Skip to main content
Log in

Synthesis and microwave dielectric properties of Ca0.6La0.267TiO3 nanocrystalline powders by sol–gel method

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Ca0.6La0.267TiO3 nanocrystalline powders were successfully synthesized by the sol–gel method using PEG1000 as a dispersant in this study. The sinterability of the powders and the microwave dielectric properties of the ceramics were also investigated. The XRD diffraction result showed that pure Ca0.6La0.267TiO3 powder with orthorhombic perovskite structure could be synthesized at 600 °C for 2 h without any detectable intermediate phase. The average grain size of the as-synthesized powder was as low as 35 nm. Compared with Ca0.6La0.267TiO3 ceramics fabricated by conventional solid-state process, the bulk materials prepared by sintering as-prepared nanopowders performed better in densification and microwave dielectric properties. The ceramics sintered at 1,300 °C exhibited a higher relative density of 98.3% combined with a dielectric constant (ε r ) of 120.3, a quality factor (Q × f) of 23,550 GHz and a temperature coefficient of resonant frequency (τ f ) of +220.7 ppm/°C, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kolar D, Stadler Z, Gaberscek S, Suvorov D (1978) Ber Dtsch Keram Ges 55:346–348

    CAS  Google Scholar 

  2. Takahashi H, Baba Y, Ezaki K, Okamoto Y, Shibata K, Kuroki K, Nakano S (1991) Jpn J Appl Phys 30:2339–2342

    Article  CAS  Google Scholar 

  3. Yoshida M, Hara N, Takada T, Seki A (1997) Jpn J Appl Phys 36:6818–6823

    Article  CAS  Google Scholar 

  4. Kell RC, Greenham AC, Olds GCE (1973) J Am Ceram Soc 56:352–354

    Article  CAS  Google Scholar 

  5. Jancar B, Suvorov D, Valant M, Drazic G (2003) J Eur Ceram Soc 23:1391–1400

    Article  CAS  Google Scholar 

  6. Ezaki K, Baba Y, Takahashi H, Shibata K, Nakano S (1993) Jpn J Appl Phys 32:4319–4322

    Article  CAS  Google Scholar 

  7. Kim ES, Yoon KH (2003) J Eur Ceram Soc 23:2397–2401

    Article  CAS  Google Scholar 

  8. Liu T, Zhao XZ (2006) J Am Ceram Soc 89:1153–1155

    Article  CAS  Google Scholar 

  9. Kim IS, Jung WH, Inaguma Y, Nakamura T, Itoh M (1995) Mater Res Bull 30:307–316

    Article  CAS  Google Scholar 

  10. Huang CL, Tsai JT, Chen YB (2001) Mater Res Bull 36:547–556

    Article  CAS  Google Scholar 

  11. Kim WS, Kim ES, Yoon KH (1999) J Am Ceram Soc 82:2111–2115

    Article  CAS  Google Scholar 

  12. Wang H, Chen W, Liu T (2004) J Ceram 25:47–51 (in Chinese)

    CAS  Google Scholar 

  13. Huang CL, Liu SS (2008) Mater Lett 62:3205–3208

    Article  CAS  Google Scholar 

  14. Huang CL, Pan CL, Hsu JF, Wang JJ (2008) J Alloys Compd 461:521–526

    Article  CAS  Google Scholar 

  15. Chen YB (2009) J Alloys Compd 480:820–823

    Article  CAS  Google Scholar 

  16. Han KR, Jang JW, Cho SY, Jeong DY, Hong KS (1998) J Am Ceram Soc 811:209–1214

    Google Scholar 

  17. Li W, Zhuo MW, Shi JL (2004) Mater Lett 58:365–368

    Article  CAS  Google Scholar 

  18. Xu YB, Huang GH, He YY (2005) Ceram Int 31:21–25

    Article  Google Scholar 

  19. Vidyasagar K, Gopalkrishnan J, Rao CNR (1985) J Solid State Chem 58:29–37

    Article  CAS  Google Scholar 

  20. Padmini P, Kutty TR (1994) J Mater Chem 4:1875–1882

    Article  CAS  Google Scholar 

  21. Kumar MD, Srinivasan TM, Ramasamy P, Subramanian C (1995) Mater Lett 25:171–174

    Article  Google Scholar 

  22. Douy A, Capron M (2003) J Eur Ceram Soc 23:2075–2081

    Article  CAS  Google Scholar 

  23. Stöber W, Fink A, Bohn E (1968) J Colloid Interface Sci 26:62–69

    Article  Google Scholar 

  24. Livage J (1999) Bull Mater Sci 22:201–205

    Article  CAS  Google Scholar 

  25. Roy R (1987) Science 238:664–1669

    Article  Google Scholar 

  26. Behera SK, Sahu PK, Pratihar SK, Bhattacharyya S (2004) Mater Lett 58:3710–3715

    Article  CAS  Google Scholar 

  27. Meiszterics A, Sinkó K (2008) Colloids Surf A 319:143–148

    Article  CAS  Google Scholar 

  28. Yu PF, Wang X, Cui B (2007) Scripta Mater 57:623–626

    Article  CAS  Google Scholar 

  29. Zhang QL, Wu F, Yang H, Zou D (2008) J Mater Chem 18:5339–5343

    Article  CAS  Google Scholar 

  30. Hakki B, Coleman PD (1960) IRE Trans Microw Theory Tech MTT-8:402–410

    Article  Google Scholar 

  31. Courtney WE (1970) IRE Trans Microw Theory Tech MTT-18:476–485

    Article  Google Scholar 

  32. Wang HP, Zhang QL, Yang H, Sun HP (2007) Acta Phys Chim Sin 23:609–613 (in Chinese)

    CAS  Google Scholar 

  33. Warren BE (1969) X-ray diffraction. Addison-Wesley, Reading

    Google Scholar 

  34. Arlt G, Hennings DFK, With GD (1985) J Appl Phys 58:1619–1625

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiamao Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Qiu, T., Fan, C. et al. Synthesis and microwave dielectric properties of Ca0.6La0.267TiO3 nanocrystalline powders by sol–gel method. J Sol-Gel Sci Technol 59, 525–531 (2011). https://doi.org/10.1007/s10971-011-2522-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-011-2522-8

Keywords

Navigation