Skip to main content
Log in

Electrical conductivity of Ln6–x Zr x MoO12 + δ (Ln = La, Nd, Sm; x = 0.2, 0.6) ceramics during thermal cycling

  • Published:
Inorganic Materials Aims and scope

Abstract

In this paper, we analyze the relationship between the microstructure of new polycrystalline electron–proton conductors, Ln6–x Zr x MoO12 + δ (Ln = La, Nd, Sm; x = 0.2, 0.6), and the reduction and hydration processes in these materials in humid atmospheres (air and argon). The La5.8Zr0.2MoO12.1 solid solution with a rhombohedral structure possesses not only the highest electrical conductivity among the materials studied here but also high stability in various dry and humid, oxidizing (air) and reducing atmospheres. La5.8Zr0.2MoO12.1 ceramic grains have a twin microstructure, and the conductivity of this material along the grain boundaries, consisting of ordered domains, differs little from its bulk conductivity. It seems likely that we observe a “domain wall” effect, typical of La0.95Sr0.05Ga0.9Mg0.1O3–δ (LSGM) oxygen ion conductors [1]. In studies of Ln6–x Zr x MoO12 + δ (Ln = Nd, Sm; x = 0.2, 0.6) ceramics in humid atmospheres, we detected a grain-boundary contribution, which limited the total conductivity, like in perovskite BaZr0.8Y0.2O3–δ. We believe that such conditions lead to a reduction process in these materials and that Mo6+ is reduced before Nd3+ and Sm3+. The process first occurs on grain boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kurumada, M., Iguchi, E., and Savytskii, D.I., Correlation between high ionic conductivity and twin structure of La0.95Sr0.05Ga0.9Mg0.1O3–δ, J. Appl. Phys., 2006, vol. 100, paper 014 107.

    Google Scholar 

  2. Kreuer, K.-D., Proton-conducting oxides, Annu. Rev. Mater. Res., 2003, vol. 33, pp. 333–359.

    Article  CAS  Google Scholar 

  3. Guan, J., Dorris, S.E., Balachandran, U., and Uu, M., The effects of dopants and A: B site nonstoichiometry on properties of perovskite-type proton conductors, J. Electrochem. Soc., 1998, vol. 145, pp. 1780–1786.

    Article  CAS  Google Scholar 

  4. Kreuer, K.-D., Aspects of the formation and mobility of protonic charge carriers and the stability of perovskite-type oxides, Solid State Ionics, 1999, vol. 125, pp. 285–302.

    Article  CAS  Google Scholar 

  5. Kreuer, K.-D., Adams, S., Munch, W., Fuchs, A., Klock, U., and Maier, J., Proton conducting alkaline earth zirconates and titanates for high drain electrochemical applications, Solid State Ionics, 2001, vol. 145, pp. 295–306.

    Article  CAS  Google Scholar 

  6. Babilo, P., Udo, T., and Haile, S.M., Processing of yttrium doped barium zirconate for high proton conductivity, J. Mater. Res., 2007, vol. 22, pp. 1322–1330.

    Article  CAS  Google Scholar 

  7. Ryu, K.H. and Haile, S.M., Chemical stability and proton conductivity of doped BaCeO3–BaZrO3 solid solutions, Solid State Ionics, 1999, vol. 125, pp. 355–367.

    Article  CAS  Google Scholar 

  8. Sun, Z.Q., Fabbri, E., Bi, I., and Traversa, E., Lowering grain boundary resistance of BaZr0.8Y0.2O3–δ with LiNO3 sintering aid improves proton conductivity for fuel cell operation, Phys. Chem. Chem. Phys., 2011, vol. 13, pp. 7692–7700.

    Article  CAS  Google Scholar 

  9. Sun, W.P., Liu, M.F., and Liu, W., Chemically stable yttrium and tin co-doped barium zirconate electrolyte for next generation high performance proton-conducting solid oxide fuel cells, Adv. Energy Mater., 2013, vol. 3, pp. 1041–1050.

    Article  CAS  Google Scholar 

  10. Fabbri, E., Bi, I., Tanaka, H., Pergolesi, D., and Traversa, E., Chemically stable Pr and Y co-doped barium zirconate electrolytes with high proton conductivity for intermediate temperature solid oxide fuel cells, Adv. Funct. Mater., 2011, vol. 21, pp. 158–166.

    Article  CAS  Google Scholar 

  11. Omata, T. and Otsuka-Yao-Matsuo, S., Electrical properties of proton-conducting Ca2+ doped La2Zr2O7 with a pyrochlore-type structure, J. Electrochem. Soc., 2001, vol. 148, pp. E252–E261.

    Article  CAS  Google Scholar 

  12. Labrincha, J.A., Frade, J.R., and Marques, F.M.B., Proton conduction in La2Zr2O7-based pyrochlore materials, Solid State Ionics, 1997, vol. 99, pp. 33–40.

    Article  CAS  Google Scholar 

  13. Besikiotis, V., Knee, C.S., Ahmed, I., Haugsrud, R., and Norby, T., Crystal structure, hydration and ionic conductivity of the inherently oxygen-deficient La2Ce2O7, Solid State Ionics, 2012, vol. 228, pp. 1–7.

    Article  CAS  Google Scholar 

  14. Shimura, T., Fujimoto, S., and Iwahara, H., Proton conduction in non-perovskite-type oxides at elevated temperatures, Solid State Ionics, 2001, vol. 143, pp. 117–123.

    Article  CAS  Google Scholar 

  15. Magrasó, A. and Haugsrud, R., Effect of the La/W ratio and doping on the structure, defect structure, stability and functional properties of proton-conducting lanthanum tungstate La2 8–x W4 + x O54 + δ. A review, J. Mater. Chem. A, 2014, vol. 2, pp. 12 630–12 641.

    Article  Google Scholar 

  16. Partin, G.S., Korona, D.V., Neiman, A.Ya., and Belova, K.G., Conductivity and hydration of fluoritetype La6–x WO12–1.5x phases (x = 0.4, 0.6, 0.8, 1), Rus. J. Electrochem., 2015, vol. 51, pp. 381–390.

    Article  CAS  Google Scholar 

  17. Savvin, S.N., Shlyakhtina, A.V., Kolbanev, I.V., Knotko, A.V., Belov, D.A., Shcherbakova, L.G., and Nuñez, P., Zr-doped samarium molybdates–potential mixed electron–proton conductors, Solid State Ionics, 2014, vol. 262, pp. 713–718.

    Article  CAS  Google Scholar 

  18. Savvin, S.N., Shlyakhtina, A.V., Borunova, A.B., Shcherbakova, L.G., Ruiz-Morales, J.C., and Núñez, P., Crystal structure and proton conductivity of some Zr-doped rare-earth molybdates, Solid State Ionics, 2015, vol. 271, pp. 91–97.

    Article  CAS  Google Scholar 

  19. Cros, B. and Czeskleba-Kerner, H., Synthèse et caractérisation des composés stables à 1400°C dans le système La2O3–MoO2–MoO3, Rev. Chim. Miner., 1978, vol. 15, pp. 521–528.

    CAS  Google Scholar 

  20. Fournier, J-P., Fournier, J., and Kohlmuller, R., Etude des systemes La2O3–MoO3, Y2O3–MoO3, et des phases Ln6MoO12, Bull. Soc. Chim. Fr., 1970, pp. 4277–4283.

    Google Scholar 

  21. Amsif, M., Magrasó, A., Marrero-Lopez, D., Ruiz-Morales, J.C., Canales-Vazquez, J., and Núñez, P., Mo-substituted lanthanum tungstate La28 − y W4 + y O54 + δ: a competitive mixed electron–proton conductor for gas separation membrane applications, Chem. Mater., 2012, vol. 24, pp. 3868–3877.

    Article  CAS  Google Scholar 

  22. Politova, E.D., Torba, J.N., Fortalnova, E.A., Kaleva, G.M., Safronenk, M.G., and Venkovskii, N.U., Phase transitions and transport properties of the bismuth vanadate-based (Bi,La)4(V,Zr)2O11–z ceramics, Acta Phys. Pol. A, 2010, vol. 117, pp. 15–18.

    Article  Google Scholar 

  23. Politova, E.D., Fortalnova, E.A., Kaleva, G.M., Mosunov, A.V., Safronenko, M.G., Venkovskii, N.U., Shvartsman, V.V., and Kleemann, W., Ferroelectric phase transitions and electroconducting properties of ceramic BIMEVOX solid solutions (Me = La, Zr), Ferroelectrics, 2009, vol. 391, pp. 3–11.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Shlyakhtina.

Additional information

Original Russian Text © A.V. Shlyakhtina, S.N. Savvin, A.V. Knotko, L.G. Shcherbakova, P. Núñez, 2016, published in Neorganicheskie Materialy, 2016, Vol. 52, No. 10, pp. 1126–1133.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shlyakhtina, A.V., Savvin, S.N., Knotko, A.V. et al. Electrical conductivity of Ln6–x Zr x MoO12 + δ (Ln = La, Nd, Sm; x = 0.2, 0.6) ceramics during thermal cycling. Inorg Mater 52, 1055–1062 (2016). https://doi.org/10.1134/S0020168516100149

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168516100149

Keywords

Navigation