Skip to main content

Advertisement

Log in

Overviews of dielectric energy storage materials and methods to improve energy storage density

  • Review
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Due to high power density, fast charge/discharge speed, and high reliability, dielectric capacitors are widely used in pulsed power systems and power electronic systems. However, compared with other energy storage devices such as batteries and supercapacitors, the energy storage density of dielectric capacitors is low, which results in the huge system volume when applied in pulse systems. Therefore, to meet the needs of device miniaturization and integration, reducing the system volume and increasing the energy storage density have become very key research hot spots in the dielectric energy storage fields. In this paper, we first introduce the research background of dielectric energy storage capacitors and the evaluation parameters of energy storage performance. Then, the research status of ceramics, thin films, organic polymers, and organic–inorganic nanocomposites for energy storage is summarized. Next, the methods of improving the energy storage density of dielectric capacitors are concluded. For ceramic blocks and films, methods, such as element doping, multi-phase solid solution/coexistence structure, “core–shell” structure/laminated structure, and other interface adjustments, are effective to increase the energy storage density. While for organic–inorganic nanocomposites, the energy storage performance can be optimized by the surface modification and distribution of fillers, and multi-layer structure design. Finally, the future development tendency of the energy storage materials is prospected to consolidate the research foundation of dielectric energy storage and provide certain guidance value for their practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5 
Fig. 6 
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared, since the figures were licensed by the publishers of the origin references.

References

  1. X.J. Liu, M.S. Zheng, G. Chen, Z.M. Dang, J.W. Zha, High-temperature polyimide dielectric materials for energy storage: theory, design, preparation and properties. Energy. Environ. Sci. 15, 56–81 (2022). https://doi.org/10.1039/d1ee03186d

    Article  CAS  Google Scholar 

  2. D. Li, X. Zeng, Z. Li, Z.Y. Shen, H. Hao, W. Luo, X. Wang, F. Song, Z. Wang, Y. Li, Progress and perspectives in dielectric energy storage ceramics. J. Adv. Ceram. 7(10), 675–703 (2021). https://doi.org/10.1007/s40145-021-0500-3

    Article  CAS  Google Scholar 

  3. M. Feng, Y. Feng, T. Zhang, J. Li, Q. Chen, Q. Chi, Q. Lei, Recent advances in multilayer-structure dielectrics for energy storage application. Adv. Sci. 8, 2102221 (2021). https://www.ncbi.nlm.nih.gov/pubmed/34519436

  4. Y. Wang, M. Yao, R. Ma, Q. Yuan, D. Yang, B. Cui, C. Ma, M. Liu, D. Hu, Design strategy of barium titanate/polyvinylidene fluoride-based nanocomposite films for high energy storage. J. Mater. Chem. A. 8, 884–917 (2020). https://doi.org/10.1039/c9ta11527g

    Article  CAS  Google Scholar 

  5. Z. Fan, L. Li, X. Mei, F. Zhao, H. Li, X. Zhuo, X. Zhang, Y. Lu, L. Zhang, M. Liu, Multilayer ceramic film capacitors for high-performance energy storage: progress and outlook. J. Mater. Chem. A. 9, 9462–9480 (2021). https://doi.org/10.1039/d0ta12332c

    Article  CAS  Google Scholar 

  6. Y. Huang, C. Zhao, B. Wu, J. Wu, Multifunctional BaTiO3-based relaxor ferroelectrics toward excellent energy storage performance and electrostrictive strain benefiting from crossover region. ACS Appl. Mater. Inter. 1221, 23885–23895 (2020). https://doi.org/10.1021/acsami.0c03677

    Article  CAS  Google Scholar 

  7. X. Kong, L. Yang, Z. Cheng, S. Zhang, Bi-modified SrTiO3-based ceramics for high-temperature energy storage applications. J. Am. Ceram. Soc. 103, 1722–1731 (2019). https://doi.org/10.1111/jace.16844

    Article  CAS  Google Scholar 

  8. P. Yin, Z. Shi, L. Sun, P. Xie, D. Dastan, K. Sun, R. Fan, Improved breakdown strengths and energy storage properties of polyimide composites: the effect of internal interfaces of C/SiO2 hybrid nanoparticles. Polym. Composite. 42, 3000–3010 (2021). https://doi.org/10.1002/pc.26034

    Article  CAS  Google Scholar 

  9. C. Huang, L. Zhang, S. Liu, Y. Wang, N. Wang, Y. Deng, Double enhanced energy storage density via polarization gradient design in ferroelectric poly (vinylidene fluoride)-based nanocomposites. Chem. Eng. J. (2021). https://doi.org/10.1016/j.cej.2021.128585

    Article  Google Scholar 

  10. Y. Zhou, C. Yuan, S. Wang, Y. Zhu, S. Cheng, X. Yang, Y. Yang, J. Hu, J. He, Q. Li, Interface-modulated nanocomposites based on polypropylene for high-temperature energy storage. Energy. Storage. Mater. 28, 255–263 (2020). https://doi.org/10.1016/j.ensm.2020.03.017

    Article  Google Scholar 

  11. Q. Li, L. Chen, M.R. Gadinski, S. Zhang, G. Zhang, U. Li, E. Iagodkine, A. Haque, L.Q. Chen, N. Jackson, Q. Wang, Flexible high-temperature dielectric materials from polymer nanocomposites. Nature 523, 576–579 (2015). https://doi.org/10.1038/nature14647

    Article  CAS  Google Scholar 

  12. Q. Yuan, G. Li, F.Z. Yao, S.D. Cheng, Y. Wang, R. Ma, S.B. Mi, M. Gu, K. Wang, J.F. Li, H. Wang, Simultaneously achieved temperature-insensitive high energy density and efficiency in domain engineered BaTiO3-Bi(Mg0.5Zr0.5)O3 lead-free relaxor ferroelectrics. Nano Energy 52, 203–210 (2018). https://doi.org/10.1016/j.nanoen.2018.07.055

    Article  CAS  Google Scholar 

  13. J.W. McPherson, K. Jinyoung, A. Shanware, H. Mogul, J. Rodriguez, Trends in the ultimate breakdown strength of high dielectric-constant materials. IEEE T. Electron. Dev 508, 1771–1778 (2003). https://doi.org/10.1109/ted.2003.815141

    Article  Google Scholar 

  14. X. Zhang, Y. Shen, B. Xu, Q. Zhang, L. Gu, J. Jiang, J. Ma, Y. Lin, C.W. Nan, Giant energy density and improved discharge efficiency of solution-processed polymer nanocomposites for dielectric energy storage. Adv Mater. 28, 2055–2061 (2016). https://doi.org/10.1002/adma.201503881

    Article  CAS  Google Scholar 

  15. J. Jiang, Z. Shen, J. Qian, Z. Dan, M. Guo, Y. He, Y. Lin, C.W. Nan, L. Chen, Y. Shen, Synergy of micro-/mesoscopic interfaces in multilayered polymer nanocomposites induces ultrahigh energy density for capacitive energy storage. Nano Energy 62, 220–229 (2019). https://doi.org/10.1016/j.nanoen.2019.05.038

    Article  CAS  Google Scholar 

  16. D. Kaur, A. Bharti, T. Sharma, C. Madhu, W. Jhe, Dielectric properties of ZnO-based nanocomposites and their potential applications. Int. J. Opt. 2021, 9950202 (2021). https://doi.org/10.1155/2021/9950202

    Article  Google Scholar 

  17. H. Palneedi, M. Peddigari, G.T. Hwang, D.Y. Jeong, J. Ryu, High-performance dielectric ceramic films for energy storage capacitors: progress and outlook. Adv. Funct. Mater. 28, 1803665 (2018). https://doi.org/10.1002/adfm.201803665

    Article  CAS  Google Scholar 

  18. J. Liu, K. Yang, J. Zhai, B. Shen, Effects of crystallization temperature on phase evolution and energy storage properties of BaO-Na2O-Nb2O5-SiO2-Al2O3 glass-ceramics. J. Eur. Ceram. Soc. 38, 2312–2317 (2018). https://doi.org/10.1016/j.jeurceramsoc.2018.01.003

    Article  CAS  Google Scholar 

  19. D. Jiang, Y. Zhong, F. Shang, G. Chen, Crystallization, microstructure and energy storage behavior of borate glass–ceramics. J. Mater. Sci: Mater. Electron. 31, 12074–12082 (2020). https://doi.org/10.1007/s10854-020-03746-4

    Article  CAS  Google Scholar 

  20. K. Alex Muller, Quantum para-, ferro-, and random electric behaviors in oxide perovskites. Jpn. J. Appl. Phys. 24, 89–93 (1985). https://doi.org/10.7567/jjaps.24s2.89

    Article  Google Scholar 

  21. Z. Wang, M. Cao, Z. Yao, G. Li, Z. Song, W. Hu, H. Hao, H. Liu, Z. Yu, Effects of Sr/Ti ratio on the microstructure and energy storage properties of nonstoichiometric SrTiO3 ceramics. Ceram. Int. 40, 929–933 (2014). https://doi.org/10.1016/j.ceramint.2013.06.088

    Article  CAS  Google Scholar 

  22. Y. Wang, Z.Y. Shen, Y.M. Li, Z.M. Wang, W.Q. Luo, Y. Hong, Optimization of energy storage density and efficiency in BaxSr1-xTiO3 (x≤0.4) paraelectric ceramics. Ceram. Int. 41, 8252–8256 (2015). https://doi.org/10.1016/j.ceramint.2015.02.156

    Article  CAS  Google Scholar 

  23. W. Pan, M. Cao, A. Jan, H. Hao, Z. Yao, H. Liu, High breakdown strength and energy storage performance in (Nb, Zn) modified SrTiO3 ceramics via synergy manipulation. J. Mater. Chem. C. 8, 2019–2027 (2020). https://doi.org/10.1039/c9tc06256d

    Article  CAS  Google Scholar 

  24. L. Li, X. Yu, H. Cai, Q. Liao, Y. Han, Z. Gao, Preparation and dielectric properties of BaCu(B2O5)-doped SrTiO3-based ceramics for energy storage. Mat. Sci. Eng. B. 178, 1509–1514 (2013). https://doi.org/10.1016/j.mseb.2013.08.016

    Article  CAS  Google Scholar 

  25. H. Wang, M. Cao, R. Huang, C. Tao, W. Pan, H. Hao, Z. Yao, H. Liu, Preparation of BaTiO3@NiO core-shell nanoparticles with antiferroelectric-like characteristic and high energy storage capability. J. Eur. Ceram. Soc. 41, 4129–4137 (2021). https://doi.org/10.1016/j.jeurceramsoc.2021.02.042

    Article  CAS  Google Scholar 

  26. H. Yang, F. Yan, Y. Lin, T. Wang, Enhanced energy-storage properties of lanthanum-doped Bi0.5Na0.5TiO3-based lead-free ceramics. Energy. Technol. 6, 357–365 (2018). https://doi.org/10.1002/ente.201700504

    Article  CAS  Google Scholar 

  27. Q. Jia, Y. Li, L. Guan, H. Sun, Q. Zhang, X. Hao, Photochromic and energy storage properties in K0.5Na0.5NbO3-based ferroelectrics. J. Mater. Sci: Mater. Electron. 31, 19277–19292 (2020). https://doi.org/10.1007/s10854-020-04463-8

    Article  CAS  Google Scholar 

  28. F. Yan, X. Zhou, X. He, H. Bai, S. Wu, B. Shen, J. Zhai, Superior energy storage properties and excellent stability achieved in environment-friendly ferroelectrics via composition design strategy. Nano Energy 75, 105012 (2020). https://doi.org/10.1016/j.nanoen.2020.105012

    Article  CAS  Google Scholar 

  29. M. Zhou, R. Liang, Z. Zhou, X. Dong, Novel BaTiO3-based lead-free ceramic capacitors featuring high energy storage density, high power density, and excellent stability. J. Mater. Chem. C. 6, 8528–8537 (2018). https://doi.org/10.1039/c8tc03003k

    Article  CAS  Google Scholar 

  30. Q. Hu, Y. Tian, Q. Zhu, J. Bian, L. Jin, H. Du, D.O. Alikin, V.Y. Shur, Y. Feng, Z. Xu, X. Wei, Achieve ultrahigh energy storage performance in BaTiO3–Bi(Mg1/2Ti1/2)O3 relaxor ferroelectric ceramics via nano-scale polarization mismatch and reconstruction. Nano Energy 67, 104264 (2020). https://doi.org/10.1016/j.nanoen.2019.104264

    Article  CAS  Google Scholar 

  31. Z. Li, D.X. Li, Z.Y. Sheng, X. Zeng, F. Song, W. Luo, X. Wang, Z. Wang, Y. Li, Remarkably enhanced dielectric stability and energy storage properties in BNT–BST relaxor ceramics by A-site defect engineering for pulsed power applications. J. Adv. Ceram. 11(2), 283–294 (2022)

    Article  CAS  Google Scholar 

  32. X. Qiao, F. Zhang, D. Wu, B. Chen, X. Zhao, Z. Peng, X. Ren, P. Liang, X. Chao, Z. Yang, Superior comprehensive energy storage properties in Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics. Chem. Eng. J. 388, 124158 (2020). https://doi.org/10.1016/j.cej.2020.124158

    Article  CAS  Google Scholar 

  33. Z. Jiang, H. Yang, L. Cao, Z. Yang, Y. Yuan, E. Li, Enhanced breakdown strength and energy storage density of lead-free Bi0.5Na0.5TiO3-based ceramic by reducing the oxygen vacancy concentration. Chem. Eng. J. 414, 128921 (2021). https://doi.org/10.1016/j.cej.2021.128921

    Article  CAS  Google Scholar 

  34. W. Ma, Y. Zhu, M.A. Marwat, P. Fan, B. Xie, D. Salamon, Z.G. Ye, H. Zhang, Enhanced energy-storage performance with excellent stability under low electric fields in BNT–ST relaxor ferroelectric ceramics. J. Mater. Chem. C. 7, 281–288 (2019). https://doi.org/10.1039/c8tc04447c

    Article  CAS  Google Scholar 

  35. J.H. Du, Y. Li, N.N. Sun, Y. Zhao, X.H. Hao, Dielectric, ferroelectric and high energy storage behavior of (1–x)K0.5Na0.5NbO3–xBi(Mg0.5Ti0.5)O3 lead free relaxor ferroelectric ceramics. Acta. Phys. Sin. 69, 127703 (2020). https://doi.org/10.7498/aps.69.20200213

    Article  CAS  Google Scholar 

  36. M. Zhang, H. Yang, D. Li, L. Ma, Y. Lin, Giant energy storage efficiency and high recoverable energy storage density achieved in K0.5Na0.5NbO3-Bi(Zn0.5Zr0.5)O3 ceramics. J. Mater. Chem. C. 8, 8777–8785 (2020). https://doi.org/10.1039/d0tc01711f

    Article  CAS  Google Scholar 

  37. P. Qiao, Y. Zhang, X. Chen, M. Zhou, G. Wang, X. Dong, Effect of Mn-doping on dielectric and energy storage properties of (Pb0.91La0.06)(Zr0.96Ti0.04)O3 antiferroelectric ceramics. J. Alloy. Compd. 780, 581–587 (2019). https://doi.org/10.1016/j.jallcom.2018.11.371

    Article  CAS  Google Scholar 

  38. X. Liu, Y. Li, Y. Li, X. Hao, Giant energy-storage density and thermally activated phase transition in (Pb0.96La0.04)(Zr0.99Ti0.01)O3 antiferroelectric ceramics. ACS Appl. Energy Mater. 4, 4897–4902 (2021). https://doi.org/10.1021/acsaem.1c00474

    Article  CAS  Google Scholar 

  39. L. Zhao, Q. Liu, J. Gao, S. Zhang, J.F. Li, Lead-free antiferroelectric silver niobate tantalate with high energy storage performance. Adv. Mater. 29, 1701824 (2017). https://doi.org/10.1002/adma.201701824

    Article  CAS  Google Scholar 

  40. N. Luo, K. Han, F. Zhuo, C. Xu, G. Zhang, L. Liu, X. Chen, C. Hu, H. Zhou, Y. Wei, Aliovalent A-site engineered AgNbO3 lead-free antiferroelectric ceramics toward superior energy storage density. J. Mater. Chem. A. 7, 14118–14128 (2019). https://doi.org/10.1039/c9ta02053e

    Article  CAS  Google Scholar 

  41. M. Zhou, R. Liang, Z. Zhou, X. Dong, Superior energy storage properties and excellent stability of novel NaNbO3-based lead-free ceramics with A-site vacancy obtained via a Bi2O3 substitution strategy. J. Mater. Chem. A. 6, 17896–17904 (2018). https://doi.org/10.1039/c8ta07303a

    Article  CAS  Google Scholar 

  42. H. Qi, R. Zuo, A. Xie, A. Tian, J. Fu, Y. Zhang, S. Zhang, Ultrahigh energy-storage density in NaNbO3-based lead-free relaxor antiferroelectric ceramics with nanoscale domains. Adv. Funct. Mater. 29, 1903877 (2019). https://doi.org/10.1002/adfm.201903877

    Article  CAS  Google Scholar 

  43. A. Payne, O. Brewer, A. Leff, N.A. Strnad, J.L. Jones, B. Hanrahan, Dielectric, energy storage, and loss study of antiferroelectric-like Al-doped HfO2 thin films. Appl. Phys. Lett. 117, 221104 (2020). https://doi.org/10.1063/5.0029706

    Article  CAS  Google Scholar 

  44. J.P.B. Silva, J.M.B. Silva, K.C. Sekhar, H. Palneedi, M.C. Istrate, R.F. Negrea, C. Ghica, A. Chahboun, M. Pereira, M.J.M. Gomes, Energy storage performance of ferroelectric ZrO2 film capacitors: effect of HfO2:Al2O3 dielectric insert layer. J. Mater. Chem. A. 8, 14171–14177 (2020). https://doi.org/10.1039/d0ta04984k

    Article  CAS  Google Scholar 

  45. S.-H. Yi, H.C. Lin, M.J. Chen, Ultra-high energy storage density and scale-up of antiferroelectric TiO2/ZrO2/TiO2 stacks for supercapacitors. J. Mater. Chem. A. 9, 9081–9091 (2021). https://doi.org/10.1039/d0ta11991a

    Article  CAS  Google Scholar 

  46. X. Hao, J. Zhou, S. An, Effects of PbO content on the dielectric properties and energy storage performance of (Pb0.97La0.02)(Zr0.97Ti0.03)O3 antiferroelectric thin films. J. Am. Ceram. Soc. 94, 1647–1650 (2011). https://doi.org/10.1111/j.1551-2916.2011.04460.x

    Article  CAS  Google Scholar 

  47. X. Wang, L. Zhang, X. Hao, S. An, High energy-storage performance of 0.9Pb(Mg1/3Nb2/3)O30.1PbTiO3 relaxor ferroelectric thin films prepared by RF magnetron sputtering. Mater. Res. Bull. 65, 73–79 (2015). https://doi.org/10.1016/j.materresbull.2015.01.038

    Article  CAS  Google Scholar 

  48. B. Ma, Z. Hu, R.E. Koritala, T.H. Lee, S.E. Dorris, U. Balachandran, PLZT film capacitors for power electronics and energy storage applications. J. Mater. Sci: Mater. Electron. 26, 9279–9287 (2015). https://doi.org/10.1007/s10854-015-3025-0

    Article  CAS  Google Scholar 

  49. Y. Xie, H. Hao, Z. Huang, S. Zhang, M. Cao, Z. Yao, H. Liu, Large energy-storage density with good dielectric property in bismuth sodium titanate-based thin films. J. Alloy. Compd. 884, 161031 (2021). https://doi.org/10.1016/j.jallcom.2021.161031

    Article  CAS  Google Scholar 

  50. C. Yang, Q. Yao, J. Qian, Y. Han, J. Chen, Comparative study on energy storage performance of Na.5Bi.5(Ti, W, Ni)O3 thin films with different bismuth contents. Ceram. Int. 44, 9643–9648 (2018). https://doi.org/10.1016/j.ceramint.2018.02.191

    Article  CAS  Google Scholar 

  51. F. Wang, C. Zhu, S. Zhao, High energy storage density of NBT-0.10BFO solid solution films. Ceram. Int. 47, 8653–8658 (2021). https://doi.org/10.1016/j.ceramint.2020.11.235

    Article  CAS  Google Scholar 

  52. J. Xie, H. Liu, Z. Yao, H. Hao, Y. Xie, Z. Li, M. Cao, S. Zhang, Achieving ultrahigh energy storage performance in bismuth magnesium titanate film capacitors via amorphous-structure engineering. J. Mater. Chem. C. 7, 13632–13639 (2019). https://doi.org/10.1039/c9tc04121d

    Article  CAS  Google Scholar 

  53. Z. Liang, C. Ma, L. Shen, L. Lu, X. Lu, X. Lou, M. Liu, C.L. Jia, Flexible lead-free oxide film capacitors with ultrahigh energy storage performances in extremely wide operating temperature. Nano Energy 57, 519–527 (2019). https://doi.org/10.1016/j.nanoen.2018.12.056

    Article  CAS  Google Scholar 

  54. C. Diao, H. Li, Y. Yang, H. Hao, Z. Yao, H. Liu, Significantly improved energy storage properties of sol-gel derived Mn-modified SrTiO3 thin films. Ceram. Int. 45(9), 11784–11791 (2019). https://doi.org/10.1016/j.ceramint.2019.03.056

    Article  CAS  Google Scholar 

  55. C. Diao, H. Liu, Z. Li, Z. Yao, H. Hao, M. Cao, Simultaneously achieved high energy storage density and efficiency in sol-gel-derived amorphous Mn-doped SrTiO3 thin films. J. Alloy. Compd. 845, 155636 (2020). https://doi.org/10.1016/j.jallcom.2020.155636

    Article  CAS  Google Scholar 

  56. B. Luo, H. Dong, D. Wang, K. Jin, Large recoverable energy density with excellent thermal stability in Mn-modified NaNbO3-CaZrO3 lead-free thin films. J. Am. Ceram. Soc. 101, 3460–3467 (2018). https://doi.org/10.1111/jace.15528

    Article  CAS  Google Scholar 

  57. E.K. Michael, S. Trolier-McKinstry, Bismuth pyrochlore thin films for dielectric energy storage. J Appl. Phys. 118, 054101 (2015). https://doi.org/10.1063/1.4927738

    Article  CAS  Google Scholar 

  58. M. Wu, S. Yu, X. Wang, L. Li, Ultra-high energy storage density and ultra-wide operating temperature range in Bi2Zn2/3Nb4/3O7 thin film as a novel lead-free capacitor. J. Power Sources. 497, 229879 (2021). https://doi.org/10.1016/j.jpowsour.2021.229879

    Article  CAS  Google Scholar 

  59. Z. Tang, J. Chen, B. Yang, M. Zhang, T. Cao, Y. Zhou, S. Zhao, Ultrahigh energy storage performances induced by weaker La–O orbital hybridization in (Na0.85K0.15)0.5Bi4.5-xLaxTi4O15 relaxor ferroelectric films. J. Phys. Chem. C. 125, 4986–4994 (2021). https://doi.org/10.1021/acs.jpcc.0c11629

    Article  CAS  Google Scholar 

  60. J.M. Hadi, S.B. Aziz, M.A. Brza, M.F.Z. Kadir, R.T. Abdulwahid, B.A. Al-Asbahi, A.A. Ali Ahmed, Structural and energy storage behavior of ion conducting biopolymer blend electrolytes based on methylcellulose: dextran polymers. Alex. Eng. J. 6112, 9273–9285 (2022). https://doi.org/10.1016/j.aej.2022.03.042

    Article  Google Scholar 

  61. G. Picci, M. Rabuffi, Status quo and future prospects for metallized polypropylene energy storage capacitors. IEEE T. Plasma. Sci. 30(5), 1939–1942 (2002). https://doi.org/10.1109/TPS.2002.805318

    Article  CAS  Google Scholar 

  62. V. Sharma, C. Wang, R.G. Lorenzini, R. Ma, Q. Zhu, D.W. Sinkovits, G. Pilania, A.R. Oganov, S. Kumar, G.A. Sotzing, S.A. Boggs, R. Ramprasad, Rational design of all organic polymer dielectrics. Nat. Commun. 5, 4845 (2014). https://doi.org/10.1038/ncomms5845

    Article  CAS  Google Scholar 

  63. C. Yuan, Y. Zhou, Y. Zhu, J. Liang, S. Wang, S. Peng, Y. Li, S. Cheng, M. Yang, J. Hu, B. Zhang, R. Zeng, J. He, Q. Li, Polymer/molecular semiconductor all-organic composites for high-temperature dielectric energy storage. Nat. Commun. 11, 3919 (2020). https://doi.org/10.1038/s41467-020-17760-x

    Article  CAS  Google Scholar 

  64. Y. Cui, Y. Feng, T. Zhang, C. Zhang, Q. Chi, Y. Zhang, X. Wang, Q. Chen, Q. Lei, Excellent energy storage performance of ferroconcrete-like all-organic linear/ferroelectric polymer films utilizing interface engineering. ACS Appl. Mater. Inter. 12, 56424–56434 (2020). https://doi.org/10.1021/acsami.0c16197

    Article  CAS  Google Scholar 

  65. C. Wang, G. He, S. Chen, D. Zhai, H. Luo, D. Zhang, Enhanced performance of all-organic sandwich structured dielectrics with linear dielectric and ferroelectric polymers. J. Mater. Chem. A. 9, 8674–8684 (2021). https://doi.org/10.1039/d1ta00974e

    Article  CAS  Google Scholar 

  66. S. Luo, T.Q. Ansari, J. Yu, S. Yu, P. Xu, L. Cao, H. Huang, R. Sun, Enhancement of dielectric breakdown strength and energy storage of all-polymer films by surface flattening. Chem. Eng. J. 412, 128476 (2021). https://doi.org/10.1016/j.cej.2021.128476

    Article  CAS  Google Scholar 

  67. Y. Feng, C. Peng, Q. Deng, Y. Li, J. Hu, Q. Wu, Annealing and stretching induced high energy storage properties in all-organic composite dielectric films. Materials. 11, 2279 (2018). https://doi.org/10.3390/ma11112279

    Article  CAS  Google Scholar 

  68. P. Mao, J. Wang, L. Zhang, Q. Sun, X. Liu, L. He, S. Liu, S. Zhang, H. Gong, Tunable dielectric polarization and breakdown behavior for high energy storage capability in P(VDF-TrFE-CFE)/PVDF polymer blended composite films. Phys. Chem. Chem. Phys. 22, 13143–13153 (2020). https://doi.org/10.1039/d0cp01071e

    Article  CAS  Google Scholar 

  69. F.E. Bouharras, M. Raihane, B. Ameduri, Recent progress on core-shell structured BaTiO3@polymer/fluorinated polymers nanocomposites for high energy storage: synthesis, dielectric properties and applications. Prog. Mater. Sci. 113, 100670 (2020). https://doi.org/10.1016/j.pmatsci.2020.100670

    Article  CAS  Google Scholar 

  70. P.J. Wang, D. Zhou, H.H. Guo, W.F. Liu, J.Z. Su, M.S. Fu, C. Singh, S. Trukhanov, A. Trukhanov, Ultrahigh enhancement rate of the energy density of flexible polymer nanocomposites using core–shell BaTiO3@MgO structures as the filler. J. Mater. Chem. A. 8, 11124–11132 (2020). https://doi.org/10.1039/c8ta03084g

    Article  CAS  Google Scholar 

  71. K. Bi, M. Bi, Y. Hao, W. Luo, Z. Cai, X. Wang, Y. Huang, Ultrafine core-shell BaTiO3@SiO2 structures for nanocomposite capacitors with high energy density. Nano Energy 51, 513–523 (2018). https://doi.org/10.1016/j.nanoen.2018.07.006

    Article  CAS  Google Scholar 

  72. Z.M. Dang, Y.Q. Lin, H.P. Xu, C.Y. Shi, S.T. Li, J. Bai, Fabrication and dielectric characterization of advanced BaTiO3/polyimide nanocomposite films with high thermal stability. Adv. Funct. Mater. 18, 1509–1517 (2008). https://doi.org/10.1002/adfm.200701077

    Article  CAS  Google Scholar 

  73. H. Luo, C. Chen, K. Zhou, X. Zhou, Z. Wu, D. Zhang, Enhancement of dielectric properties and energy storage density in poly (vinylidene fluoride-co-hexafluoropropylene) by relaxor ferroelectric ceramics. RSC Adv. 584, 68515–68522 (2015). https://doi.org/10.1039/D2RA01634F

    Article  Google Scholar 

  74. H. Tang, Z. Zhou, H.A. Sodano, Relationship between BaTiO3 nanowire aspect ratio and the dielectric permittivity of nanocomposites. ACS Appl. Mater. Inter. 68, 5450–5455 (2014). https://doi.org/10.1021/am405038r

    Article  CAS  Google Scholar 

  75. Z. Pan, L. Yao, G. Ge, B. Shen, J. Zhai, High-performance capacitors based on NaNbO3 nanowires/poly (vinylidene fluoride) nanocomposites. J. Mater. Chem. A. 6, 14614–14622 (2018). https://doi.org/10.1039/c8ta03084g

    Article  CAS  Google Scholar 

  76. Y. Zhang, C. Zhang, Y. Feng, T. Zhang, Q. Chen, Q. Chi, L. Liu, G. Li, Y. Cui, X. Wang, Z. Dang, Q. Lei, Excellent energy storage performance and thermal property of polymer-based composite induced by multifunctional one-dimensional nanofibers oriented in-plane direction. Nano Energy 56, 138–150 (2019). https://doi.org/10.1016/j.nanoen.2018.11.044

    Article  CAS  Google Scholar 

  77. H. Tang, H.A. Sodano, Ultra high energy density nanocomposite capacitors with fast discharge using Ba0.2Sr0.8TiO3 nanowires. Nano Lett. 134, 1373–1379 (2013). https://doi.org/10.1021/nl3037273

    Article  CAS  Google Scholar 

  78. Y. Zhu, H. Yao, P. Jiang, J. Wu, X. Zhu, X. Huang, Two-dimensional high-k nanosheets for dielectric polymer nanocomposites with ultrahigh discharged energy density. J. Phys. Chem. C. 122, 18282–18293 (2018). https://doi.org/10.1021/acs.jpcc.8b04918

    Article  CAS  Google Scholar 

  79. H. Li, T. Yang, Y. Zhou, D. Ai, B. Yao, Y. Liu, L. Li, L.Q. Chen, Q. Wang, Enabling high-energy-density high-rfficiency gerroelectric polymer nanocomposites with rationally designed nanofillers. Adv. Funct. Mater. 31, 202006739 (2020). https://doi.org/10.1002/adfm.202006739

    Article  CAS  Google Scholar 

  80. L. Wu, K. Wu, D. Liu, R. Huang, J. Huo, F. Chen, Q. Fu, Largely enhanced energy storage density of poly (vinylidene fluoride) nanocomposites based on surface hydroxylation of boron nitride nanosheets. J. Mater. Chem. A. 6, 7573–7584 (2018). https://doi.org/10.1039/c8ta01294f

    Article  CAS  Google Scholar 

  81. Y. Shen, J. Du, X. Zhang, X. Huang, Y. Song, H. Wu, Y. Lin, M. Li, C.W. Nan, Enhanced breakdown strength and suppressed leakage current of polyvinylidene fluoride nanocomposites by two-dimensional ZrO2 nanosheets. Mater. Express. 6(3), 277–282 (2016). https://doi.org/10.1166/mex.2016.1309

    Article  CAS  Google Scholar 

  82. K. Zou, C. He, Y. Yu, J. Huang, Z. Fan, Y. Lu, H. Huang, X. Zhang, Q. Zhang, Y. He, Ultrahigh energy efficiency and large discharge energy density in flexible dielectric nNanocomposites with Pb0.97La0.02(Zr0.5SnxTi0.5-x)O3 antiferroelectric nanofillers. ACS Appl. Mater. Inter. 12, 12847–12856 (2020). https://doi.org/10.1021/acsami.9b23074

    Article  CAS  Google Scholar 

  83. B. Peng, Q. Zhang, X. Li, T. Sun, H. Fan, S. Ke, M. Ye, Y. Wang, W. Lu, H. Niu, J.F. Scott, X. Zeng, H. Huang, Giant electric energy density in epitaxial lead-free thin films with coexistence of ferroelectrics and antiferroelectrics. Adv. Electron. Mater. 1, 1500052 (2015). https://doi.org/10.1002/aelm.201500052

    Article  CAS  Google Scholar 

  84. J. Gao, Y. Zhang, L. Zhao, K.Y. Lee, Q. Liu, A. Studer, M. Hinterstein, S. Zhang, J.F. Li, Enhanced antiferroelectric phase stability in La-doped AgNbO3: perspectives from the microstructure to energy storage properties. J. Mater. Chem. A. 7, 2225–2232 (2019). https://doi.org/10.1039/c8ta09353a

    Article  CAS  Google Scholar 

  85. Z.G. Liu, Z.H. Tang, S.C. Hu, D.J. Yao, F. Sun, D.Y. Chen, X.B. Guo, Q.X. Liu, Y.P. Jiang, X.G. Tang, Excellent energy storage density and efficiency in lead-free Sm-doped BaTiO3–Bi(Mg0.5Ti0.5)O3 ceramics. J. Mater. Chem. C. 838, 13405–13414 (2020). https://doi.org/10.1039/d0tc03035j

    Article  CAS  Google Scholar 

  86. T. Ouyang, Y. Pu, J. Ji, S. Zhou, R. Li, Ultrahigh energy storage capacity with superfast discharge rate achieved in Mg-modified Ca0.5Sr0.5TiO3-based lead-free linear ceramics for dielectric capacitor applications. Ceram. Int. 47, 20447–20455 (2021). https://doi.org/10.1016/j.ceramint.2021.04.054

    Article  CAS  Google Scholar 

  87. C. Cui, Y. Pu, Improvement of energy storage density with trace amounts of ZrO2 additives fabricated by wet-chemical method. J. Alloy. Compd. 747, 495–504 (2018). https://doi.org/10.1016/j.jallcom.2018.03.058

    Article  CAS  Google Scholar 

  88. L. Zhang, H. Hao, H. Liu, Z. Song, Z. Yao, J. Xie, H. Liu, X. Zhu, Q. Xu, X. Huang, M. Cao, Effect of HfO2 addition as intergranular grains on the energy storage behavior of Ca0.6Sr0.4TiO3 ceramics. J. Eur. Ceram. Soc. 36, 3157–3163 (2016). https://doi.org/10.1016/j.jeurceramsoc.2016.05.002

    Article  CAS  Google Scholar 

  89. Y. Zhang, W. Li, W. Cao, Y. Feng, Y. Qiao, T. Zhang, W. Fei, Mn doping to enhance energy storage performance of lead-free 0.7NBT-0.3ST thin films with weak oxygen vacancies. Appl. Phys. Lett. 110, 243901 (2017). https://doi.org/10.1063/1.4986468

    Article  CAS  Google Scholar 

  90. L. Zhang, Z. Yao, M.T. Lanagan, H. Hao, J. Xie, Q. Xu, M. Yuan, M. Sarkarat, M. Cao, H. Liu, Effect of oxygen treatment on structure and electrical properties of Mn-doped Ca0.6Sr0.4TiO3 ceramics. J. Eur. Ceram. Soc. 38, 2534–2540 (2018). https://doi.org/10.1016/j.jeurceramsoc.2018.01.027

    Article  CAS  Google Scholar 

  91. X.W. Wang, B.H. Zhang, Y.C. Shi, Y.Y. Li, M. Manikandan, S.Y. Shang, J. Shang, Y.C. Hu, S.Q. Yin, Enhanced energy storage properties in Ba0.85Ca0.15Zr0.1Ti0.9O3 ceramics with glass additives. J. Appl. Phys. 127, 074103 (2020). https://doi.org/10.1063/1.5138948

    Article  CAS  Google Scholar 

  92. S. Cho, C. Yun, Y.S. Kim, H. Wang, J. Jian, W. Zhang, J. Huang, X. Wang, H. Wang, J.L. MacManus-Driscoll, Strongly enhanced dielectric and energy storage properties in lead-free perovskite titanate thin films by alloying. Nano Energy 45, 398–406 (2018). https://doi.org/10.1016/j.nanoen.2018.01.003

    Article  CAS  Google Scholar 

  93. C. Yang, P. Lv, J. Qian, Y. Han, J. Ouyang, X. Lin, S. Huang, Z. Cheng, Fatigue-free and bending-endurable flexible Mn-doped Na0.5Bi0.5TiO3-BaTiO3-BiFeO3 film capacitor with an ultrahigh energy storage performance. Adv. Energy Mater. 18, 1803949 (2019). https://doi.org/10.1002/aenm.201803949

    Article  CAS  Google Scholar 

  94. B. Peng, Q. Zhang, X. Li, T. Sun, H. Fan, S. Ke, M. Ye, Y. Wang, W. Lu, H. Niu, X. Zeng, H. Huang, Large energy storage density and high thermal stability in a highly textured (111)-oriented Pb0.8Ba0.2ZrO3 relaxor thin film with the coexistence of antiferroelectric and ferroelectric phases. ACS Appl. Mater. Inter. 7, 13512–13517 (2015). https://doi.org/10.1021/acsami.5b02790

    Article  CAS  Google Scholar 

  95. C.T.Q. Nguyen, M.D. Nguyen, H.T. Vu, E.P. Houwman, H.N. Vu, G. Rijnders, High energy storage responses in all-oxide epitaxial relaxor ferroelectric thin films with the coexistence of relaxor and antiferroelectric-like behaviors. Thin Solid Films 636, 188–192 (2017). https://doi.org/10.1016/j.tsf.2017.06.003

    Article  CAS  Google Scholar 

  96. Y.H. Huang, Y.J. Wu, B. Liu, T.N. Yang, J.J. Wang, J. Li, L.Q. Chen, X.M. Chen, From core–shell Ba0.4Sr0.6TiO3@SiO2 particles to dense ceramics with high energy storage performance by spark plasma sintering. J. Mater. Chem. A. 6, 4477–4484 (2018). https://doi.org/10.1039/c7ta10821d

    Article  CAS  Google Scholar 

  97. Q. Jin, L. Zhao, B. Cui, J. Wang, H. Ma, R. Zhang, Y. Liu, X. Zhang, Enhanced energy storage properties in lead-free BaTiO3@Na0.5K0.5NbO3 nano-ceramics with nanodomains via a core–shell structural design. J. Mater. Chem. C. 8, 5248–5258 (2020). https://doi.org/10.1039/d0tc00179a

    Article  CAS  Google Scholar 

  98. C. Diao, H. Liu, G. Lou, H. Zheng, Z. Yao, H. Hao, M. Cao, Structure and electric properties of sandwich-structured SrTiO3/BiFeO3 thin films for energy storage applications. J. Alloy. Compd. 781, 378–384 (2019). https://doi.org/10.1016/j.jallcom.2018.11.391

    Article  CAS  Google Scholar 

  99. B.B. Yang, M.Y. Guo, L.H. Jin, X.W. Tang, R.H. Wei, L. Hu, J. Yang, W.H. Song, J.M. Dai, X.J. Lou, X.B. Zhu, Y.P. Sun, Ultrahigh energy storage in lead-free BiFeO3/Bi3.25La0.75Ti3O12 thin film capacitors by solution processing. Appl. Phys. Lett. 112, 033904 (2018). https://doi.org/10.1063/1.5002143

    Article  CAS  Google Scholar 

  100. T. Zhang, W. Li, Y. Zhao, Y. Yu, W. Fei, High energy storage performance of opposite double-heterojunction ferroelectricity-insulators. Adv. Funct. Mater. 28, 1706211 (2018). https://doi.org/10.1002/adfm.201706211

    Article  CAS  Google Scholar 

  101. P. Lv, C. Yang, J. Qian, H. Wu, S. Huang, X. Cheng, Z. Cheng, Flexible lead-free perovskite oxide multilayer film capacitor based on (Na0.8K0.2)0.5Bi0.5TiO3/Ba0.5Sr0.5(Ti0.97Mn0.03)O3 for high-performance dielectric energy storage. Adv. Energy Mater. 10, 1904229 (2020). https://doi.org/10.1002/aenm.201904229

    Article  CAS  Google Scholar 

  102. Q. Fan, M. Liu, C. Ma, L. Wang, S. Rena, L. Lua, X. Lou, C. Jia, Signifificantly enhanced energy storage density with superior thermal stability by optimizing Ba(Zr0.15Ti0.85)O3/Ba(Zr0.35Ti0.65)O3 multilayer structure. Nano Energy 51, 539–545 (2018). https://doi.org/10.1016/j.nanoen.2018.07.007

    Article  CAS  Google Scholar 

  103. B. Xie, L. Zhang, M.A. Marwat, Y. Zhu, W. Ma, P. Fan, H. Zhang, High energy storage performance for dielectric film capacitors by designing 1D SrTiO3@SiO2 nanofillers. J. Adv. Dielectr. 8(6), 1850039 (2019). https://doi.org/10.1142/s2010135x1850039x

    Article  Google Scholar 

  104. Q. Chi, X. Wang, C. Zhang, Q. Chen, M. Chen, T. Zhang, L. Gao, Y. Zhang, Y. Cui, X. Wang, Q. Lei, High energy storage density for poly(vinylidene fluoride) composites by introduced core-shell CaCu3Ti4O12@Al2O3 nanofibers. ACS Sustain. Chem. Eng. 6, 8641–8649 (2018). https://doi.org/10.1021/acssuschemeng.8b00941

    Article  CAS  Google Scholar 

  105. P. Hu, S. Gao, Y. Zhang, L. Zhang, C. Wang, Surface modified BaTiO3 nanoparticles by titanate coupling agent induce significantly enhanced breakdown strength and larger energy density in PVDF nanocomposite. Compos. Sci. Technol. 156, 109–116 (2018). https://doi.org/10.1016/j.compscitech.2017.12.025

    Article  CAS  Google Scholar 

  106. Z. Pan, J. Zhai, B. Shen, Multilayer hierarchical interfaces with high energy density in polymer nanocomposites composed of BaTiO3@TiO2@Al2O3 nanofibers. J. Mater. Chem. A. 5, 15217–15226 (2017). https://doi.org/10.1039/c7ta03846a

    Article  CAS  Google Scholar 

  107. H. Tang, Y. Lin, H.A. Sodano, Enhanced energy storage in nanocomposite capacitors through aligned PZT nanowires by uniaxial strain assembly. Adv. Energy Mater. 24, 469–476 (2012). https://doi.org/10.1002/aenm.201100543

    Article  CAS  Google Scholar 

  108. Q. Chi, Y. Zhou, Y. Feng, Y. Cui, Y. Zhang, T. Zhang, Q. Chen, Excellent energy storage performance of polyetherimide filled by oriented nanofibers with optimized diameters. Mater. Today Energy. 18, 100516 (2020). https://doi.org/10.1016/j.mtener.2020.100516

    Article  CAS  Google Scholar 

  109. Z.H. Shen, J.J. Wang, Y. Lin, C.W. Nan, L.Q. Chen, Y. Shen, High-throughput phase-field design of high-energy-density polymer nanocomposites. Adv. Mater. 30, 1704380 (2018). https://doi.org/10.1002/adma.201704380

    Article  CAS  Google Scholar 

  110. L. Sun, Z. Shi, H. Wang, K. Zhang, D. Dastan, K. Sun, R. Fan, Ultrahigh discharge efficiency and improved energy density in rationally designed bilayer polyetherimide–BaTiO3/P(VDF-HFP) composites. J. Mater. Chem. A. 8, 5750–5757 (2020). https://doi.org/10.1039/d0ta00903b

    Article  CAS  Google Scholar 

  111. R. Guo, H. Luo, M. Yan, X. Zhou, K. Zhou, D. Zhang, Significantly enhanced breakdown strength and energy density in sandwich-structured nanocomposites with low-level BaTiO3 nanowires. Nano Energy 79, 105412 (2021). https://doi.org/10.1016/j.nanoen.2020.105412

    Article  CAS  Google Scholar 

  112. J. Jiang, Z. Shen, J. Qian, Z. Dan, M. Guo, Y. Lin, C.W. Nan, L. Chen, Y. Shen, Ultrahigh discharge efficiency in multilayered polymer nanocomposites of high energy density. Energy. Storage. Mater. 18, 213–221 (2019). https://doi.org/10.1016/j.ensm.2018.09.013

    Article  Google Scholar 

Download references

Funding

This work was supported by Natural Science Foundation of China (51802078 and 52072111).

Author information

Authors and Affiliations

Authors

Contributions

CD: experiment and writing. HW: investigation of polymer and composites references. BW: investigation of ceramics and films references. YH: drawn the tables. YH: project administration and review. HZ: review and editing.

Corresponding author

Correspondence to Yabin Hou.

Ethics declarations

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors. In this manuscript, we did not collect any samples of human and animals. We summarized the research progress of energy storage dielectrics.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diao, C., Wang, H., Wang, B. et al. Overviews of dielectric energy storage materials and methods to improve energy storage density. J Mater Sci: Mater Electron 33, 21199–21222 (2022). https://doi.org/10.1007/s10854-022-08830-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08830-5

Navigation