimental study on temperature distributions within the workpiece during friction stir welding of aluminum alloys. Int J Mach Tools Manuf 48:778–787. doi:10.1016/j.ijmachtools.2007.12.003

    Article  Google Scholar 

  32. Tang W, Guo X, McCLURE JC et al (1998) Heat input and temperature distribution in friction stir welding. J Mater Process Manuf Sci 7:163–172. doi:10.1106/55TF-PF2G-JBH2-1Q2B

    Article  Google Scholar 

  33. Mishra RS, Mahoney MW (2007) Friction stir welding and processing. ASM International, Materials Park, Ohio

    Google Scholar 

  34. Chao YJ, Qi X, Tang W (2003) Heat transfer in friction stir welding—experimental and numerical studies. J Manuf Sci Eng 125:138. doi:10.1115/1.1537741

    Article  Google Scholar 

  35. Zimmer S, Langlois L, Laye J, Bigot R (2010) Experimental investigation of the influence of the FSW plunge processing parameters on the maximum generated force and torque. Int J Adv Manuf Technol 47:201–215. doi:10.1007/s00170-009-2188-3

    Article  Google Scholar 

  36. Atharifar H, Lin D, Kovacevic R (2009) Numerical and experimental investigations on the loads carried by the tool during friction stir welding. J Mater Eng Perform 18:339–350. doi:10.1007/s11665-008-9298-1

    Article  Google Scholar 

  37. Su H, Wu CS, Pittner A, Rethmeier M (2013) Simultaneous measurement of tool torque, traverse force and axial force in friction stir welding. J Manuf Process 15:495–500. doi:10.1016/j.jmapro.2013.09.001

    Article  Google Scholar 

  38. Frigaard Ø, Grong Ø, Midling OT (2001) A process model for friction stir welding of age hardening aluminum alloys. Metall Mater Trans A 32:1189–1200. doi:10.1007/s11661-001-0128-4

    Article  Google Scholar 

  39. Heurtier P, Jones MJ, Desrayaud C et al (2006) Mechanical and thermal modelling of friction stir welding. J Mater Process Technol 171:348–357. doi:10.1016/j.jmatprotec.2005.07.014

    Article  Google Scholar 

  40. Sutton M, Yang B, Reynolds A, Taylor R (2002) Microstructural studies of friction stir welds in 2024-T3 aluminum. Mater Sci Eng A 323:160–166. doi:10.1016/S0921-5093(01)01358-2

    Article  Google Scholar 

  41. Schneider JA, Nunes AC (2004) Characterization of plastic flow and resulting microtextures in a friction stir weld. Metall Mater Trans B Process Metall Mater Process Sci 35:777–783. doi:10.1007/s11663-004-0018-4

    Article  Google Scholar 

  42. Arora A, Nandan R, Reynolds AP, DebRoy T (2009) Torque, power requirement and stir zone geometry in friction stir welding through modeling and experiments. Scr Mater 60:13–16. doi:10.1016/j.scriptamat.2008.08.015

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saurabh Dixit.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dixit, S., C., M.H., Kailas, S.V. et al. Role of insert material on process loads during FSW. Int J Adv Manuf Technol 91, 3427–3435 (2017). https://doi.org/10.1007/s00170-016-9974-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-9974-5

Keywords

Navigation