Skip to main content
Log in

Enhancement of the fatigue strength assessment of welded components by consideration of mean and residual stresses in the crack initiation and propagation phases

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

The starting point of the investigations presented in this paper is the simplified consideration of mean and residual stresses as well as the complete disregard of the complex failure mechanisms in the common fatigue standards and guidelines. An improved fatigue life assessment for welded components, which includes the crack initiation and propagation phase is the scope of this paper. The crack initiation phase is considered using the strain–life approach. The crack propagation life, starting from a technical crack of a depth of a = 0.5 mm, is derived by the application of linear–elastic fracture mechanics. In this two–phase approach, the mean and residual stresses are considered by using damage parameters for the initiation phase and effective stress intensity factors for the propagation phase. With this approach, a better understanding can be obtained of the influence of mean– and residual stresses and their influence on the course (slope k and knee point N k ) of the S–N curve. With this information to hand, a more reliable fatigue assessment can be achieved than is possible with the common standards and guidelines. With the proposed two-phase approach, higher permissible stresses can be allowed in the design phase, leading to resource-efficient, lightweight constructions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Hobbacher A (ed) (2009) Recommendations for fatigue design of welded joints and components. Welding Research Council, Bulletin 520

  2. Radaj D (1996) Int J Fatigue 18(3):153–170

    Article  Google Scholar 

  3. Zerbst U, Madia M, Eufinger J, Bruder T (2012) DVM Bericht 139: Werkstoffe und Fügeverfahren - Neue Herausforderungen für die Betriebsfestigkeit

  4. Maddox S (1971) Procs. conf. fatigue of welded structures

  5. Maddox S (1975) Int J Fract 11(3):389

    Google Scholar 

  6. Mohaupt U, Burns D, Kalbfleisch J, Vosikovsky O, Bell R (1987) Steel in marine structures. In: Proceedings of the 3rd international ECSC offshore conference on steel in marine structures (SIMS ’87), Delft, the Netherlands, 15–18 June . Elsevier, Amsterdam

  7. Verreman Y, Nie B (1991) Fatigue fract Eng Mater Struct 14(2–3):337

    Article  Google Scholar 

  8. Olivier R, Koettgen VB (1991) Schweißverbindungen II - Untersuchung zur Einbindung eines neuartigen Zeit- und Dauerschwingfestigkeitsnachweises von Schweißverbindungen aus Stahl in Regelwerke. Vorhaben Nr. 128, Heft Nr. 180. Forschungkuratorium Maschinenbau (FKM)

  9. Hobbacher A (2008) International institute of welding JWG-XIII-XV-197-08

  10. Lassen T, Recho N (2009) Int J Fatigue 31:70

    Article  Google Scholar 

  11. Darcis P, Lassen T, Recho N (2006) Weld J 85(1):19

    Google Scholar 

  12. Chen N, Lawrence F (1998) Advances in Fatigue Crack Closure Measurement and Analysis: Second Volume. In: McClung R (ed). American Society for Testing and Materials ASTM, pp 351–367

  13. Dimitrakis S, Lawrence F (1999) FCP report no. 184, improving the fatigue life of weldments with longitudinal attachments. Tech. rep., College of Engineering, University of Illinois

  14. Chattopadhyay A, Glinka G, El-Zein M, Qian J, Formas R (2011) Weld World 55:2

    Article  Google Scholar 

  15. Hou CY, Charng JJ (1997) Int J Fatigue 19(7):537

    Article  Google Scholar 

  16. Hou C, Chen N, Lawrence FV (1994) FCP report no. 166, computer simulation of weldment fatigue life. Tech. rep., Collage of Engineering, University of Illinois

  17. Lawrence F, Ho NJ, Mazumdar P (1981) Annu Rev Mater Sci 11:401

    Article  Google Scholar 

  18. Lihavainen VM (2006) A novel approach for assessing the fatigue strength of ultrasonic impact treated welded structures. Ph.D. thesis, Lappeenranta University of Technology

  19. Remes H (2008) Strain-based approach to fatigue strength assessment of welded joints. Ph.D. thesis, Helsiki University of Technology

  20. Schaumann P, Keindorf C (2010) Stahlbau 79:34

    Article  Google Scholar 

  21. Verreman Y, Nie B (1996) Fatigue Fract Eng Mater Struct 19(6):669

    Article  Google Scholar 

  22. Peterson R (1959) Metal fatigue. McGraw-Hill, New York. Critical distance

  23. Neuber H (1937) Kerbspannungslehre, Grundlagen für genaue Spannungsberechnung. Verlag von Julius Springer, Berlin

    Google Scholar 

  24. Seeger T (1996) Stahlbau Handbuch 1 Teil B. Stahlbau-Verlagsgesellschaft mbH Köln

  25. Boukharouba T, Tamine T, Niu L, Chehimi C, Pluvinage G (1995) Eng Fract Mech 52(3):503

    Article  Google Scholar 

  26. Lazzarin P, Livieri P (2001) Int J Fatigue 23:225

    Article  Google Scholar 

  27. Lazzarin P, Berto F, Gomez F, Zappalorto M (2008) Int J Fatigue 30:1345

    Article  Google Scholar 

  28. Schütz W (1967) Zeitschrift für Flugwissenschaft 15:407

    Google Scholar 

  29. Smith K, Watson P, Topper T (1970) J Mater 5:767

    Google Scholar 

  30. Harter J, AFGROW Users Guide And Technical Manual AFRL-VA-WP-TR-2008-XXXX. Air Force Research Lab WPAFB OH (2008)

  31. Haibach E, Seeger T (1998) Materialwiss Werkstofftech 29:199

    Article  Google Scholar 

  32. Sonsino CM, Bruder T, Baumgartner J (2010) Weld World 54:375

    Article  Google Scholar 

  33. Bruder T, Störzel K, Baumgartner J, Hanselka H (2012) Int J Fatigue 34(1):86

    Article  Google Scholar 

  34. Gurney T (1977) Residual stresses in welded constructions and their effects. In: International Conference, 15–17 November, London. The Welding Institute, Abington Hall, pp 151– 163

  35. Ohta A, Maeda Y, Mawari T, Nishijima S, Nakamura H (1986) Int J Fatigue 8(3):147

    Article  Google Scholar 

  36. Taylor D (1999) Int J Fatigue 21:413

    Article  Google Scholar 

  37. Neuber H (1968) Konstruktion 20(7):245

    Google Scholar 

  38. Kuguel R (1961) 64th Annual Meeting of the Society (ASTM), pp 732–744

  39. Sonsino CM (1995) Int J Fatigue 17(1):55

    Article  Google Scholar 

  40. Topper T, Wetzel R, Morrow J (1967) Report no. NAEC-ASL-1114: Neuber’s rule applied to fatigue of notched specimens. Tech. rep., Aeronautical Structures Laboratory

  41. Albrecht P, Yamada K (1977) J Struct Div 103(2):377

    Google Scholar 

  42. Glinka G, Shen G (1991) Eng Fract Mech 40(6):1135

    Article  Google Scholar 

  43. Sonsino CM (2009) Int J Fatigue 31:88

    Article  Google Scholar 

  44. Sonsino CM, Kaufmann H, Wagener R, Fischer C, Eufinger J (2011) Weld World 55(11–12):66

    Article  Google Scholar 

  45. Baumgartner J, Bruder T (2013) Weld World 57:841

    Article  Google Scholar 

  46. Varfolomeev I, Moroz S, Brand M, Siegele D, Baumgartner J IWM Bericht w 17/2011: Lebensdauerbewertung von Schweißverbindungen unter besonderer Berücksichtigung von eigenspannungen

  47. Baumgartner J (2013) Schwingfestigkeit von Schweißverbindungen unter Berücksichtigung von Schweißeigenspannungen und Größeneinflüssen. Ph.D. thesis, Technische Universität Darmstadt

  48. Vormwald M (2011) Materials Testing 53:98

    Article  Google Scholar 

  49. Maddox S (1976) Welding research international 6(5)

  50. Radaj D (1985) Gestaltung und Berechnung von Schweißkonstruktionen, Ermüdungsfestigkeit. Verlag für Schweißtechnik, DVS

  51. Hensel J, Nitschke-Pagel T, Schönborn S, Dilger K (2012) International institute of welding XIII-2441-12

Download references

Acknowledgments

Parts of the investigations presented here were supported by financial funding from Federal Ministry of Economics and Technology BMWi over the AiF e.V. (Arbeitsgemeinschaft industrieller Forschungsvereinigungen ”Otto von Guericke” e.V.) under the grant 15.913N. Technical and scientific support during the project was given by the German Welding Society DVS (Forschungsvereinigung Schweißen und verwandte Verfahren e. V.) in the working group FA9 (Design and Assessment). The author would like to thank the AiF, the DVS, and the members of the FA9 for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Baumgartner.

Additional information

Recommended for publication by Commission XIII - Fatigue of Welded Components and Structures

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baumgartner, J. Enhancement of the fatigue strength assessment of welded components by consideration of mean and residual stresses in the crack initiation and propagation phases. Weld World 60, 547–558 (2016). https://doi.org/10.1007/s40194-016-0304-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-016-0304-1

Keywords (IIW Thesaurus)

Navigation