Skip to main content

Progress and perspectives in dielectric energy storage ceramics

Abstract

Dielectric ceramic capacitors, with the advantages of high power density, fast charge-discharge capability, excellent fatigue endurance, and good high temperature stability, have been acknowledged to be promising candidates for solid-state pulse power systems. This review investigates the energy storage performances of linear dielectric, relaxor ferroelectric, and antiferroelectric from the viewpoint of chemical modification, macro/microstructural design, and electrical property optimization. Research progress of ceramic bulks and films for Pb-based and/or Pb-free systems is summarized. Finally, we propose the perspectives on the development of energy storage ceramics for pulse power capacitors in the future.

References

  1. [1]

    Yang LT, Kong X, Li F, et al. Perovskite lead-free dielectrics for energy storage applications. Prog Mater Sci 2019, 102: 72–108.

    CAS  Article  Google Scholar 

  2. [2]

    Yao ZH, Song Z, Hao H, et al. Homogeneous/inhomogeneous-structured dielectrics and their energystorage performances. Adv Mater 2017, 29: 1601727.

    Article  CAS  Google Scholar 

  3. [3]

    Li Q, Han K, Gadinski MR, et al. High energy and power density capacitors from solution-processed ternary ferroelectric polymer nanocomposites. Adv Mater 2014, 26: 6244–6249.

    CAS  Article  Google Scholar 

  4. [4]

    Wang Y, Song Y, Xia Y. Electrochemical capacitors: Mechanism, materials, systems, characterization and applications. Chem Soc Rev 2016, 45: 5925–5950.

    CAS  Article  Google Scholar 

  5. [5]

    Bruce PG, Freunberger SA, Hardwick LJ, et al. Li-O2 and Li-S batteries with high energy storage. Nat Mater 2012, 11: 19–29.

    CAS  Article  Google Scholar 

  6. [6]

    Shao Z, Haile SM. A high-performance cathode for the next generation of solid-oxide fuel cells. Nature 2004, 431: 170–173.

    CAS  Article  Google Scholar 

  7. [7]

    Palneedi H, Peddigari M, Hwang GT, et al. Highperformance dielectric ceramic films for energy storage capacitors: progress and outlook. Adv Funct Mater 2018, 28: 1803665.

    Article  CAS  Google Scholar 

  8. [8]

    Hao X. A review on the dielectric materials for high energy-storage application. J Adv Dielect 2013, 3: 1330001.

    Article  CAS  Google Scholar 

  9. [9]

    Yao FZ, Yuan Q, Wang Q, et al. Multiscale structural engineering of dielectric ceramics for energy storage applications: From bulk to thin films. Nanoscale 2020, 12: 17165–17184.

    CAS  Article  Google Scholar 

  10. [10]

    Tong S. Size and temperature effects on dielectric breakdown of ferroelectric films. J Adv Ceram 2021, 10: 181–186.

    CAS  Article  Google Scholar 

  11. [11]

    Zhao P, Wang H, Wu L, et al. High-performance relaxor ferroelectric materials for energy storage applications. Adv Energy Mater 2019, 9: 1803048.

    Article  CAS  Google Scholar 

  12. [12]

    Chen X, Zhang H, Cao F, et al. Charge-discharge properties of lead zirconate stannate titanate ceramics. J Appl Phys 2009, 106: 034105.

    Article  CAS  Google Scholar 

  13. [13]

    Yang SM, Jo JY, Kim TH, et al. AC dynamics of ferroelectric domains from an investigation of the frequency dependence of hysteresis loops. Phys Rev B 2010, 82: 174125.

    Article  CAS  Google Scholar 

  14. [14]

    Huang Y, Li F, Hao H, et al. (Bi0.51Na0.47)TiO3 based lead free ceramics with high energy density and efficiency. J Materiomics 2019, 5: 385–393.

    Article  Google Scholar 

  15. [15]

    Li J, Li F, Xu Z, et al. Multilayer lead-free ceramic capacitors with ultrahigh energy density and efficiency. Adv Mater 2018, 30: 1802155.

    Article  CAS  Google Scholar 

  16. [16]

    Lou XJ. Polarization fatigue in ferroelectric thin films and related materials. J Appl Phys 2009, 105: 024101.

    Article  CAS  Google Scholar 

  17. [17]

    Ye Y, Zhang SC, Dogan F, et al. Influence of nanocrystalline grain size on the breakdown strength of ceramic dielectrics. In: Proceedings of the 14th IEEE International Pulsed Power Conference, 2003: 719–722.

    Google Scholar 

  18. [18]

    Dervos CT, Thirios, Novacovich J, et al. Permittivity properties of thermally treated TiO2. Mater Lett 2004, 58: 1502–1507.

    CAS  Article  Google Scholar 

  19. [19]

    Reddy CV, Reddy KR, Shetti NP, et al. Heteronanostructured metal oxide-based hybrid photocatalysts for enhanced photoelectrochemical water splitting—A review. Int J Hydrog Energy 2020, 45: 18331–18347.

    CAS  Article  Google Scholar 

  20. [20]

    Mehta A, Mishra A, Basu S, et al. Band gap tuning and surface modification of carbon dots for sustainable environmental remediation and photocatalytic hydrogen production—A review. J Environ Manag 2019, 250: 109486.

    CAS  Article  Google Scholar 

  21. [21]

    Parker R, Wasilik J. Dielectric constant and dielectric loss of TiO2 (rutile) at low frequencies. Phys Rev 1960, 120: 1631–1637.

    CAS  Article  Google Scholar 

  22. [22]

    Guo D, Ito A, Goto T, et al. Preparation of rutile TiO2 thin films by laser chemical vapor deposition method. J Adv Ceram 2013, 2: 162–166.

    CAS  Article  Google Scholar 

  23. [23]

    Hu W, Liu Y, Withers RL, et al. Electron-pinned defect-dipoles for high-performance colossal permittivity materials. Nat Mater 2013, 12: 821–826.

    CAS  Article  Google Scholar 

  24. [24]

    Li J, Li F, Li C, et al. Evidences of grain boundary capacitance effect on the colossal dielectric permittivity in (Nb + In) co-doped TiO2 ceramics. Sci Rep 2015, 5: 8295.

    CAS  Article  Google Scholar 

  25. [25]

    Li J, Li F, Zhuang Y, et al. Microstructure and dielectric properties of (Nb + In) co-doped rutile TiO2 ceramics. J Appl Phys 2014, 116: 074105.

    Article  CAS  Google Scholar 

  26. [26]

    Dong W, Hu W, Berlie A, et al. Colossal dielectric behavior of Ga+Nb co-doped rutile TiO2. ACS Appl Mater Interfaces 2015, 7: 25321–25325.

    CAS  Article  Google Scholar 

  27. [27]

    Nachaithong T, Kidkhunthod P, Thongbai P, et al. Surface barrier layer effect in (In + Nb) co-doped TiO2 ceramics: An alternative route to design low dielectric loss. J Am Ceram Soc 2017, 100: 1452–1459.

    CAS  Article  Google Scholar 

  28. [28]

    Petzelt J, Nuzhnyy D, Bovtun V, et al. Origin of the colossal permittivity of (Nb + In) co-doped rutile ceramics by wide-range dielectric spectroscopy. Phase Transitions 2018, 91: 932–941.

    CAS  Article  Google Scholar 

  29. [29]

    Chao S, Petrovsky V, Dogan F. Effects of sintering temperature on the microstructure and dielectric properties of titanium dioxide ceramics. J Mater Sci 2010, 45: 6685–6693.

    CAS  Article  Google Scholar 

  30. [30]

    Liu J, Zhang J, Wei M, et al. Dielectric properties of manganese-doped TiO2 with different alkali-free glass contents for energy storage application. J Mater Sci: Mater Electron 2016, 27: 7680–7684.

    CAS  Google Scholar 

  31. [31]

    Chao S, Dogan F. Processing and dielectric properties of TiO2 thick films for high-energy density capacitor applications. Int J Appl Ceram Technol 2011, 8: 1363–1373.

    CAS  Article  Google Scholar 

  32. [32]

    Pai YY, Tylan-Tyler A, Irvin P, et al. Physics of SrTiO3-based heterostructures and nanostructures: A review. Rep Prog Phys 2018, 81: 036503.

    Article  CAS  Google Scholar 

  33. [33]

    Kumar Yadav A, Gautam CR. A review on crystallisation behaviour of perovskite glass ceramics. Adv Appl Ceram 2014, 113: 193–207.

    CAS  Article  Google Scholar 

  34. [34]

    Hu QG, Shen ZY, Li YM, et al. Enhanced energy storage properties of dysprosium doped strontium titanate ceramics. Ceram Int 2014, 40: 2529–2534.

    CAS  Article  Google Scholar 

  35. [35]

    Kong X, Yang L, Cheng Z, et al. Bi-modified SrTiO3-based ceramics for high-temperature energy storage applications. J Am Ceram Soc 2020, 103: 1722–1731.

    CAS  Article  Google Scholar 

  36. [36]

    Fergus JW. Oxide materials for high temperature thermoelectric energy conversion. J Eur Ceram Soc 2012, 32: 525–540.

    CAS  Article  Google Scholar 

  37. [37]

    Wang Y, Shen ZY, Li YM, et al. Optimization of energy storage density and efficiency in BaxSr1-xTiO3 (x ≤ 0.4) paraelectric ceramics. Ceram Int 2015, 41: 8252–8256.

    CAS  Article  Google Scholar 

  38. [38]

    Nishigaki S, Murano K, Ohkoshi A. Dielectric properties of ceramics in the system (Sr0.50Pb0.25Ca0.25)TiO3-Bi2O3²3TiO2 and their applications in a high-voltage capacitor. J Am Ceram Soc 1982, 65: 554–560.

    CAS  Article  Google Scholar 

  39. [39]

    Kong X, Yang L, Cheng Z, et al. (Ba,Sr)TiO3-Bi(Mg,Hf)O3 lead-free ceramic capacitors with high energy density and energy efficiency. ACS Appl Energy Mater 2020, 3: 12254–12262.

    CAS  Article  Google Scholar 

  40. [40]

    Fletcher NH, Hilton AD, Ricketts BW. Optimization of energy storage density in ceramic capacitors. J Phys D: Appl Phys 1996, 29: 253–258.

    CAS  Article  Google Scholar 

  41. [41]

    Ang C, Yu Z, Cross LE. Oxygen-vacancy-related low-frequency dielectric relaxation and electrical conduction in Bi: SrTiO3. Phys Rev B 2000, 62: 228–236.

    Article  Google Scholar 

  42. [42]

    Yu Z, Ang C. Dielectric relaxor and ferroelectric relaxor: Bi-doped paraelectric SrTiO3. J Appl Phys 2002, 91: 1487–1494.

    Article  CAS  Google Scholar 

  43. [43]

    Yu Z, Ang C. High capacitance-temperature sensitivity and “giant” dielectric constant in SrTiO3. Appl Phys Lett 2007, 90: 202903.

    Article  CAS  Google Scholar 

  44. [44]

    Shen ZY, Hu QG, Li YM, et al. Structure and dielectric properties of Re0.02Sr0.97TiO3 (Re = La, Sm, Gd, Er) ceramics for high-voltage capacitor applications. J Am Ceram Soc 2013, 96: 2551–2555.

    CAS  Article  Google Scholar 

  45. [45]

    Shen ZY, Li YM, Luo WQ, et al. Structure and dielectric properties of NdxSr1-xTiO3 ceramics for energy storage application. J Mater Sci: Mater Electron 2013, 24: 704–710.

    CAS  Google Scholar 

  46. [46]

    Shen ZY, Luo WQ, Li YM, et al. Electrical heterostructure of Nd0.1Sr0.9TiO3 ceramic for energy storage applications. J Mater Sci: Mater Electron 2013, 24: 607–612.

    CAS  Google Scholar 

  47. [47]

    Song Z, Liu H, Zhang S, et al. Effect of grain size on the energy storage properties of (Ba0.4Sr0.6)TiO3 paraelectric ceramics. J Eur Ceram Soc 2014, 34: 1209–1217.

    CAS  Article  Google Scholar 

  48. [48]

    Wu YJ, Huang YH, Wang N, et al. Effects of phase constitution and microstructure on energy storage properties of barium strontium titanate ceramics. J Eur Ceram Soc 2017, 37: 2099–2104.

    CAS  Article  Google Scholar 

  49. [49]

    Zhang Q, Wang L, Luo J, et al. Improved energy storage density in barium strontium titanate by addition of BaO-SiO2-B2O3 glass. J Am Ceram Soc 2009, 92: 1871–1873.

    CAS  Article  Google Scholar 

  50. [50]

    Kim SH, Koh JH. ZnBO-doped (Ba,Sr)TiO3 ceramics for the low-temperature sintering process. J Eur Ceram Soc 2008, 28: 2969–2973.

    CAS  Article  Google Scholar 

  51. [51]

    Shen ZY, Wang Y, Tang YX, et al. Glass modified Barium strontium titanate ceramics for energy storage capacitor at elevated temperatures. J Materiomics 2019, 5: 641–648.

    Article  Google Scholar 

  52. [52]

    Yang X, Li W, Qiao Y, et al. High energy-storage density of lead-free (Sr1-1.5xBix)Ti0·99Mn0.01O3 thin films induced by Bi3+-VSr dipolar defects. Phys Chem Chem Phys 2019, 21: 16359–16366.

    CAS  Article  Google Scholar 

  53. [53]

    Zhang Y, Li W, Wang Z, et al. Ultrahigh energy storage and electrocaloric performance achieved in SrTiO3 amorphous thin films via polar cluster engineering. J Mater Chem A 2019, 7: 17797–17805.

    CAS  Article  Google Scholar 

  54. [54]

    Pan H, Zeng Y, Shen Y, et al. BiFeO3-SrTiO3 thin film as a new lead-free relaxor-ferroelectric capacitor with ultrahigh energy storage performance. J Mater Chem A 2017, 5: 5920–5926.

    CAS  Article  Google Scholar 

  55. [55]

    Hou C, Huang W, Zhao W, et al. Ultrahigh energy density in SrTiO3 film capacitors. ACS Appl Mater Interfaces 2017, 9: 20484–20490.

    CAS  Article  Google Scholar 

  56. [56]

    Gao W, Yao M, Yao X. Improvement of energy density in SrTiO3 film capacitor via self-repairing behavior. Ceram Int 2017, 43: 13069–13074.

    CAS  Article  Google Scholar 

  57. [57]

    Gao W, Yao M, Yao X. Achieving ultrahigh breakdown strength and energy storage performance through periodic interface modification in SrTiO3 thin film. ACS Appl Mater Interfaces 2018, 10: 28745–28753.

    CAS  Article  Google Scholar 

  58. [58]

    Chen X, Peng B, Ding M, et al. Giant energy storage density in lead-free dielectric thin films deposited on Si wafers with an artificial dead-layer. Nano Energy 2020, 78: 105390.

    CAS  Article  Google Scholar 

  59. [59]

    Cross LE. Relaxor ferroelectrics. Ferroelectrics 1987, 76: 241–267.

    CAS  Article  Google Scholar 

  60. [60]

    Pan Z, Wang P, Hou X, et al. Fatigue-free aurivillius phase ferroelectric thin films with ultrahigh energy storage performance. Adv Energy Mater 2020, 10: 2001536.

    CAS  Article  Google Scholar 

  61. [61]

    Shrout TR, Zhang SJ. Lead-free piezoelectric ceramics: Alternatives for PZT? J Electroceramics 2007, 19: 113–126.

    Article  CAS  Google Scholar 

  62. [62]

    Jaffe B, Cook WR, Jaffe H. Piezoelectric Ceramics Academic. Amsterdam: Elsevier, 1971.

    Google Scholar 

  63. [63]

    Chen Y, Wang S, Zhou H, et al. A systematic analysis of the radial resonance frequency spectra of the PZT-based (Zr/Ti = 52/48) piezoceramic thin disks. J Adv Ceram 2020, 9: 380–392.

    CAS  Article  Google Scholar 

  64. [64]

    Gao J, Liu Y, Wang Y, et al. High temperature-stability of (Pb0.9La0.1)(Zr0.65Ti0.35)O3 ceramic for energy-storage applications at finite electric field strength. Scripta Mater 2017, 137: 114–118.

    CAS  Article  Google Scholar 

  65. [65]

    Zhang TF, Tang XG, Liu QX, et al. Energy-storage properties and high-temperature dielectric relaxation behaviors of relaxor ferroelectric Pb(Mg1/3Nb2/3)O3-PbTiO3 ceramics. J Phys D: Appl Phys 2016, 49: 095302.

    Article  CAS  Google Scholar 

  66. [66]

    Kumar A, Kim SH, Peddigari M, et al. High energy storage properties and electrical field stability of energy efficiency of (Pb0.89La0.11)(Zr0.70Ti0.30)0.9725O3 relaxsor ferroelectric ceramics. Electron Mater Lett 2019, 15: 323–330.

    CAS  Article  Google Scholar 

  67. [67]

    Zhang T, Li W, Hou Y, et al. High-energy storage density and excellent temperature stability in antiferroelectric/ferroelectric bilayer thin films. J Am Ceram Soc 2017, 100: 3080–3087.

    CAS  Article  Google Scholar 

  68. [68]

    Zhang T, Li W, Zhao Y, et al. High energy storage performance of opposite double-heterojunction ferroelectricity-insulators. Adv Funct Mater 2018, 28: 1706211.

    Article  CAS  Google Scholar 

  69. [69]

    Ma B, Hu Z, Koritala RE, et al. PLZT film capacitors for power electronics and energy storage applications. J Mater Sci: Mater Electron 2015, 26: 9279–9287.

    CAS  Google Scholar 

  70. [70]

    Peng B, Tang S, Lu L, et al. Low-temperature-poling awakened high dielectric breakdown strength and outstanding improvement of discharge energy density of (Pb,La)(Zr,Sn,Ti)O3 relaxor thin film. Nano Energy 2020, 77: 105132.

    CAS  Article  Google Scholar 

  71. [71]

    Dai X, Viehland D. Effects of lanthanum modification on the antiferroelectric-ferroelectric stability of high zirconium-content lead zirconate titanate. J Appl Phys 1994, 76: 3701–3709.

    CAS  Article  Google Scholar 

  72. [72]

    Gupta SM, Li JF, Viehland D. Coexistence of relaxor and normal ferroelectric phases in morphotropic phase boundary compositions of lanthanum-modified lead zirconate titanate. J Am Ceram Soc 1998, 81: 557–564.

    CAS  Article  Google Scholar 

  73. [73]

    Hu Z, Ma B, Liu S, et al. Relaxor behavior and energy storage performance of ferroelectric PLZT thin films with different Zr/Ti ratios. Ceram Int 2014, 40: 557–562.

    CAS  Article  Google Scholar 

  74. [74]

    Liu Y, Hao X, An S. Significant enhancement of energy-storage performance of (Pb0.91La0.09)(Zr0.65Ti0.35)O3 relaxor ferroelectric thin films by Mn doping. J Appl Phys 2013, 114: 174102.

    Article  CAS  Google Scholar 

  75. [75]

    Peng B, Xie Z, Yue Z, et al. Improvement of the recoverable energy storage density and efficiency by utilizing the linear dielectric response in ferroelectric capacitors. Appl Phys Lett 2014, 105: 052904.

    Article  CAS  Google Scholar 

  76. [76]

    Zhang L, Hao X, Yang J, et al. Large enhancement of energy-storage properties of compositional graded (Pb1-xLax)(Zr0.65Ti0.35)O3 relaxor ferroelectric thick films. Appl Phys Lett 2013, 103: 113902.

    Article  CAS  Google Scholar 

  77. [77]

    Nguyen MD, Houwman EP, Rijnders G. Energy storage performance and electric breakdown field of thin relaxor ferroelectric PLZT films using microstructure and growth orientation control. J Phys Chem C 2018, 122: 15171–15179.

    CAS  Article  Google Scholar 

  78. [78]

    Nguyen MD, Nguyen CTQ, Vu HN, et al. Controlling microstructure and film growth of relaxor-ferroelectric thin films for high break-down strength and energy-storage performance. J Eur Ceram Soc 2018, 38: 95–103.

    Article  CAS  Google Scholar 

  79. [79]

    Smolenskii GA, Isupov VA, Agranovskaya AI, et al. New ferroelectrics of complex composition IV. J Sov Phy Solid State 1961, 2: 2651–2654.

    Google Scholar 

  80. [80]

    Rao BN, Datta R, Chandrashekaran SS, et al. Local structural disorder and its influence on the average global structure and polar properties in Na0.5Bi0.5TiO3. Phys Rev B 2013, 88: 224103.

    Article  CAS  Google Scholar 

  81. [81]

    Reichmann K, Feteira A, Li M. Bismuth sodium titanate based materials for piezoelectric actuators. Materials 2015, 8: 8467–8495.

    CAS  Article  Google Scholar 

  82. [82]

    Suchanicz J, Kluczewska-Chmielarz K, Sitko D, et al. Electrical transport in lead-free Na0.5Bi0.5TiO3 ceramics. J Adv Ceram 2021, 10: 152–165.

    CAS  Article  Google Scholar 

  83. [83]

    Qiao X, Zhang F, Wu D, et al. Superior comprehensive energy storage properties in Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics. Chem Eng J 2020, 388: 124158.

    CAS  Article  Google Scholar 

  84. [84]

    Yang F, Pan Z, Ling Z, et al. Realizing high comprehensive energy storage performances of BNT-based ceramics for application in pulse power capacitors. J Eur Ceram Soc 2021, 41: 2548–2558.

    CAS  Article  Google Scholar 

  85. [85]

    Zhang X, Hu D, Pan Z, et al. Enhancement of recoverable energy density and efficiency of lead-free relaxor-ferroelectric BNT-based ceramics. Chem Eng J 2021, 406: 126818.

    CAS  Article  Google Scholar 

  86. [86]

    Zhu C, Cai Z, Luo B, et al. High temperature lead-free BNT-based ceramics with stable energy storage and dielectric properties. J Mater Chem A 2020, 8: 683–692.

    CAS  Article  Google Scholar 

  87. [87]

    Ma C, Tan X. In situ transmission electron microscopy study on the phase transitionsin lead-free (1-x)(Bi1/2Na1/2)TiO3-xBaTiO3 ceramics. J Am Ceram Soc 2011, 94: 4040–4044.

    CAS  Article  Google Scholar 

  88. [88]

    Jo W, Schaab S, Sapper E, et al. On the phase identity and its thermal evolution of lead free (Bi1/2Na1/2)TiO3-6 mol% BaTiO3. J Appl Phys 2011, 110: 074106.

    Article  CAS  Google Scholar 

  89. [89]

    Ye H, Yang F, Pan Z, et al. Significantly improvement of comprehensive energy storage performances with leadfree relaxor ferroelectric ceramics for high-temperature capacitors applications. Acta Mater 2021, 203: 116484.

    CAS  Article  Google Scholar 

  90. [90]

    Gao F, Dong X, Mao C, et al. Energy-storage properties of 0.89Bi0.5Na0.5TiO3-0.06BaTiO3-0.05K0.5Na0.5NbO3 lead-free anti-ferroelectric ceramics. J Am Ceram Soc 2011, 94: 4382–4386.

    CAS  Article  Google Scholar 

  91. [91]

    Cao W, Li W, Feng Y, et al. Defect dipole induced large recoverable strain and high energy-storage density in lead-free Na0.5Bi0.5TiO3-based systems. Appl Phys Lett 2016, 108: 202902.

    Article  CAS  Google Scholar 

  92. [92]

    Ren X. Large electric-field-induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching. Nat Mater 2004, 3: 91–94.

    CAS  Article  Google Scholar 

  93. [93]

    Li F, Zhai J, Shen B, et al. Influence of structural evolution on energy storage properties in Bi0.5Na0.5TiO3-SrTiO3-NaNbO3 lead-free ferroelectric ceramics. J Appl Phys 2017, 121: 054103.

    Article  CAS  Google Scholar 

  94. [94]

    Yang L, Kong X, Cheng Z, et al. Ultra-high energy storage performance with mitigated polarization saturation in lead-free relaxors. J Mater Chem A 2019, 7: 8573–8580.

    CAS  Article  Google Scholar 

  95. [95]

    Li D, Shen ZY, Li ZP, et al. P-E hysteresis loop going slim in Ba0.3Sr0.7TiO3-modified Bi0.5Na0.5TiO3 ceramics for energy storage applications. J Adv Ceram 2020, 9: 183–192.

    CAS  Article  Google Scholar 

  96. [96]

    Li D, Shen Z-Y, Li Z, et al. Optimization of polarization behavior in (1-x)BSBNT-xNN ceramics for pulsed power capacitors. J Mater Chem C 2020, 8: 7650–7657.

    CAS  Article  Google Scholar 

  97. [97]

    Li J, Shen Z, Chen X, et al. Grain-orientation-engineered multilayer ceramic capacitors for energy storage applications. Nat Mater 2020, 19: 999–1005.

    CAS  Article  Google Scholar 

  98. [98]

    Yang H, Liu P, Yan F, et al. A novel lead-free ceramic with layered structure for high energy storage applications. J Alloys Compd 2019, 773: 244–249.

    CAS  Article  Google Scholar 

  99. [99]

    Jia W, Hou Y, Zheng M, et al. Superior temperature-stable dielectrics for MLCCs based on Bi0.5Na0.5TiO3-NaNbO3 system modified by CaZrO3. J Am Ceram Soc 2018, 101: 3468–3479.

    CAS  Article  Google Scholar 

  100. [100]

    Wang H, Zhao P, Chen L, et al. Energy storage properties of 0.87BaTiO3-0.13Bi(Zn2/3(Nb0.85Ta0.15)1/3)O3 multilayer ceramic capacitors with thin dielectric layers. J Adv Ceram 2020, 9: 292–302.

    CAS  Article  Google Scholar 

  101. [101]

    Feng C, Yang CH, Li SX, et al. Reduced leakage current and large polarization of Na0.5Bi0.5Ti0.98Mn0.02O3 thin film annealed at low temperature. Ceram Int 2015, 41: 14179–14183.

    CAS  Article  Google Scholar 

  102. [102]

    Wang J, Sun N, Li Y, et al. Effects of Mn doping on dielectric properties and energy-storage performance of Na0.5Bi0.5TiO3 thick films. Ceram Int 2017, 43: 7804–7809.

    CAS  Article  Google Scholar 

  103. [103]

    Feng C, Yang CH, Sui HT, et al. Effect of Fe doping on the crystallization and electrical properties of Na0.5Bi0.5TiO3 thin film. Ceram Int 2015, 41: 4214–4217.

    CAS  Article  Google Scholar 

  104. [104]

    Zhang YL, Li WL, Cao WP, et al. Enhanced energy-storage performance of 0.94NBT-0.06BT thin films induced by a Pb0.8La0.1Ca0.1Ti0.975O3 seed layer. Ceram Int 2016, 42: 14788–14792.

    CAS  Article  Google Scholar 

  105. [105]

    Peng B, Zhang Q, Li X, et al. Giant electric energy density in epitaxial lead-free thin films with coexistence of ferroelectrics and antiferroelectrics. Adv Electron Mater 2015, 1: 1500052.

    Article  CAS  Google Scholar 

  106. [106]

    Chen P, Wu S, Li P, et al. Great enhancement of energy storage density and power density in BNBT/xBFO multilayer thin film hetero-structures. Inorg Chem Front 2018, 5: 2300–2305.

    CAS  Article  Google Scholar 

  107. [107]

    Qian J, Han Y, Yang C, et al. Energy storage performance of flexible NKBT/NKBT-ST multilayer film capacitor by interface engineering. Nano Energy 2020, 74: 104862.

    CAS  Article  Google Scholar 

  108. [108]

    Guo Y, Li M, Zhao W, et al. Ferroelectric and pyroelectric properties of (Na0.5Bi0.5)TiO3-BaTiO3 based trilayered thin films. Thin Solid Films 2009, 517: 2974–2978.

    CAS  Article  Google Scholar 

  109. [109]

    Pan MJ, Randall CA. A brief introduction to ceramic capacitors. IEEE Electr Insul Mag 2010, 26: 44–50.

    CAS  Article  Google Scholar 

  110. [110]

    Zheng L, Yuan L, Liang G, et al. An in situ (K0.5Na0.5)NbO3-doped Barium titanate foam framework and its cyanate ester resin composites with temperature-stable dielectric properties and low dielectric loss. Mater Chem Front 2019, 3: 726–736.

    CAS  Article  Google Scholar 

  111. [111]

    Acosta M, Novak N, Rojas V, et al. BaTiO3-based piezoelectrics: Fundamentals, current status, and perspectives. Appl Phys Rev 2017, 4: 041305.

    Article  CAS  Google Scholar 

  112. [112]

    Gao WX, Zhu Y, Wang YJ, et al. A review of flexible perovskite oxide ferroelectric films and their application. J Materiomics 2020, 6: 1–16.

    Article  Google Scholar 

  113. [113]

    Zheng H, Wang J, Lofland SE, et al. Multiferroic BaTiO3-CoFe2O4 nanostructures. Science 2004, 303: 661–663.

    CAS  Article  Google Scholar 

  114. [114]

    Hu D, Pan Z, Tan X, et al. Optimization the energy density and efficiency of BaTiO3-based ceramics for capacitor applications. Chem Eng J 2021, 409: 127375.

    CAS  Article  Google Scholar 

  115. [115]

    Ogihara H, Randall CA, Trolier-Mckinstry S. High-energy density capacitors utilizing 0.7BaTiO3-0.3BiScO3 ceramics. J Am Ceram Soc 2009, 92: 1719–1724.

    CAS  Article  Google Scholar 

  116. [116]

    Wu L, Wang X, Li L. Core-shell BaTiO3@BiScO3 particles for local graded dielectric ceramics with enhanced temperature stability and energy storage capability. J Alloys Compd 2016, 688: 113–121.

    CAS  Article  Google Scholar 

  117. [117]

    Yuan Q, Li G, Yao F, et al. Simultaneously achieved temperature-insensitive high energy density and efficiency in domain engineered BaTiO3-Bi(Mg0.5Zr0.5)O3 lead-free relaxor ferroelectrics. Nano Energy 2018, 52: 203–210.

    CAS  Article  Google Scholar 

  118. [118]

    Choi DH, Baker A, Lanagan M, et al. Structural and dielectric properties in (1-x)BaTiO3-xBi(Mg1/2Ti1/2)O3 ceramics (0.1 ⩽ x ⩽ 0.5) and potential for high-voltage multilayer capacitors. J Am Ceram Soc 2013, 96: 2197–2202.

    CAS  Article  Google Scholar 

  119. [119]

    Li MD, Tang XG, Zeng SM, et al. Oxygen-vacancy-related dielectric relaxation behaviours and impedance spectroscopy of Bi(Mg1/2Ti1/2)O3 modified BaTiO3 ferroelectric ceramics. J Materiomics 2018, 4: 194–201.

    Article  Google Scholar 

  120. [120]

    Hanani Z, Mezzane D, Amjoud M, et al. Phase transitions, energy storage performances and electrocaloric effect of the lead-free Ba0.85Ca0.15Zr0.10Ti0.90O3 ceramic relaxor. J Mater Sci: Mater Electron 2019, 30: 6430–6438.

    CAS  Google Scholar 

  121. [121]

    Wang XW, Zhang BH, Shi YC, et al. Enhanced energy storage properties in Ba0.85Ca0.15Zr0.1Ti0.9O3 ceramics with glass additives. J Appl Phys 2020, 127: 074103.

    CAS  Article  Google Scholar 

  122. [122]

    Hanani Z, Merselmiz S, Danine A, et al. Enhanced dielectric and electrocaloric properties in lead-free rod-like BCZT ceramics. J Adv Ceram 2020, 9: 210–219.

    CAS  Article  Google Scholar 

  123. [123]

    Patel S, Sharma D, Singh A, et al. Enhanced thermal energy conversion and dynamic hysteresis behavior of Sr-added Ba0.85Ca0.15Ti0.9Zr0.1O3 ferroelectric ceramics. J Materiomics 2016, 2: 75–86.

    Article  Google Scholar 

  124. [124]

    Su X, Riggs BC, Tomozawa M, et al. Preparation of BaTiO3/low melting glass core-shell nanoparticles for energy storage capacitor applications. J Mater Chem A 2014, 2: 18087–18096.

    CAS  Article  Google Scholar 

  125. [125]

    Zhang Y, Cao M, Yao Z, et al. Effects of silica coating on the microstructures and energy storage properties of BaTiO3 ceramics. Mater Res Bull 2015, 67: 70–76.

    CAS  Article  Google Scholar 

  126. [126]

    Wu L, Wang X, Gong H, et al. Core-satellite BaTiO3@SrTiO3 assemblies for a local compositionally graded relaxor ferroelectric capacitor with enhanced energy storage density and high energy efficiency. J Mater Chem C 2015, 3: 750–758.

    CAS  Article  Google Scholar 

  127. [127]

    Cheng H, Ouyang J, Zhang YX, et al. Demonstration of ultra-high recyclable energy densities in domainengineered ferroelectric films. Nat Commun 2017, 8: 1999.

    Article  CAS  Google Scholar 

  128. [128]

    Yu Z, Ang C, Guo RY, et al. Ferroelectric-relaxor behavior of Ba(Ti0.7Zr0.3)O3 ceramics. J Appl Phys 2002, 92: 2655–2657.

    CAS  Article  Google Scholar 

  129. [129]

    Hennings D, Schnell A, Simon G. Diffuse ferroelectric phase transitions in Ba(Ti1-yZry)O3 ceramics. J Am Ceram Soc 1982, 65: 539–544.

    CAS  Article  Google Scholar 

  130. [130]

    Instan AA, Pavunny SP, Bhattarai MK, et al. Ultrahigh capacitive energy storage in highly oriented Ba(ZrxTi1-x)O3 thin films prepared by pulsed laser deposition. Appl Phys Lett 2017, 111: 142903.

    Article  CAS  Google Scholar 

  131. [131]

    Reddy SR, Prasad VVB, Bysakh S, et al. Superior energy storage performance and fatigue resistance in ferroelectric BCZT thin films grown in an oxygen-rich atmosphere. J Mater Chem C 2019, 7: 7073–7082.

    CAS  Article  Google Scholar 

  132. [132]

    Ortega N, Kumar A, Scott JF, et al. Relaxor-ferroelectric superlattices: High energy density capacitors. J Phys: Condens Matter 2012, 24: 445901.

    CAS  Google Scholar 

  133. [133]

    Sun Z, Ma C, Liu M, et al. Ultrahigh energy storage performance of lead-free oxide multilayer film capacitors via interface engineering. Adv Mater 2017, 29: 1604427.

    Article  CAS  Google Scholar 

  134. [134]

    Zhang W, Gao Y, Kang L, et al. Space-charge dominated epitaxial BaTiO3 heterostructures. Acta Mater 2015, 85: 207–215.

    CAS  Article  Google Scholar 

  135. [135]

    Ru J, Min D, Lanagan M, et al. Enhanced energy storage properties of thermostable sandwich-structured BaTiO3/polyimide nanocomposites with better controlled interfaces. Mater Des 2021, 197: 109270.

    CAS  Article  Google Scholar 

  136. [136]

    Rojac T, Bencan A, Malic B, et al. BiFeO3 ceramics: Processing, electrical, and electromechanical properties. J Am Ceram Soc 2014, 97: 1993–2011.

    CAS  Article  Google Scholar 

  137. [137]

    Yang CH, Qian J, Lv P, et al. Flexible lead-free BFO-based dielectric capacitor with large energy density, superior thermal stability, and reliable bending endurance. J Materiomics 2020, 6: 200–208.

    Article  Google Scholar 

  138. [138]

    Gao X, Li Y, Chen J, et al. High energy storage performances of Bi1-xSmxFe0.95Sc0.05O3 lead-free ceramics synthesized by rapid hot press sintering. J Eur Ceram Soc 2019, 39: 2331–2338.

    CAS  Article  Google Scholar 

  139. [139]

    Yin L, Mi W. Progress in BiFeO3-based heterostructures: Materials, properties and applications. Nanoscale 2020, 12: 477–523.

    CAS  Article  Google Scholar 

  140. [140]

    Li Q, Ji S, Wang D, et al. Simultaneously enhanced energy storage density and efficiency in novel BiFeO3-based lead-free ceramic capacitors. J Eur Ceram Soc 2021, 41: 387–393.

    CAS  Article  Google Scholar 

  141. [141]

    Lee MH, Kim DJ, Park JS, et al. High-performance lead-free piezoceramics with high curie temperatures. Adv Mater 2015, 27: 6976–6982.

    CAS  Article  Google Scholar 

  142. [142]

    Wu J, Fan Z, Xiao D, et al. Multiferroic bismuth ferrite-based materials for multifunctional applications: Ceramic bulks, thin films and nanostructures. Prog Mater Sci 2016, 84: 335–402.

    CAS  Article  Google Scholar 

  143. [143]

    Hang Q, Zhou W, Zhu X, et al. Structural, spectroscopic, and dielectric characterizations of Mn-doped 0.67BiFeO3-0.33BaTiO3 multiferroic ceramics. J Adv Ceram 2013, 2: 252–259.

    CAS  Article  Google Scholar 

  144. [144]

    Liu N, Liang R, Zhou Z, et al. Designing lead-free bismuth ferrite-based ceramics learning from relaxor ferroelectric behavior for simultaneous high energy density and efficiency under low electric field. J Mater Chem C 2018, 6: 10211–10217.

    CAS  Article  Google Scholar 

  145. [145]

    Qi H, Xie A, Tian A, et al. Superior energy-storage capacitors with simultaneously giant energy density and efficiency using nanodomain engineered BiFeO3-BaTiO3-NaNbO3 lead-free bulk ferroelectrics. Adv Energy Mater 2020, 10: 1903338.

    CAS  Article  Google Scholar 

  146. [146]

    Wang G, Li J, Zhang X, et al. Ultrahigh energy storage density lead-free multilayers by controlled electrical homogeneity. Energy Environ Sci 2019, 12: 582–588.

    CAS  Article  Google Scholar 

  147. [147]

    Correia TM, McMillen M, Rokosz MK, et al. A lead-free and high-energy density ceramic for energy storage applications. J Am Ceram Soc 2013, 96: 2699–2702.

    CAS  Article  Google Scholar 

  148. [148]

    Pan H, Li F, Liu Y, et al. Ultrahigh-energy density lead-free dielectric films via polymorphic nanodomain design. Science 2019, 365: 578–582.

    CAS  Article  Google Scholar 

  149. [149]

    Kan D, Pálová L, Anbusathaiah V, et al. Universal behavior and electric-field-induced structural transition in rare-earth-substituted BiFeO3. Adv Funct Mater 2010, 20: 1108–1115.

    CAS  Article  Google Scholar 

  150. [150]

    McMillen M, Douglas AM, Correia TM, et al. Increasing recoverable energy storage in electroceramic capacitors using “dead-layer” engineering. Appl Phys Lett 2012, 101: 242909.

    Article  CAS  Google Scholar 

  151. [151]

    Hou Y, Han R, Li W, et al. Significantly enhanced energy storage performance in BiFeO3/BaTiO3/BiFeO3 sandwichstructured films through crystallinity regulation. Phys Chem Chem Phys 2018, 20: 21917–21924.

    CAS  Article  Google Scholar 

  152. [152]

    Zhu H, Liu M, Zhang Y, et al. Increasing energy storage capabilities of space-charge dominated ferroelectric thin films using interlayer coupling. Acta Mater 2017, 122: 252–258.

    CAS  Article  Google Scholar 

  153. [153]

    Li JF, Wang K, Zhu FY, et al. (K,Na)NbO3-based lead-free piezoceramics: Fundamental aspects, processing technologies, and remaining challenges. J Am Ceram Soc 2013, 96: 3677–3696.

    CAS  Article  Google Scholar 

  154. [154]

    Egerton L, Dillon DM. Piezoelectric and dielectric properties of ceramics in the system potassium-sodium niobate. J Am Ceram Soc 1959, 42: 438–442

    CAS  Article  Google Scholar 

  155. [155]

    Yang Z, Du H, Qu S, et al. Significantly enhanced recoverable energy storage density in potassium-sodium niobate-based lead free ceramics. J Mater Chem A 2016, 4: 13778–13785.

    CAS  Article  Google Scholar 

  156. [156]

    Shao T, Du H, Ma H, et al. Potassium-sodium niobate based lead-free ceramics: novel electrical energy storage materials. J Mater Chem A 2017, 5: 554–563.

    CAS  Article  Google Scholar 

  157. [157]

    Qu B, Du H, Yang Z, et al. Large recoverable energy storage density and low sintering temperature in potassium-sodium niobate-based ceramics for multilayer pulsed power capacitors. J Am Ceram Soc 2017, 100: 1517–1526.

    CAS  Article  Google Scholar 

  158. [158]

    Qu B, Du H, Yang Z, et al. Enhanced dielectric breakdown strength and energy storage density in lead-free relaxor ferroelectric ceramics prepared using transition liquid phase sintering. RSC Adv 2016, 6: 34381–34389.

    CAS  Article  Google Scholar 

  159. [159]

    Yang Y, Ji Y, Fang M, et al. Morphotropic relaxor boundary in a relaxor system showing enhancement of electrostrain and dielectric permittivity. Phys Rev Lett 2019, 123: 137601.

    CAS  Article  Google Scholar 

  160. [160]

    Won SS, Kawahara M, Kuhn L, et al. BiFeO3-doped (K0.5,Na0.5)(Mn0.005,Nb0.995)O3 ferroelectric thin film capacitors for high energy density storage applications. Appl Phys Lett 2017, 110: 152901.

    Article  CAS  Google Scholar 

  161. [161]

    Huang Y, Shu L, Zhang SW, et al. Simultaneously achieved high-energy storage density and efficiency in (K,Na)NbO3-based lead-free ferroelectric films. J Am Ceram Soc 2021, 104: 4119–4130.

    CAS  Article  Google Scholar 

  162. [162]

    Kittel C. Theory of antiferroelectric crystals. Phys Rev 1951, 82: 729–732.

    CAS  Article  Google Scholar 

  163. [163]

    Tagantsev A, Vaideeswaran K, Vakhrushev S, et al. The origin of antiferroelectricity in PbZrO3. Nat Commun 2013, 4: 2229.

    CAS  Article  Google Scholar 

  164. [164]

    Chen N, Bai G, Auciello O, et al. Properties and orientation of antiferroelectric lead zirconate thin films grown by MOCVD. MRS Online Proc Libr 1998, 541: 345–350.

    Article  Google Scholar 

  165. [165]

    Hao X, Zhai J, Yao X. Improved energy storage performance and fatigue endurance of Sr-doped PbZrO3 antiferroelectric thin films. J Am Ceram Soc 2009, 92: 1133–1135.

    CAS  Article  Google Scholar 

  166. [166]

    Parui J, Krupanidhi SB. Enhancement of charge and energy storage in sol-gel derived pure and La-modified PbZrO3 thin films. Appl Phys Lett 2008, 92: 192901.

    Article  CAS  Google Scholar 

  167. [167]

    Tani T, Li JF, Viehland D, et al. Antiferroelectricferroelectric switching and induced strains for sol-gel derived lead zirconate thin layers. J Appl Phys 1994, 75: 3017–3023.

    CAS  Article  Google Scholar 

  168. [168]

    Ye M, Sun Q, Chen X, et al. Electrical and energy storage performance of Eu-doped PbZrO3 thin films with different gradient sequences. J Am Ceram Soc 2012, 95: 1486–1488.

    CAS  Article  Google Scholar 

  169. [169]

    Sa T, Cao Z, Wang Y, et al. Enhancement of charge and energy storage in PbZrO3 thin films by local field engineering. Appl Phys Lett 2014, 105: 043902.

    Article  CAS  Google Scholar 

  170. [170]

    Chen MJ, Ning XK, Wang SF, et al. Significant enhancement of energy storage density and polarization in self-assembled PbZrO3:NiO nano-columnar composite films. Nanoscale 2019, 11: 1914–1920.

    CAS  Article  Google Scholar 

  171. [171]

    Ge J, Remiens D, Costecalde J, et al. Effect of residual stress on energy storage property in PbZrO3 antiferroelectric thin films with different orientations. Appl Phys Lett 2013, 103: 162903.

    Article  CAS  Google Scholar 

  172. [172]

    Ge J, Remiens D, Dong X, et al. Enhancement of energy storage in epitaxial PbZrO3 antiferroelectric films using strain engineering. Appl Phys Lett 2014, 105: 112908.

    Article  CAS  Google Scholar 

  173. [173]

    Corker DL, Glazer AM, Kaminsky W, et al. Investigation into the crystal structure of the perovskite lead hafnate, PbHfO3. Acta Crystallogr Sect B 1998, 54: 18–28.

    Article  Google Scholar 

  174. [174]

    Madigout V, Baudour JL, Bouree F, et al. Crystallographic structure of lead hafnate (PbHfO3) from neutron powder diffraction and electron microscopy. Philos Mag A 1999, 79: 847–858.

    Article  Google Scholar 

  175. [175]

    Burkovsky RG, Bronwald I, Andronikova D, et al. Triggered incommensurate transition in PbHfO3. Phys Rev B 2019, 100: 014107.

    CAS  Article  Google Scholar 

  176. [176]

    Chao W, Yang T, Li Y. Achieving high energy efficiency and energy density in PbHfO3-based antiferroelectric ceramics. J Mater Chem C 2020, 8: 17016–17024.

    CAS  Article  Google Scholar 

  177. [177]

    Huang XX, Zhang TF, Wang W, et al. Tailoring energy-storage performance in antiferroelectric PbHfO3 thin films. Mater Des 2021, 204: 109666.

    CAS  Article  Google Scholar 

  178. [178]

    Xu B, Moses P, Pai NG, et al. Charge release of lanthanum-doped lead zirconate titanate stannate antiferroelectric thin films. Appl Phys Lett 1998, 72: 593–595.

    CAS  Article  Google Scholar 

  179. [179]

    Sharifzadeh Mirshekarloo M, Yao K, Sritharan T. Large strain and high energy storage density in orthorhombic perovskite (Pb0.97La0.02)(Zr1-x-ySnxTiy)O3 antiferroelectric thin films. Appl Phys Lett 2010, 97: 142902.

    Article  CAS  Google Scholar 

  180. [180]

    Zhang AH, Wang W, Li QJ, et al. Internal-strain release and remarkably enhanced energy storage performance in PLZT-SrTiO3 multilayered films. Appl Phys Lett 2020, 117: 252901.

    CAS  Article  Google Scholar 

  181. [181]

    Dan Y, Xu H, Zou K, et al. Energy storage characteristics of (Pb,La)(Zr,Sn,Ti)O3 antiferroelectric ceramics with high Sn content. Appl Phys Lett 2018, 113: 063902.

    Article  CAS  Google Scholar 

  182. [182]

    Liu P, Fan B, Yang G, et al. High energy density at high temperature in PLZST antiferroelectric ceramics. J Mater Chem C 2019, 7: 4587–4594.

    CAS  Article  Google Scholar 

  183. [183]

    Xu B, Ye Y, Cross L. Dielectric properties and field-induced phase switching of lead zirconate titanate stannate antiferroelectric thick films on silicon substrates. J Appl Phys 2000, 87: 2507–2515.

    CAS  Article  Google Scholar 

  184. [184]

    Markowski K, Park SE, Yoshikawa S, et al. Effect of compositional variations in the lead lanthanum zirconate stannate titanate system on electrical properties. J Am Ceram Soc 1996, 79: 3297–3304.

    CAS  Article  Google Scholar 

  185. [185]

    Zheng Q, Yang T, Wei K, et al. Effect of Sn:Ti variations on electric filed induced AFE-FE phase transition in PLZST antiferroelectric ceramics. Ceram Int 2012, 38: S9–S12.

    CAS  Article  Google Scholar 

  186. [186]

    Liu Z, Bai Y, Chen X, et al. Linear composition-dependent phase transition behavior and energy storage performance of tetragonal PLZST antiferroelectric ceramics. J Alloys Compd 2017, 691: 721–725.

    CAS  Article  Google Scholar 

  187. [187]

    Zhang L, Jiang S, Fan B, et al. Enhanced energy storage performance in (Pb0.858Ba0.1La0.02Y0.008)(Zr0.65Sn0.3Ti0.05)O3-(Pb0.97La0.02)(Zr0.9Sn0.05Ti0.05)O3 anti-ferroelectric composite ceramics by Spark Plasma Sintering. J Alloys Compd 2015, 622: 162–165.

    CAS  Article  Google Scholar 

  188. [188]

    Zhang G, Zhu D, Zhang X, et al. High-energy storage performance of (Pb0.87Ba0.1La0.02)(Zr0.68Sn0.24Ti0.08)O3 antiferroelectric ceramics fabricated by the hot-press sintering method. J Am Ceram Soc 2015, 98: 1175–1181.

    CAS  Article  Google Scholar 

  189. [189]

    Zhang G, Liu S, Yu Y, et al. Microstructure and electrical properties of (Pb0.87Ba0.1La0.02)(Zr0.68Sn0.24Ti0.08)O3 anti-ferroelectric ceramics fabricated by the hot-press sintering method. J Eur Ceram Soc 2013, 33: 113–121.

    Article  CAS  Google Scholar 

  190. [190]

    Bian F, Yan S, Xu C, et al. Enhanced breakdown strength and energy density of antiferroelectric Pb,La(Zr,Sn,Ti)O3 ceramic by forming core-shell structure. J Eur Ceram Soc 2018, 38: 3170–3176.

    CAS  Article  Google Scholar 

  191. [191]

    Wang H, Liu Y, Yang T, et al. Ultrahigh energy-storage density in antiferroelectric ceramics with field-induced multiphase transitions. Adv Funct Mater 2019, 29: 1807321.

    Article  CAS  Google Scholar 

  192. [192]

    Zhang Y, Liu P, Kandula KR, et al. Achieving excellent energy storage density of Pb0.97La0.02(ZrxSn0.05Ti0.95-x)O3 ceramics by the B-site modification. J Eur Ceram Soc 2021, 41: 360–367.

    CAS  Article  Google Scholar 

  193. [193]

    Liu X, Li Y, Hao X. Ultra-high energy-storage density and fast discharge speed of (Pb0.98-xLa0.02Srx)(Zr0.9Sn0.1)0.995O3 antiferroelectric ceramics prepared via the tape-casting method. J Mater Chem A 2019, 7: 11858–11866.

    CAS  Article  Google Scholar 

  194. [194]

    Gao M, Tang X, Leung CM, et al. Phase transition and energy storage behavior of antiferroelectric PLZT thin films epitaxially deposited on SRO buffered STO single crystal substrates. J Am Ceram Soc 2019, 102: 5180–5191.

    CAS  Article  Google Scholar 

  195. [195]

    Ma B, Kwon DK, Narayanan M, et al. Dielectric properties and energy storage capability of antiferroelectric Pb0.92La0.08Zr0.95Ti0.05O3 film-on-foil capacitors. J Mater Res 2009, 24: 2993–2996.

    CAS  Article  Google Scholar 

  196. [196]

    Tong S, Ma B, Narayanan M, et al. Lead lanthanum zirconate titanate ceramic thin films for energy storage. ACS Appl Mater Interfaces 2013, 5: 1474–1480.

    CAS  Article  Google Scholar 

  197. [197]

    Lin Z, Chen Y, Liu Z, et al. Large energy storage density, low energy loss and highly stable (Pb0.97La0.02)(Zr0.66Sn0.23Ti0.11)O3 antiferroelectric thin-film capacitors. J Eur Ceram Soc 2018, 38: 3177–3181.

    CAS  Article  Google Scholar 

  198. [198]

    Ma B, Kwon DK, Narayanan M, et al. Fabrication of antiferroelectric PLZT films on metal foils. Mater Res Bull 2009, 44: 11–14.

    CAS  Article  Google Scholar 

  199. [199]

    Zhang MH, Fulanovic L, Egert S, et al. Electricfield-induced antiferroelectric to ferroelectric phase transition in polycrystalline NaNbO3. Acta Mater 2020, 200: 127–135.

    CAS  Article  Google Scholar 

  200. [200]

    Chen J, Feng D. TEM study of phases and domains in NaNbO3 at room temperature. Phys Status Solidi a 1988, 109: 171–185.

    CAS  Article  Google Scholar 

  201. [201]

    Saito T, Adachi H, Wada T, et al. Pulsed-laser deposition of ferroelectric NaNbO3Thin films. Jpn J Appl Phys 2005, 44: 6969–6972.

    CAS  Article  Google Scholar 

  202. [202]

    Koruza J, Groszewicz P, Breitzke H, et al. Grain-sizeinduced ferroelectricity in NaNbO3. Acta Mater 2017, 126: 77–85.

    CAS  Article  Google Scholar 

  203. [203]

    Shuvaeva VA, Antipin MY, Lindeman RSV, et al. Crystal structure of the electric-fieldinduced ferroelectric phase of NaNbO3. Ferroelectrics 1993, 141: 307–311.

    CAS  Article  Google Scholar 

  204. [204]

    Shimizu H, Guo H, Reyes-Lillo SE, et al. Lead-free antiferroelectric: xCaZrO3-(1-x)NaNbO3 system (0 ≤ x ≤ 0.10). Dalton Trans 2015, 44: 10763–10772.

    CAS  Article  Google Scholar 

  205. [205]

    Guo H, Shimizu H, Mizuno Y, et al. Strategy for stabilization of the antiferroelectric phase (Pbma) over the metastable ferroelectric phase (P21ma) to establish double loop hysteresis in lead-free (1-x)NaNbO3-xSrZrO3 solid solution. J Appl Phys 2015, 117: 214103.

    Article  CAS  Google Scholar 

  206. [206]

    Gao L, Guo H, Zhang S, et al. A perovskite lead-free antiferroelectric xCaHfO3-(1-x) NaNbO3 with induced double hysteresis loops at room temperature. J Appl Phys 2016, 120: 204102.

    Article  CAS  Google Scholar 

  207. [207]

    Gao L, Guo H, Zhang S, et al. Stabilized antiferroelectricity in xBiScO3-(1-x)NaNbO3 lead-free ceramics with established double hysteresis loops. Appl Phys Lett 2018, 112: 092905.

    Article  CAS  Google Scholar 

  208. [208]

    Zhou M, Liang R, Zhou Z, et al. Superior energy storage properties and excellent stability of novel NaNbO3-based lead-free ceramics with A-site vacancy obtained via a Bi2O3 substitution strategy. J Mater Chem A 2018, 6: 17896–17904.

    CAS  Article  Google Scholar 

  209. [209]

    Ye J, Wang G, Zhou M, et al. Excellent comprehensive energy storage properties of novel lead-free NaNbO3-based ceramics for dielectric capacitor applications. J Mater Chem C 2019, 7: 5639–5645.

    CAS  Article  Google Scholar 

  210. [210]

    Dong X, Li X, Chen X, et al. High energy storage density and power density achieved simultaneously in NaNbO3-based lead-free ceramics via antiferroelectricity enhancement. J Materiomics 2021, 7: 629–639.

    Article  Google Scholar 

  211. [211]

    Fujii I, Shimasaki T, Nobe T, et al. Effects of SrTiO3 substrate orientations on crystal and domain structures and electric properties of NaNbO3-SrZrO3 films. Jpn J Appl Phys 2018, 57: 11UF13.

    Article  Google Scholar 

  212. [212]

    Beppu K, Shimasaki T, Fujii I, et al. Energy storage properties of antiferroelectric 0.92NaNbO3-0.08SrZrO3 film on (001)SrTiO3 substrate. Phys Lett A 2020, 384: 126690.

    CAS  Article  Google Scholar 

  213. [213]

    Luo B, Dong H, Wang D, et al. Large recoverable energy density with excellent thermal stability in Mn-modified NaNbO3-CaZrO3 lead-free thin films. J Am Ceram Soc 2018, 101: 3460–3467.

    CAS  Article  Google Scholar 

  214. [214]

    Kania A, Kwapulinski J. Ag1-xNaxNbO3 (ANN) solid solutions: From disordered antiferroelectric AgNbO3 to normal antiferroelectric NaNbO3. J Phys: Condens Matter 1999, 11: 8933–8946.

    CAS  Google Scholar 

  215. [215]

    Wang D, Kako T, Ye J. New series of solid-solution semiconductors (AgNbO3)1-x(SrTiO3)x with modulated band structure and enhanced visible-light photocatalytic activity. J Phys Chem C 2009, 113: 3785–3792.

    CAS  Article  Google Scholar 

  216. [216]

    Fu D, Endo M, Taniguchi H, et al. AgNbO3: A lead-free material with large polarization and electromechanical response. Appl Phys Lett 2007, 90: 252907.

    Article  CAS  Google Scholar 

  217. [217]

    Tian Y, Jin L, Zhang H, et al. High energy density in silver niobate ceramics. J Mater Chem A 2016, 4: 17279–17287.

    CAS  Article  Google Scholar 

  218. [218]

    Zhao L, Liu Q, Gao J, et al. Lead-free antiferroelectric silver niobate tantalate with high energy storage performance. Adv Mater 2017, 29: 1701824.

    Article  CAS  Google Scholar 

  219. [219]

    Luo N, Han K, Cabral MJ, et al. Constructing phase boundary in AgNbO3 antiferroelectrics: Pathway simultaneously achieving high energy density and efficiency. Nat Commun 2020, 11: 4824.

    CAS  Article  Google Scholar 

  220. [220]

    Yan Z, Zhang D, Zhou X, et al. Silver niobate based lead-free ceramics with high energy storage density. J Mater Chem A 2019, 7: 10702–10711.

    CAS  Article  Google Scholar 

  221. [221]

    Luo N, Han K, Zhuo F, et al. Aliovalent A-site engineered AgNbO3 lead-free antiferroelectric ceramics toward superior energy storage density. J Mater Chem A 2019, 7: 14118–14128.

    CAS  Article  Google Scholar 

  222. [222]

    Lu Z, Bao W, Wang G, et al. Mechanism of enhanced energy storage density in AgNbO3-based lead-free antiferroelectrics. Nano Energy 2021, 79: 105423.

    CAS  Article  Google Scholar 

  223. [223]

    Zhao L, Gao J, Liu Q, et al. Silver niobate lead-free antiferroelectric ceramics: Enhancing energy storage density by B-site doping. ACS Appl Mater Interfaces 2018, 10: 819–826.

    CAS  Article  Google Scholar 

  224. [224]

    Tian Y, Jin L, Zhang H, et al. Phase transitions in bismuth-modified silver niobate ceramics for high power energy storage. J Mater Chem A 2017, 5: 17525–17531.

    CAS  Article  Google Scholar 

  225. [225]

    Luo N, Han K, Zhuo F, et al. Design for high energy storage density and temperature-insensitive lead-free antiferroelectric ceramics. J Mater Chem C 2019, 7: 4999–5008.

    CAS  Article  Google Scholar 

  226. [226]

    Gao J, Zhang Y, Zhao L, et al. Enhanced antiferroelectric phase stability in La-doped AgNbO3: Perspectives from the microstructure to energy storage properties. J Mater Chem A 2019, 7: 2225–2232.

    CAS  Article  Google Scholar 

  227. [227]

    Han K, Luo N, Mao S, et al. Realizing high low-electric-field energy storage performance in AgNbO3 ceramics by introducing relaxor behaviour. J Materiomics 2019, 5: 597–605.

    Article  Google Scholar 

  228. [228]

    Wang J, Wan X, Rao Y, et al. Hydrothermal synthesized AgNbO3 powders: Leading to greatly improved electric breakdown strength in ceramics. J Eur Ceram Soc 2020, 40: 5589–5596.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (51767010).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zong-Yang Shen.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, D., Zeng, X., Li, Z. et al. Progress and perspectives in dielectric energy storage ceramics. J Adv Ceram 10, 675–703 (2021). https://doi.org/10.1007/s40145-021-0500-3

Download citation

Keywords

  • energy storage ceramics
  • dielectric
  • relaxor ferroelectric
  • antiferroelectric
  • pulse power capacitor