Skip to main content

Phase microstructure evaluation and microwave dielectric properties of (1–x)Mg0.95Ni0.05Ti0.98Zr0.02O3xCa0.6La0.8/3TiO3 ceramics


All the compositions in the (1−x)Mg0.95Ni0.05Ti0.98Zr0.02O3xCa0.6La0.8/3TiO3 (0 ≤ x ≤ 0.2) series were fabricated using solid state sintering route. Mg0.95Ni0.05Ti0.98Zr0.02O3 possessed excellent microwave dielectric properties with ε r ≈ 17.1, Q u f0 ≈ 195855 GHz, and τ f ≈ -46 ppm/°C. τ f was tuned through zero by mixing with Ca0.6La0.8/3TiO3. In the present study, τ f ≈ -2 ppm/°C with ε r ≈ 23.9 and high Q u f0 ≈ 115870 GHz was achieved for x = 0.15, i.e., for a mixture of 85% Mg0.95Ni0.05Ti0.98Zr0.02O3 and 15% Ca0.6La0.8/3TiO3.


  1. [1]

    Sebastian MT. Dielectric Materials for Wireless Communication. Elsevier, 2010.

    Google Scholar 

  2. [2]

    Huang X, Liu X, Liu F, et al. Microstructures and microwave dielectric properties of (Ba1−xSrx)4(Sm0.4-Nd0.6)28/3Ti18O54 solid solutions. J Adv Ceram 2017, 6: 50–58.

    Article  Google Scholar 

  3. [3]

    Huang C-L, Liu S-S. Dielectric characteristics of the (1−x)Mg2TiO4xSrTiO3 ceramic system at microwave frequencies. J Alloys Compd 2009, 471: L9–L12.

    Article  Google Scholar 

  4. [4]

    Tamura H, Konoike T, Sakabe Y, et al. Improved high-Q dielectric resonator with complex perovskite structure. J Am Ceram Soc 1984, 67: c59–c61.

    Article  Google Scholar 

  5. [5]

    Nomura S, Kaneta K. Ba(Mn1/3Ta2/3)O3 ceramic with ultra-low loss at microwave frequency. Jpn J Appl Phys 1984, 23: 507–508.

    Article  Google Scholar 

  6. [6]

    Onada M, Kuwata J, Kaneta K, et al. Ba(Zn1/3Nb2/3)-O3–Sr(Zn1/3Nb2/3)O3 solid solution ceramics with temperature-stable high dielectric constant and low microwave loss. Jpn J Appl Phys 1982, 21: 1707–1710.

    Article  Google Scholar 

  7. [7]

    Kim B-K, Hamaguchi H, Kim I-T, et al. Probing of 1:2 ordering in Ba(Mg1/3Nb2/3)O3 and Ba(Zn1/3Nb2/3)O3 ceramics by XRD and Raman spectroscopy. J Am Ceram Soc 1995, 78: 3117–3120.

    Article  Google Scholar 

  8. [8]

    Reaney IM, Qazi I, Lee WE. Order–disorder behavior in Ba(Zn1/3Ta2/3)O3. J Appl Phys 2000, 88: 6708–6714.

    Article  Google Scholar 

  9. [9]

    Chai L, Akbas MA, Davies PK, et al. Cation ordering transformation in Ba(Mg1/3Ta2/3)O3–BaZrO3 perovskite solid solutions. Mater Res Bull 1997, 32: 1261–1269.

    Article  Google Scholar 

  10. [10]

    Kim ES, Jeon CJ. Microwave dielectric properties of ATiO3 (A = Ni, Mg, Co, Mn) ceramics. J Eur Ceram Soc 2010, 30: 341–346.

    Article  Google Scholar 

  11. [11]

    Wakino K. Recent development of dielectric resonator materials and filters in Japan. Ferroelectrics 1989, 91: 69–86.

    Article  Google Scholar 

  12. [12]

    Ferreira, VM, Azough F, Freer R, et al. The effect of Cr and La on MgTiO3 and MgTiO3–CaTiO3 microwave dielectric ceramics. J Mater Res 1997, 12: 3293–3299.

    Article  Google Scholar 

  13. [13]

    Tseng C-F, Hsu C-H. A new compound with ultra low dielectric loss at microwave frequencies. J Am Ceram Soc 2009, 92: 1149–1152.

    Article  Google Scholar 

  14. [14]

    Yu H, Cheng J, Zhang W, et al. Microwave dielectric properties of Mg(Zr0.05Ti0.95)O3–SrTiO3 ceramics. J Mater Sci: Mater El 2012, 23: 572–575.

    Google Scholar 

  15. [15]

    Huang C-L, Weng M-H. Improved high Q value of MgTiO3–CaTiO3 microwave dielectric ceramics at low sintering temperature. Mater Res Bull 2001, 36: 2741–2750.

    Article  Google Scholar 

  16. [16]

    Cho WW, Kakimoto K, Ohsato H. Microwave dielectric properties and low-temperature sintering of MgTiO3–SrTiO3 ceramics with B2O3 or CuO. Mat Sci Eng B 2005, 121: 48–53.

    Article  Google Scholar 

  17. [17]

    Huang C-L, Liu S-S. Characterization of extremely low loss dielectrics (Mg0.95Zn0.05)TiO3 at microwave frequency. Jpn J Appl Phys 2007, 46: 283–285.

    Article  Google Scholar 

  18. [18]

    Sohn J-H, Inaguma Y, Yoon S-O, et al. Microwave dielectric characteristics of ilmenite-type titanates with high Q values. Jpn J Appl Phys 1994, 33: 5466–5470.

    Article  Google Scholar 

  19. [19]

    Kumar TS, Gogoi P, Perumal A, et al. Effect of cobalt doping on the structural, microstructure and microwave dielectric properties of MgTiO3 ceramics prepared by semi alkoxide precursor method. J Am Ceram Soc 2014, 97: 1054–1059.

    Article  Google Scholar 

  20. [20]

    Shen C-H, Huang C-L, Shih C-F, et al. Dielectric properties of Mg0.95Ni0.05TiO3 ceramic modified by Nd0.5Na0.5TiO3 at microwave frequencies. Curr Appl Phys 2009, 9: 1042–1045.

    Article  Google Scholar 

  21. [21]

    Manan A, Khan DN, Ullah A, et al. Phase, microstructure and microwave dielectric properties of Mg0.95Ni0.05Ti0.98-Zr0.02O3 ceramics. Materials Science-Poland 2015, 33: 95–99.

    Google Scholar 

  22. [22]

    Manan A, Khan DN, Ullah A. Synthesis and microwave dielectric properties of (1-x)Mg0.95Ni0.05Ti0.98Zr0.02O3xSrTiO3 ceramics. J Mater Sci: Mater El 2015, 26: 2066–2069.

    Google Scholar 

  23. [23]

    Pashkin A, Kamba S, Berta M, et al. High frequency dielectric properties of CaTiO3-based microwave ceramics. J Phys D: Appl Phys 2005, 38: 741–748.

    Article  Google Scholar 

  24. [24]

    Li L, Ye J, Zhang S, et al. Influence of CaTiO3 modification on microstructures and microwave dielectric properties of Mg0.97Zn0.03TiO3 ceramics doped with 0.5mol% Zn-excess. J Alloys Compd 2015, 648: 184–189.

    Article  Google Scholar 

  25. [25]

    Zhang J, Yue Z, Zhou Y, et al. Microwave dielectric properties and thermally stimulated depolarization currents of (1-x)MgTiO3–xCa0.8Sr0.2TiO3 ceramics. J Am Ceram Soc 2015, 98: 1548–1554.

    Article  Google Scholar 

  26. [26]

    Li J, Qiu T. Microwave sintering of Ca0.6La0.2667TiO3 microwave dielectric ceramics. Int J Miner Metall Mater 2012, 19: 2045–2051.

    Google Scholar 

  27. [27]

    Huang C-L, Liu S-S. High-Q microwave dielectric in the (1-x)MgTiO3–xCa0.6La0.8/3TiO3 ceramic system with a near-zero temperature coefficient of the resonant frequency. Mater Lett 2008, 62: 3205–3208.

    Article  Google Scholar 

  28. [28]

    Wang J-J, Huang C-L, Li P-H. Microwave dielectric properties of (1-x)(Mg0.95Zn0.05)TiO3xCa0.6La0.8/3TiO3 ceramic system. Jpn J Appl Phys 2006, 45: 6352.

    Article  Google Scholar 

  29. [29]

    Li J, Qiu T, Fan C, et al. Synthesis and microwave dielectric properties of Ca0.6La0.2667TiO3 nanocrystalline powders by sol–gel method. J Sol-Gel Sci Technol 2011, 59: 525–531.

    Article  Google Scholar 

  30. [30]

    Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst 1976, A32: 751–767.

    Article  Google Scholar 

  31. [31]

    Wechsler BA, Von Dreele RB. Structure refinements of Mg2TiO4, MgTiO3 and MgTi205 by time-of-flight neutron powder diffraction. Acta Cryst 1989, B45: 542–549.

    Article  Google Scholar 

  32. [32]

    Huang C-L, Shen C-H. Phase evolution and dielectric properties of (Mg0.95M0.05 2+)Ti2O5 (M2+ = Co, Ni, and Zn) ceramics at microwave frequencies. J Am Ceram Soc 2009, 92: 384–388.

    Article  Google Scholar 

  33. [33]

    Rajput SS, Keshri S, Gupta VR. Microwave dielectric properties of (1−x)Mg0.95Zn0.05TiO3–(x)Ca0.6La0.8/3TiO3 ceramic composites. J Alloys Compd 2013, 552: 219–226.

    Article  Google Scholar 

Download references


Directorate of Science and Technology (DOST) under its developmental scheme “Promotion and Support of R&D in Public & Private Sector, Phase 1 in Khyber Pakhtunhwa (R&D)” Funded Project 2011–2012 Peshawar, Pakistan, is acknowledged for financial support in this project.

Author information



Corresponding author

Correspondence to Abdul Manan.

Additional information

This article is published with open access at

Rights and permissions

Open Access The articles published in this journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Manan, A., Ullah, Z., Ahmad, A.S. et al. Phase microstructure evaluation and microwave dielectric properties of (1–x)Mg0.95Ni0.05Ti0.98Zr0.02O3xCa0.6La0.8/3TiO3 ceramics. J Adv Ceram 7, 72–78 (2018).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • phase
  • microstructure
  • density
  • ilmenite structure