Skip to main content

Chemical diffusion and oxygen exchange of LaNi0.4Fe0.6O3−δ ceramics

Abstract

Oxygen surface exchange and oxygen chemical diffusion coefficients of LaNi0.4Fe0.6O3−δ ceramics are determined via conductivity relaxation method after stepwise change of temperature in the range of 700–950 °C in air and Ar/O2 gas flow at oxygen partial pressures (\(p_{O_2}\)) of 4 Pa, 18 Pa, 37 Pa, 47 Pa and 59 Pa. The highest conductivity (about 160 S·cm−1) is found at 950 °C in air. No oxygen exchange (δ = 0) below 700 °C is observed in the investigated \(p_{O_2}\) range. The oxygen exchange coefficients determined in reduction mode are higher than those determined in oxidation mode. This is explained by clusterization of oxygen vacancies on the surface of the sample investigated in oxidation mode. The opposite tendency is found for chemical diffusion coefficients. Unlike surface, the oxygen vacancies of the volume region are probably not clustered and have predetermined the higher oxygen diffusion mobility of the sample treated in oxidation mode.

References

  1. [1]

    Atkinson A, Barnett S, Gorte RJ, et al. Advanced anodes for high-temperature fuel cells. Nat Mater 2004, 3: 17–27.

    Article  Google Scholar 

  2. [2]

    Chiba R, Yoshimura F, Sakurai Y. An investigation of LaNi1−xFexO3 as a cathode material for solid oxide fuel cells. Solid State Ionics 1999, 124: 281–288.

    Article  Google Scholar 

  3. [3]

    Zhen YD, Tok AIY, Jiang SP, et al. La(Ni,Fe)O3 as a cathode material with high tolerance to chromium poisoning for solid oxide fuel cells. J Power Sources 2007, 170: 61–66.

    Article  Google Scholar 

  4. [4]

    Orui H, Watanabe K, Chiba R, et al. Application of LaNi(Fe)O3 as SOFC cathode. J Electrochem Soc 2004, 151: A1412–A1417

    Article  Google Scholar 

  5. [5]

    Millar L, Taherparvar H, Filkin N, et al. Interaction of (La1−xSrx)1−yMnO3-Zr1−zYzO2−d cathodes and LaNi0.6Fe0.4O3 current collecting layers for solid oxide fuel cell application. Solid State Ionics 2008, 179: 732–739.

    Article  Google Scholar 

  6. [6]

    Kostogloudis GCh, Tsiniarakis G, Ftikos Ch. Chemical reactivity of perovskite oxide SOFC cathodes and yttria stabilized zirconia. Solid State Ionics 2000, 135: 529–535.

    Article  Google Scholar 

  7. [7]

    Chiba R, Yoshimura F, Sakurai Y. Extended abstracts of the 23rd Symposium on Solid State Ionics in Japan. 1997, 2A06: 91.

    Google Scholar 

  8. [8]

    Huijsman JPP, van Berkel FPF, Christie GM. Intermediate temperature SOFC-A promise for the 21st century. J Power Sources 1998, 71: 107–110.

    Article  Google Scholar 

  9. [9]

    Chen J, Wang S, Wen T, et al. Optimization of LaNi0.6Fe0.4O3−δ cathode for intermediate temperature solid oxide fuel cells. J Alloys Compd 2009, 487: 377–381.

    Article  Google Scholar 

  10. [10]

    Wang S, Kato T, Nagata S, et al. Performance of a La0.6Sr0.4Co0.8Fe0.2O3-Ce0.8Gd0.2O1.9-Ag cathode for ceria electrolyte SOFCs. Solid State Ionics 2002, 146: 203–210.

    Article  Google Scholar 

  11. [11]

    Wang S, van der Heide PAW, Chavez C, et al. An electrical conductivity relaxation study of La0.6Sr0.4Fe0.8Co0.2O3−δ. Solid State Ionics 2003, 156: 201–208.

    Article  Google Scholar 

  12. [12]

    Yasuda I, Hishinuma M. Electrical conductivity and chemical diffusion coefficient of Sr-doped lanthanum chromites. Solid State Ionics 1995, 80: 141–150.

    Article  Google Scholar 

  13. [13]

    Raj ES, Kilner JA, Irvine JTS. Oxygen diffusion and surface exchange studies on (La0.75Sr0.25)0.95Cr0.5Mn0.5O3−δ. Solid State Ionics 2006, 177: 1747–1752.

    Article  Google Scholar 

  14. [14]

    Adler SB. Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chem Rev 2004, 104: 4791–4844.

    Article  Google Scholar 

  15. [15]

    Preis W, Bucher E, Sitte W. Oxygen exchange measurements on perovskites as cathode materials for solid oxide fuel cells. J Power Sources 2002, 106: 116–121

    Article  Google Scholar 

  16. [16]

    Knapp M, Baehtz C, Ehrenberg H, et al. The synchrotron powder diffractometer at beamline B2 at HASYLAB/DESY: Status and capabilities. J Synchrotron Rad 2004, 11: 328–334.

    Article  Google Scholar 

  17. [17]

    Vashook V, Vasylechko L, Zosel J, et al. Crystal structure and electrical conductivity of lanthanum-calcium chromites-titanates La1−xCaxCr1−yTiyO3−δ (x = 0–1, y = 0–1). J Solid State Chem 2004, 177: 3784–3794.

    Article  Google Scholar 

  18. [18]

    Teske K, Ullmann H, Trofimenko N. Thermal analysis of transition metal and rare earth oxide system-gas interactions by a solid electrolyte-based coulometric technique. J Therm Anal 1997, 49: 1211–1220.

    Article  Google Scholar 

  19. [19]

    Carter RE, Roth WL. Ionic conductivity and vacancy ordering in calcia stabilized zirconia. Report series 63-RL-3479M. General Electric Research Laboratory, Schenectady, NY, 1963.

    Google Scholar 

  20. [20]

    Yasuda I, Hishinuma M. Electrical conductivity and chemical diffusion coefficient of strontium-doped lanthanum manganites. J Solid State Chem 1996, 123: 382–390.

    Article  Google Scholar 

  21. [21]

    Vashook V, Al Daroukh M, Ullmann H. Oxygen ion diffusion in perovskite-type oxides determined by permeation and by relaxation measurements. Ionics 2001, 7: 59–66.

    Article  Google Scholar 

  22. [22]

    Petrov AN, Kononchuk OF, Andreev AV, et al. Crystal structure, electrical and magnetic properties of La1−xSrxCoO3−y. Solid State Ionics 1995, 80: 189–199.

    Article  Google Scholar 

  23. [23]

    Stevenson JW, Armstrong TR, Carneim RD, et al. Electrochemical properties of mixed conducting perovskites La1−xMxCo1−yFeyO3−δ (M = Sr, Ba, Ca). J Electrochem Soc 1996, 143: 2722–2729.

    Article  Google Scholar 

  24. [24]

    Kostogloudis GCh, Ftikos Ch. Structural, thermal and electrical properties of Pr0.5Sr0.5Co1−yNiyO3−δ perovskite-type oxides. Solid State Ionics 1998, 109: 43–53.

    Article  Google Scholar 

  25. [25]

    Yoo H-I, Lee C-E. Conductivity relaxation patterns of mixed conductor oxides under a chemical potential gradient. Solid State Ionics 2009, 180: 326–337.

    Article  Google Scholar 

  26. [26]

    Van Roosmalen JAM, Cordfunke EHP. A new defect model to describe the oxygen deficiency in perovskite-type oxides. J Solid State Chem 1991, 93: 212–219.

    Article  Google Scholar 

  27. [27]

    Cox-Galhotra RA, McIntosh S. Unreliability of simultaneously determining kchem and Dchem via conductivity relaxation for surface-modified. Solid State Ionics 2010, 181: 1429–1436.

    Article  Google Scholar 

  28. [28]

    Rebello J, Vashook V, Trots D, et al. Thermal stability, oxygen non-stoichiometry, electrical conductivity and diffusion characteristics of PrNi0.4Fe0.6O3−δ, a potential cathode material for IT-SOFCs. J Power Sources 2011, 196: 3705–3712.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jianying Chen.

Additional information

This article is published with open access at Springerlink.com

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Vashook, V., Trots, D.M. et al. Chemical diffusion and oxygen exchange of LaNi0.4Fe0.6O3−δ ceramics. J Adv Ceram 3, 240–249 (2014). https://doi.org/10.1007/s40145-014-0116-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40145-014-0116-y

Keywords

  • oxygen non-stoichiometry
  • conductivity
  • chemical diffusion coefficient
  • surface exchange coefficient