Journal of Advanced Ceramics

, Volume 7, Issue 1, pp 72–78 | Cite as

Phase microstructure evaluation and microwave dielectric properties of (1–x)Mg0.95Ni0.05Ti0.98Zr0.02O3xCa0.6La0.8/3TiO3 ceramics

  • Abdul Manan
  • Zahid Ullah
  • Arbab Safeer Ahmad
  • Atta Ullah
  • Dil Faraz Khan
  • Arshad Hussain
  • Mati Ullah Khan
Open Access
Research Article


All the compositions in the (1−x)Mg0.95Ni0.05Ti0.98Zr0.02O3xCa0.6La0.8/3TiO3 (0 ≤ x ≤ 0.2) series were fabricated using solid state sintering route. Mg0.95Ni0.05Ti0.98Zr0.02O3 possessed excellent microwave dielectric properties with ε r ≈ 17.1, Q u f0 ≈ 195855 GHz, and τ f ≈ -46 ppm/°C. τ f was tuned through zero by mixing with Ca0.6La0.8/3TiO3. In the present study, τ f ≈ -2 ppm/°C with ε r ≈ 23.9 and high Q u f0 ≈ 115870 GHz was achieved for x = 0.15, i.e., for a mixture of 85% Mg0.95Ni0.05Ti0.98Zr0.02O3 and 15% Ca0.6La0.8/3TiO3.


phase microstructure density ilmenite structure 



Directorate of Science and Technology (DOST) under its developmental scheme “Promotion and Support of R&D in Public & Private Sector, Phase 1 in Khyber Pakhtunhwa (R&D)” Funded Project 2011–2012 Peshawar, Pakistan, is acknowledged for financial support in this project.


  1. [1]
    Sebastian MT. Dielectric Materials for Wireless Communication. Elsevier, 2010.Google Scholar
  2. [2]
    Huang X, Liu X, Liu F, et al. Microstructures and microwave dielectric properties of (Ba1−xSrx)4(Sm0.4-Nd0.6)28/3Ti18O54 solid solutions. J Adv Ceram 2017, 6: 50–58.CrossRefGoogle Scholar
  3. [3]
    Huang C-L, Liu S-S. Dielectric characteristics of the (1−x)Mg2TiO4xSrTiO3 ceramic system at microwave frequencies. J Alloys Compd 2009, 471: L9–L12.CrossRefGoogle Scholar
  4. [4]
    Tamura H, Konoike T, Sakabe Y, et al. Improved high-Q dielectric resonator with complex perovskite structure. J Am Ceram Soc 1984, 67: c59–c61.CrossRefGoogle Scholar
  5. [5]
    Nomura S, Kaneta K. Ba(Mn1/3Ta2/3)O3 ceramic with ultra-low loss at microwave frequency. Jpn J Appl Phys 1984, 23: 507–508.CrossRefGoogle Scholar
  6. [6]
    Onada M, Kuwata J, Kaneta K, et al. Ba(Zn1/3Nb2/3)-O3–Sr(Zn1/3Nb2/3)O3 solid solution ceramics with temperature-stable high dielectric constant and low microwave loss. Jpn J Appl Phys 1982, 21: 1707–1710.CrossRefGoogle Scholar
  7. [7]
    Kim B-K, Hamaguchi H, Kim I-T, et al. Probing of 1:2 ordering in Ba(Mg1/3Nb2/3)O3 and Ba(Zn1/3Nb2/3)O3 ceramics by XRD and Raman spectroscopy. J Am Ceram Soc 1995, 78: 3117–3120.CrossRefGoogle Scholar
  8. [8]
    Reaney IM, Qazi I, Lee WE. Order–disorder behavior in Ba(Zn1/3Ta2/3)O3. J Appl Phys 2000, 88: 6708–6714.CrossRefGoogle Scholar
  9. [9]
    Chai L, Akbas MA, Davies PK, et al. Cation ordering transformation in Ba(Mg1/3Ta2/3)O3–BaZrO3 perovskite solid solutions. Mater Res Bull 1997, 32: 1261–1269.CrossRefGoogle Scholar
  10. [10]
    Kim ES, Jeon CJ. Microwave dielectric properties of ATiO3 (A = Ni, Mg, Co, Mn) ceramics. J Eur Ceram Soc 2010, 30: 341–346.CrossRefGoogle Scholar
  11. [11]
    Wakino K. Recent development of dielectric resonator materials and filters in Japan. Ferroelectrics 1989, 91: 69–86.CrossRefGoogle Scholar
  12. [12]
    Ferreira, VM, Azough F, Freer R, et al. The effect of Cr and La on MgTiO3 and MgTiO3–CaTiO3 microwave dielectric ceramics. J Mater Res 1997, 12: 3293–3299.CrossRefGoogle Scholar
  13. [13]
    Tseng C-F, Hsu C-H. A new compound with ultra low dielectric loss at microwave frequencies. J Am Ceram Soc 2009, 92: 1149–1152.CrossRefGoogle Scholar
  14. [14]
    Yu H, Cheng J, Zhang W, et al. Microwave dielectric properties of Mg(Zr0.05Ti0.95)O3–SrTiO3 ceramics. J Mater Sci: Mater El 2012, 23: 572–575.Google Scholar
  15. [15]
    Huang C-L, Weng M-H. Improved high Q value of MgTiO3–CaTiO3 microwave dielectric ceramics at low sintering temperature. Mater Res Bull 2001, 36: 2741–2750.CrossRefGoogle Scholar
  16. [16]
    Cho WW, Kakimoto K, Ohsato H. Microwave dielectric properties and low-temperature sintering of MgTiO3–SrTiO3 ceramics with B2O3 or CuO. Mat Sci Eng B 2005, 121: 48–53.CrossRefGoogle Scholar
  17. [17]
    Huang C-L, Liu S-S. Characterization of extremely low loss dielectrics (Mg0.95Zn0.05)TiO3 at microwave frequency. Jpn J Appl Phys 2007, 46: 283–285.CrossRefGoogle Scholar
  18. [18]
    Sohn J-H, Inaguma Y, Yoon S-O, et al. Microwave dielectric characteristics of ilmenite-type titanates with high Q values. Jpn J Appl Phys 1994, 33: 5466–5470.CrossRefGoogle Scholar
  19. [19]
    Kumar TS, Gogoi P, Perumal A, et al. Effect of cobalt doping on the structural, microstructure and microwave dielectric properties of MgTiO3 ceramics prepared by semi alkoxide precursor method. J Am Ceram Soc 2014, 97: 1054–1059.CrossRefGoogle Scholar
  20. [20]
    Shen C-H, Huang C-L, Shih C-F, et al. Dielectric properties of Mg0.95Ni0.05TiO3 ceramic modified by Nd0.5Na0.5TiO3 at microwave frequencies. Curr Appl Phys 2009, 9: 1042–1045.CrossRefGoogle Scholar
  21. [21]
    Manan A, Khan DN, Ullah A, et al. Phase, microstructure and microwave dielectric properties of Mg0.95Ni0.05Ti0.98-Zr0.02O3 ceramics. Materials Science-Poland 2015, 33: 95–99.Google Scholar
  22. [22]
    Manan A, Khan DN, Ullah A. Synthesis and microwave dielectric properties of (1-x)Mg0.95Ni0.05Ti0.98Zr0.02O3xSrTiO3 ceramics. J Mater Sci: Mater El 2015, 26: 2066–2069.Google Scholar
  23. [23]
    Pashkin A, Kamba S, Berta M, et al. High frequency dielectric properties of CaTiO3-based microwave ceramics. J Phys D: Appl Phys 2005, 38: 741–748.CrossRefGoogle Scholar
  24. [24]
    Li L, Ye J, Zhang S, et al. Influence of CaTiO3 modification on microstructures and microwave dielectric properties of Mg0.97Zn0.03TiO3 ceramics doped with 0.5mol% Zn-excess. J Alloys Compd 2015, 648: 184–189.CrossRefGoogle Scholar
  25. [25]
    Zhang J, Yue Z, Zhou Y, et al. Microwave dielectric properties and thermally stimulated depolarization currents of (1-x)MgTiO3–xCa0.8Sr0.2TiO3 ceramics. J Am Ceram Soc 2015, 98: 1548–1554.CrossRefGoogle Scholar
  26. [26]
    Li J, Qiu T. Microwave sintering of Ca0.6La0.2667TiO3 microwave dielectric ceramics. Int J Miner Metall Mater 2012, 19: 2045–2051.Google Scholar
  27. [27]
    Huang C-L, Liu S-S. High-Q microwave dielectric in the (1-x)MgTiO3–xCa0.6La0.8/3TiO3 ceramic system with a near-zero temperature coefficient of the resonant frequency. Mater Lett 2008, 62: 3205–3208.CrossRefGoogle Scholar
  28. [28]
    Wang J-J, Huang C-L, Li P-H. Microwave dielectric properties of (1-x)(Mg0.95Zn0.05)TiO3xCa0.6La0.8/3TiO3 ceramic system. Jpn J Appl Phys 2006, 45: 6352.CrossRefGoogle Scholar
  29. [29]
    Li J, Qiu T, Fan C, et al. Synthesis and microwave dielectric properties of Ca0.6La0.2667TiO3 nanocrystalline powders by sol–gel method. J Sol-Gel Sci Technol 2011, 59: 525–531.CrossRefGoogle Scholar
  30. [30]
    Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst 1976, A32: 751–767.CrossRefGoogle Scholar
  31. [31]
    Wechsler BA, Von Dreele RB. Structure refinements of Mg2TiO4, MgTiO3 and MgTi205 by time-of-flight neutron powder diffraction. Acta Cryst 1989, B45: 542–549.CrossRefGoogle Scholar
  32. [32]
    Huang C-L, Shen C-H. Phase evolution and dielectric properties of (Mg0.95M0.05 2+)Ti2O5 (M2+ = Co, Ni, and Zn) ceramics at microwave frequencies. J Am Ceram Soc 2009, 92: 384–388.CrossRefGoogle Scholar
  33. [33]
    Rajput SS, Keshri S, Gupta VR. Microwave dielectric properties of (1−x)Mg0.95Zn0.05TiO3–(x)Ca0.6La0.8/3TiO3 ceramic composites. J Alloys Compd 2013, 552: 219–226.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Open Access The articles published in this journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Abdul Manan
    • 1
  • Zahid Ullah
    • 1
  • Arbab Safeer Ahmad
    • 2
  • Atta Ullah
    • 3
  • Dil Faraz Khan
    • 1
  • Arshad Hussain
    • 4
  • Mati Ullah Khan
    • 5
  1. 1.Laboratory for Research in Advanced Materials, Department of PhysicsUniversity of Science and Technology BannuKhyber PakhtunkhwaPakistan
  2. 2.Department of PhysicsIslamia College PeshawarKhyber PakhtunkhwaPakistan
  3. 3.State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and EngineeringWuhan University of TechnologyWuhanChina
  4. 4.Department of ChemistryUniversity of Science and Technology BannuKhyber PakhtunkhwaPakistan
  5. 5.Department of PhysicsKohat University of Science and Technology KohatKhyber PakhtunkhwaPakistan

Personalised recommendations