Skip to main content
Log in

Ionic transport in (La,Sr)CoO3-δ ceramics

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Increasing Sr2+ concentration and the creation of A-site deficiency in La1-x-ySrxCoO3-δ (x = 0.3–0.7, y = 0–0.05) increase oxygen ionic conductivity, oxygen permeability of the dense ceramic membranes, and surface exchange limitations, in correlation with the oxygen nonstoichiometry variations. Regression analysis of the experimental data on oxygen deficiency and steady-state oxygen permeation fluxes demonstrated an important role of the defect association processes, namely, clustering of the oxygen vacancies and Co2+. The X-ray diffraction and Mössbauer spectroscopy studies of model 57Fe-doped composition, La0.3Sr0.7Co0.9957Fe0.01O3-δ, confirmed that the ordering processes occur on reduction. In the case of La0.5Sr05CoO3-δ when oxygen transport limitations by bulk ionic conduction and surface exchange are comparable, the exchange limitations are located essentially at the membrane permeate-side surface. Reducing p(O2) and temperature leads to greater surface limitations. The chemically induced lattice expansion increases with increasing both x and y in La1-x-ySrxCoO3-δ, as well as with increasing temperature. The apparent thermal expansion coefficients calculated from the dilatometric data in air vary from (16–17) × 10−6 K−1 at 300–950 K up to (28–31) × 10−6 K−1 at 750–1370 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Elcogen solid oxide cells and stacks. https://elcogen.com/products/solid-oxide-fuel-cells. Accessed 23 June 2021

  2. Mougin J, Di Iorio S, Chatroux A, Donnier-Marechal T, Palcoux G, Petitjean M, Roux G (2017) ECS Trans 78:3065–3075

    Article  CAS  Google Scholar 

  3. Sun X, Sudireddy BR, Tong X, Chen M, Brodersen K, Hauch A (2019) ECS Transt 91:2631–2639

    Article  CAS  Google Scholar 

  4. Mizusaki J (1992) Solid State Ion 52:79–91

    Article  CAS  Google Scholar 

  5. Teraoka Y, Nobunaga T, Okamoto K, Miura N, Yamazoe N (1991) Solid State Ion 48:207–212

    Article  CAS  Google Scholar 

  6. van Doorn RHE, Fullarton IC, de Souza RA, Kilner JA, Bouwmeester HJM, Burggraaf AJ (1997) Solid State Ion 96:1–7

    Article  Google Scholar 

  7. Lankhorst MHR, Bouwmeester HJM, Verweij H (1997) J Solid State Chem 133:555–567

    Article  CAS  Google Scholar 

  8. Søgaard M, Hendriksen PV, Mogensen M, Poulsen FW, Skou E (2006) Solid State Ion 177:3285–3296

    Article  Google Scholar 

  9. Kharton VV, Tsipis EV, Yaremchenko AA, Marozau IP, Viskup AP, Frade JR, Naumovich EN (2006) Mater Sci Eng B 134:80–88

    Article  CAS  Google Scholar 

  10. Tsipis EV, Kharton VV (2008) J Solid State Electrochem 12:1367–1391

    Article  CAS  Google Scholar 

  11. Bucher E, Sitte W, Romb I, Papst I, Grogger W, Hofer F (2002) Solid State Ion 152–153:417–421

    Article  Google Scholar 

  12. Patrakeev MV, Leonidov IA, Mitberg EB, Lakhtin AA, Vasiliev VG, Kozhevnikov VL, Poeppelmeier KR (1999) Ionics 5:444–448

    Article  CAS  Google Scholar 

  13. Chen CH, Bouwmeester HJM, van Doorn RHE, Kruidhof H, Burggraaf AJ (1997) Solid State Ion 98:7–13

    Article  CAS  Google Scholar 

  14. Tsipis EV, Naumovich EN, Patrakeev MV, Yaremchenko AA, Marozau IP, Kovalevsky AV, Waerenborgh JC, Kharton VV (2011) Solid State Ion 192:42–48

    Article  CAS  Google Scholar 

  15. Kovalevsky AV, Kharton VV, Tikhonovich VN, Naumovich EN, Tonoyan AA, Reut OP, Boginsky LS (1998) Mater Sci Eng B 52:105–116

    Article  Google Scholar 

  16. Kharton VV, Kovalevsky AV, Yaremchenko AA, Figueiredo FM, Naumovich EN, Shaulo AL, Marques FMB (2002) J Membrane Sci 195:277–287

    Article  CAS  Google Scholar 

  17. Kozhevnikov VL, Leonidov IA, Mitberg EB, Patrakeev MV, Petrov AN, Poeppelmeier KR (2003) J Solid State Chem 172:296–304

    Article  CAS  Google Scholar 

  18. Parkash O, Ganguly P, Rao GR, Rao CNR, Rajoria DS, Bhide VG (1974) Mater Res Bull 9:1173–1176

    Article  CAS  Google Scholar 

  19. Russo N, Furfori S, Fino D, Saracco G, Specchia V (2008) Appl Catal B: Environ 83(1–2):85–95

    Article  CAS  Google Scholar 

  20. Lee HN, Jeen H, Choi WS, Biegalski M, Folkman ChM, Tung I-Ch, Fong DD, Freeland JW, Shin D, Ohta H, Chisholm MF (2017) US patent 9550166 B2

  21. Petrov AN, Cherepanov VA, Zuev A (2006) J Solid State Electrochem 10:517–537

  22. Kharton VV, Kovalevsky AV, Patrakeev MV, Tsipis EV, Viskup AP, Kolotygin VA, Yaremchenko AA, Shaula AL, Kiselev EA, Waerenborgh JC (2008) Chem Mater 20:6457–6467

    Article  CAS  Google Scholar 

  23. Waerenborgh JC, Rojas DP, Vyshatko NP, Shaula AL, Kharton VV, Marozau IP, Naumovich EN (2003) Mater Lett 57:4388–4393

    Article  CAS  Google Scholar 

  24. Kharton VV, Waerenborgh JC, Viskup AP, Yakovlev S, Patrakeev MV, Gaczyński P, Marozau IP, Yaremchenko AA, Shaula AL, Samakhval VV (2006) J Solid State Chem 179:1273–1284

    Article  CAS  Google Scholar 

  25. Kharton VV, Patrakeev MV, Waerenborgh JC, Kovalevsky AV, Pivak YV, Gaczyński P, Markov AA, Yaremchenko AA (2007) J Phys Chem Solids 68:355–366

    Article  CAS  Google Scholar 

  26. Klencsár Z, Kuzmann E, Vértes A (1996) J Radioanal Nucl Chem 210:105–118

    Article  Google Scholar 

  27. Németh Z, Klencsár Z, Kuzmann E, Homonnay Z, Vértes A, Grenèche JM, Lackner B, Kellner K, Gritzner G, Hakl J, Vad K, Mészáros S, Kerekes L (2005) Eur Phys J B 43:297–303

    Article  Google Scholar 

  28. Shinjo T, Takano M, Taguchi H, Shimada M (1980) J Phys Colloques 41:C1–157-C1–158

  29. Kawasaki S, Takano M, Takeda Y (1996) J Solid State Chem 121:174–180

    Article  CAS  Google Scholar 

  30. Dann SE, Currie DB, Weller MT, Thomas MF, Al-Rawwas AD (1994) J Solid State Chem 109:134–144

    Article  CAS  Google Scholar 

  31. Adler P, Lebon A, Damljanović V, Ulrich C, Bernhard C, Boris AV, Maljuk A, Lin CT, Keimer B (2006) Phys Rev B 73:094451

  32. Battle PD, Gibb TC, Nixon S (1988) J Solid State Chem 77:124–131

    Article  CAS  Google Scholar 

  33. Kawasaki S, Takano M, Takeda Y (1998) Solid State Ion 108:221–226

    Article  CAS  Google Scholar 

  34. Gspan C, Grogger W, Bitschnau B, Bucher E, Sitte W, Hofer F (2008) J Solid State Chem 181:2976–2982

    Article  CAS  Google Scholar 

  35. Istomin S, Drozhzhin OA, Svensson G, Antipov EV (2004) Solid State Sci 6:539–546

  36. Mastin J, Einarsrud M-A, Grande T (2006) Chem Mater 18:6047–6053

    Article  CAS  Google Scholar 

  37. Lein HL, Wiik K, Grande T (2006) Solid State Ion 177:1795–1798

    Article  CAS  Google Scholar 

  38. Hayashi H, Suzuki M, Inaba H (2000) Solid State Ion 128:131–139

    Article  CAS  Google Scholar 

  39. De Groot SR, Mazur P (1984) Nonequilibrium Thermodynamics. Dover, New York

    Google Scholar 

  40. Adler SB, Chen XY, Wilson JR (2007) J Catal 245:91–109

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Important experimental contribution and helpful discussions made by I. Marozau are gratefully acknowledged.

Funding

The work of ISSP RAS team centered on the synthesis and electrochemical measurements was supported by the Russian Science Foundation (grant 20–19-00478). E.N. Naumovich received financial support from the Ministry of Science and Higher Education of the Republic of Poland for Statutory Grant CPE/001/STAT/20 in the Institute of Power Engineering. A.A. Yaremchenko and A.V. Kovalevsky received financial support within the project CICECO—Aveiro Institute of Materials (UIDB/50011/2020 and UIDP/50011/2020) financed by national funds through the FCT/MCTES and when appropriate co-financed by FEDER under the PT2020 Partnership Agreement. J.C. Waerenborgh also received support from the FCT (Portugal) under the contract UID/Multi/04349/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Kharton.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2988 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsipis, E.V., Naumovich, E.N., Patrakeev, M.V. et al. Ionic transport in (La,Sr)CoO3-δ ceramics. J Solid State Electrochem 25, 2777–2791 (2021). https://doi.org/10.1007/s10008-021-05023-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-021-05023-8

Navigation