Skip to main content
Log in

Role of Stem Cells for Knee Cartilage Injuries in Athletes

  • Published:
Current Physical Medicine and Rehabilitation Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Knee cartilage injuries are common in athletes and can be difficult to treat due to poor healing potential. The use of stem cells for such conditions has emerged as a promising management option with the hope that this treatment can assist with symptom control, cartilage regeneration, and quicker return to play for athletes.

Recent Findings

There is current low-level evidence to support that stem cells may be beneficial in the treatment of knee cartilage injuries for athletes, with the most data being published for knee osteoarthritis. Although stem cells appear to be a safe treatment with no significant adverse events reported.

Summary

Stem cells are an emerging regenerative medicine treatment of knee cartilage injuries for athletes. Further high-quality studies with large patient populations that include athletes are required to better elucidate the treatment role of stem cells for these conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Lambert C, Ritzmann R, Akoto R, Lambert M, Pfeiffer T, Wolfarth B, Lachmann D, Shafizadeh S. Epidemiology of injuries in olympic sports. Int J Sports Med. 2022;43:473–81.

    Article  PubMed  Google Scholar 

  2. Swenson DM, Collins CL, Best TM, Flanigan DC, Fields SK, Comstock RD. Epidemiology of knee injuries among U.S. high school athletes, 2005/2006–2010/2011. Med Sci Sports Exerc. 2013;45:462–9.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Majewski M, Susanne H, Klaus S. Epidemiology of athletic knee injuries: a 10-year study. Knee. 2006;13:184–8.

    Article  CAS  PubMed  Google Scholar 

  4. Nicolini AP, de Carvalho RT, Matsuda MM, Filho JS, Cohen M. Common injuries in athletes’ knee: experience of a specialized center. Acta Ortop Bras. 2014;22:127–31.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Flanigan DC, Harris JD, Trinh TQ, Siston RA, Brophy RH. Prevalence of chondral defects in athletes’ knees. Med Sci Sports Exerc. 2010;42:1795–801.

    Article  PubMed  Google Scholar 

  6. Sophia Fox AJ, Bedi A, Rodeo SA. The basic science of articular cartilage: structure, composition, and function. Sports Health. 2009;1:461–8.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zheng W, Li H, Hu K, Li L, Bei M. Chondromalacia patellae: current options and emerging cell therapies. Stem Cell Res Ther. 2021;12:412.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Buckwalter JA. Articular cartilage: injuries and potential for healing. J Orthop Sports Phys Ther. 1998;28:192–202.

    Article  CAS  PubMed  Google Scholar 

  9. Karuppal R. Current concepts in the articular cartilage repair and regeneration. J Orthop. 2017;14:A1–3.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Alford JW, Cole BJ. Cartilage Restoration, Part 1. Am J Sports Med. 2005;33:295–306.

    Article  PubMed  Google Scholar 

  11. •• Jaibaji M, Jaibaji R, Volpin A. Mesenchymal stem cells in the treatment of cartilage defects of the knee: a systematic review of the clinical outcomes. Am J Sports Med. 2021;49:3716–27. Current systematic review of MSCs treatment for osteochondral defects

    Article  PubMed  Google Scholar 

  12. Kangari P, Talaei-Khozani T, Razeghian-Jahromi I, Razmkhah M. Mesenchymal stem cells: amazing remedies for bone and cartilage defects. Stem Cell Res Ther. 2020;11:492.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Pers Y-M, Rackwitz L, Ferreira R, et al. Adipose mesenchymal stromal cell-based therapy for severe osteoarthritis of the knee: a phase I dose-escalation trial. Stem Cells Transl Med. 2016;5:847–56.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Pak J, Lee JH, Lee SH. A novel biological approach to treat chondromalacia patellae. PLoS One. 2013;8:e64569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chahal J, Gómez-Aristizábal A, Shestopaloff K, et al. Bone marrow mesenchymal stromal cell treatment in patients with osteoarthritis results in overall improvement in pain and symptoms and reduces synovial inflammation. Stem Cells Transl Med. 2019;8:746–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pak J, Lee JH, Park KS, Jeon JH, Lee SH. Potential use of mesenchymal stem cells in human meniscal repair: current insights. Open Access J Sports Med. 2017;8:33–8.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Jo CH, Lee YG, Shin WH, et al. Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: a proof-of-concept clinical trial. Stem Cells. 2014;32:1254–66.

    Article  CAS  PubMed  Google Scholar 

  18. Hofer HR, Tuan RS. Secreted trophic factors of mesenchymal stem cells support neurovascular and musculoskeletal therapies. Stem Cell Res Ther. 2016;7:131.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Letourneau PA. Human bone marrow derived mesenchymal stem cells regulate leukocyte-endothelial interactions and activation of transcription factor NF-kappa B. J Tissue Sci Eng. 2011;1–7. https://doi.org/10.4172/2157-7552.s3-001.

  20. Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators. J Cell Biochem. 2006;98:1076–84.

    Article  CAS  PubMed  Google Scholar 

  21. Sheng G. The developmental basis of mesenchymal stem/stromal cells (MSCs). BMC Dev Biol. 2015;1–8. https://doi.org/10.1186/s12861-015-0094-5.

  22. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini FC, Krause DS, Deans RJ, Keating A, Prockop DJ, Horwitz EM. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–7.

    Article  CAS  PubMed  Google Scholar 

  23. Bowers RL, Troyer WD, Mason RA, Mautner KR. Biologics. Tech Vasc Interv Radiol. 2020;23:100704.

    Article  PubMed  Google Scholar 

  24. Fisher JN, Tessaro I, Bertocco T, Peretti GM, Mangiavini L. The application of stem cells from different tissues to cartilage repair. Stem Cells Int. 2017;1–14. https://doi.org/10.1155/2017/2761678.

  25. Ma Q, Liao J, Cai X. Different sources of stem cells and their application in cartilage tissue engineering. Curr Stem Cell Res Ther. 2018;13:568–75.

    Article  CAS  PubMed  Google Scholar 

  26. Buda R, Vannini F, Cavallo M, Baldassarri M, Luciani D, Mazzotti A, Pungetti C, Olivieri A, Giannini S. One-step arthroscopic technique for the treatment of osteochondral lesions of the knee with bone-marrow-derived cells: three years results. Musculoskelet Surg. 2013;97:145–51.

    Article  PubMed  Google Scholar 

  27. Borg-Stein J, Osoria HL, Hayano T. Regenerative sports medicine: past, present, and future (adapted from the PASSOR Legacy Award Presentation; AAPMR; October 2016). PM R. 2018;10:1083–105.

    Article  PubMed  Google Scholar 

  28. Murray IR, Robinson PG, West CC, Goudie EB, Yong LY, White TO, LaPrade RF. Reporting standards in clinical studies evaluating bone marrow aspirate concentrate: a systematic review. Arthroscopy. 2018;34:1366–75.

    Article  PubMed  Google Scholar 

  29. Hegde V, Shonuga O, Ellis S, Fragomen A, Kennedy J, Kudryashov V, Lane JM. A prospective comparison of 3 approved systems for autologous bone marrow concentration demonstrated nonequivalency in progenitor cell number and concentration. J Orthop Trauma. 2014;28:591–8.

    Article  PubMed  Google Scholar 

  30. Kasir R, Vernekar VN, Laurencin CT. Regenerative engineering of cartilage using adipose-derived stem cells. Regen Eng Transl Med. 2015;1:42–9.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bianchi F, Maioli M, Leonardi E, et al. A new nonenzymatic method and device to obtain a fat tissue derivative highly enriched in pericyte-like elements by mild mechanical forces from human lipoaspirates. Cell Transplant. 2013;22:2063–77.

    Article  PubMed  Google Scholar 

  32. Mazini L, Ezzoubi M, Malka G. Overview of current adipose-derived stem cell (ADSCs) processing involved in therapeutic advancements: flow chart and regulation updates before and after COVID-19. Stem Cell Res Ther. 2021;12:1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13:4279–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wakitani S, Imoto K, Yamamoto T, Saito M, Murata N, Yoneda M. Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees. Osteoarthr Cartil. 2002;10:199–206.

    Article  CAS  Google Scholar 

  35. Zhou S, Chen S, Jiang Q, Pei M. Determinants of stem cell lineage differentiation toward chondrogenesis versus adipogenesis. Cell Mol Life Sci. 2019;76:1653–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang T, Nimkingratana P, Smith CA, Cheng A, Hardingham TE, Kimber SJ. Enhanced chondrogenesis from human embryonic stem cells. Stem Cell Res. 2019;39:101497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mokbel A, El-Tookhy O, Shamaa AA, Sabry D, Rashed L, Mostafa A. Homing and efficacy of intra-articular injection of autologous mesenchymal stem cells in experimental chondral defects in dogs. Clin Exp Rheumatol. 2011;29:275–84.

    CAS  PubMed  Google Scholar 

  38. Mokbel AN, El Tookhy OS, Shamaa AA, Rashed LA, Sabry D, El Sayed AM. Homing and reparative effect of intra-articular injection of autologus mesenchymal stem cells in osteoarthritic animal model. BMC Musculoskelet Disord. 2011;12:259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kotaka S, Wakitani S, Shimamoto A, Kamei N, Sawa M, Adachi N, Ochi M. Magnetic targeted delivery of induced pluripotent stem cells promotes articular cartilage repair. Stem Cells Int. 2017;2017:9514719.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Li M, Luo X, Lv X, Liu V, Zhao G, Zhang X, Cao W, Wang R, Wang W. In vivo human adipose-derived mesenchymal stem cell tracking after intra-articular delivery in a rat osteoarthritis model. Stem Cell Res Ther. 2016;7:160.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kumar P, Kandoi S, Misra R, Vijayalakshmi S, Rajagopal K, Verma RS. The mesenchymal stem cell secretome: A new paradigm towards cell-free therapeutic mode in regenerative medicine. Cytokine Growth Factor Rev. 2019;46:1–9.

    Article  Google Scholar 

  42. Jiang S, Tian G, Li X, et al. Research progress on stem cell therapies for articular cartilage regeneration. Stem Cells Int. 2021;2021:8882505.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Li H, Shen S, Fu H, Wang Z, Li X, Sui X, Yuan M, Liu S, Wang G, Guo Q. Immunomodulatory functions of mesenchymal stem cells in tissue engineering. Stem Cells Int. 2019;2019:9671206.

    PubMed  PubMed Central  Google Scholar 

  44. de Windt TS, Vonk LA, Slaper-Cortenbach ICM, van den Broek MPH, Nizak R, van Rijen MHP, de Weger RA, Dhert WJA, Saris DBF. Allogeneic mesenchymal stem cells stimulate cartilage regeneration and are safe for single-stage cartilage repair in humans upon mixture with recycled autologous chondrons. Stem Cells. 2017;35:256–64.

    Article  PubMed  Google Scholar 

  45. Liu Q, Wang J, Chen Y, Zhang Z, Saunders L, Schipani E, Chen Q, Ma PX. Suppressing mesenchymal stem cell hypertrophy and endochondral ossification in 3D cartilage regeneration with nanofibrous poly(l-lactic acid) scaffold and matrilin-3. Acta Biomater. 2018;76:29–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pelttari K, Winter A, Steck E, Goetzke K, Hennig T, Ochs BG, Aigner T, Richter W. Premature induction of hypertrophy during in vitro chondrogenesis of human mesenchymal stem cells correlates with calcification and vascular invasion after ectopic transplantation in SCID mice. Arthritis Rheum. 2006;54:3254–66.

    Article  CAS  PubMed  Google Scholar 

  47. Mueller MB, Tuan RS. Functional characterization of hypertrophy in chondrogenesis of human mesenchymal stem cells. Arthritis Rheum. 2008;58:1377–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Emans PJ, Pieper J, Hulsbosch MM, Koenders M, Kreijveld E, Surtel DAM, van Blitterswijk CA, Bulstra SK, Kuijer R, Riesle J. Differential cell viability of chondrocytes and progenitor cells in tissue-engineered constructs following implantation into osteochondral defects. Tissue Eng. 2006;12:1699–709.

    Article  CAS  PubMed  Google Scholar 

  49. Quintavalla J, Uziel-Fusi S, Yin J, Boehnlein E, Pastor G, Blancuzzi V, Singh HN, Kraus KH, O’Byrne E, Pellas TC. Fluorescently labeled mesenchymal stem cells (MSCs) maintain multilineage potential and can be detected following implantation into articular cartilage defects. Biomaterials. 2002;23:109–19.

    Article  CAS  PubMed  Google Scholar 

  50. Horwitz EM, Le Blanc K, Dominici M, Mueller I, Slaper-Cortenbach I, Marini FC, Deans RJ, Krause DS, Keating A, International Society for Cellular Therapy. Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy. 2005;7:393–5.

    Article  CAS  PubMed  Google Scholar 

  51. Caplan AI. Adult mesenchymal stem cells: when, where, and how. Stem Cells Int. 2015;2015:1–6.

    Article  Google Scholar 

  52. Wiley TJ, Lemme NJ, Marcaccio S, Bokshan S, Fadale PD, Edgar C, Owens BD. Return to play following meniscal repair. Clin Sports Med. 2020;39:185–96.

    Article  PubMed  Google Scholar 

  53. Fox AJS, Bedi A, Rodeo SA. The basic science of human knee menisci: structure, composition, and function. Sports Health. 2012;4:340–51.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Herwig J, Egner E, Buddecke E. Chemical changes of human knee joint menisci in various stages of degeneration. Ann Rheum Dis. 1984;43:635–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chirichella PS, Jow S, Iacono S, Wey HE, Malanga GA. Treatment of knee meniscus pathology: rehabilitation, surgery, and orthobiologics. PM&R. 2019;11:292–308.

    Article  Google Scholar 

  56. Ferris DJ, Frisbie DD, Kisiday JD, McIlwraith CW, Hague BA, Major MD, Schneider RK, Zubrod CJ, Kawcak CE, Goodrich LR. Clinical outcome after intra-articular administration of bone marrow derived mesenchymal stem cells in 33 horses with stifle injury. Vet Surg. 2014;43:255–65.

    Article  PubMed  Google Scholar 

  57. Dai T, Pan Z, Yin F. In vivo studies of mesenchymal stem cells in the treatment of meniscus injury. Orthop Surg. 2021;13:2185–95.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Jacob G, Shimomura K, Krych AJ, Nakamura N. The meniscus tear: a review of stem cell therapies. Cells. 2019;9(1):92. https://doi.org/10.3390/cells9010092.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Vangsness CT, Farr J, Boyd J, Dellaero DT, Mills CR, LeRoux-Williams M. Adult human mesenchymal stem cells delivered via intra-articular injection to the knee following partial medial meniscectomy: a randomized, double-blind, controlled study. J Bone Joint Surg Am. 2014;96:90–8.

    Article  PubMed  Google Scholar 

  60. Whitehouse MR, Howells NR, Parry MC, Austin E, Kafienah W, Brady K, Goodship AE, Eldridge JD, Blom AW, Hollander AP. Repair of torn avascular meniscal cartilage using undifferentiated autologous mesenchymal stem cells: from in vitro optimization to a first-in-human study. Stem Cells Transl Med. 2017;6:1237–48.

    Article  CAS  PubMed  Google Scholar 

  61. Massey PA, Zhang A, Stairs CB, Hoge S, Carroll T, Hamby AM. Meniscus repair outcomes with and without bone marrow aspiration concentrate. Orthop. J Sports Med. 2019;7:2325967119S0028.

    Google Scholar 

  62. Gorbachova T, Melenevsky Y, Cohen M, Cerniglia BW. Osteochondral lesions of the knee: differentiating the most common entities at MRI. RadioGraphics. 2018;38:1478–95.

    Article  PubMed  Google Scholar 

  63. Hashimoto Y, Nishida Y, Takahashi S, et al. Transplantation of autologous bone marrow-derived mesenchymal stem cells under arthroscopic surgery with microfracture versus microfracture alone for articular cartilage lesions in the knee: a multicenter prospective randomized control clinical trial. Regen Ther. 2019;11:106–13.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Gobbi A, Chaurasia S, Karnatzikos G, Nakamura N. Matrix-induced autologous chondrocyte implantation versus multipotent stem cells for the treatment of large patellofemoral chondral lesions. Cartilage. 2015;6:82–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Enea D, Cecconi S, Calcagno S, Busilacchi A, Manzotti S, Gigante A. One-step cartilage repair in the knee: collagen-covered microfracture and autologous bone marrow concentrate. A pilot study. Knee. 2015;22:30–5.

    Article  CAS  PubMed  Google Scholar 

  66. Chahla J, Dean CS, Moatshe G, Pascual-Garrido C, Serra Cruz R, LaPrade RF. Concentrated bone marrow aspirate for the treatment of chondral injuries and osteoarthritis of the knee. Orthop J Sports Med. 2016;4:232596711562548.

    Article  Google Scholar 

  67. Krych AJ, Nawabi DH, Farshad-Amacker NA, Jones KJ, Maak TG, Potter HG, Williams RJ. Bone marrow concentrate improves early cartilage phase maturation of a scaffold plug in the knee. Am J Sports Med. 2016;44:91–8.

    Article  PubMed  Google Scholar 

  68. Macmull S, Jaiswal PK, Bentley G, Skinner JA, Carrington RWJ, Briggs TWR. The role of autologous chondrocyte implantation in the treatment of symptomatic chondromalacia patellae. Int Orthop. 2012;36:1371–7.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Felson DT, Zhang Y. An update on the epidemiology of knee and hip osteoarthritis with a view to prevention. Arthritis Rheum. 1998;41:1343–55.

    Article  CAS  PubMed  Google Scholar 

  70. Zhang Y, Jordan JM. Epidemiology of osteoarthritis. Clin Geriatr Med. 2010;26:355–69.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Vina ER, Kwoh CK. Epidemiology of osteoarthritis: literature update. Curr Opin Rheumatol. 2018;30:160–7.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Tran G, Smith TO, Grice A, Kingsbury SR, McCrory P, Conaghan PG. Does sports participation (including level of performance and previous injury) increase risk of osteoarthritis? A systematic review and meta-analysis. Br J Sports Med. 2016;50:1459–66.

    Article  PubMed  Google Scholar 

  73. Shapiro SA, Kazmerchak SE, Heckman MG, Zubair AC, O’Connor MI. A Prospective, Single-Blind, Placebo-controlled trial of bone marrow aspirate concentrate for knee osteoarthritis. Am J Sports Med. 2017;45:82–90.

    Article  PubMed  Google Scholar 

  74. Shapiro SA, Arthurs JR, Heckman MG, Bestic JM, Kazmerchak SE, Diehl NN, Zubair AC, O’Connor MI. Quantitative T2 MRI mapping and 12-month follow-up in a randomized, blinded, placebo controlled trial of bone marrow aspiration and concentration for osteoarthritis of the knees. Cartilage. 2019;10:432–43.

    Article  CAS  PubMed  Google Scholar 

  75. Emadedin M, Labibzadeh N, Liastani MG, Karimi A, Jaroughi N, Bolurieh T, Hosseini S-E, Baharvand H, Aghdami N. Intra-articular implantation of autologous bone marrow-derived mesenchymal stromal cells to treat knee osteoarthritis: a randomized, triple-blind, placebo-controlled phase 1/2 clinical trial. Cytotherapy. 2018;20:1238–46.

    Article  PubMed  Google Scholar 

  76. Freitag J, Bates D, Wickham J, Shah K, Huguenin L, Tenen A, Paterson K, Boyd R. Adipose-derived mesenchymal stem cell therapy in the treatment of knee osteoarthritis: a randomized controlled trial. Regenerative Med. 2019;14:213–30.

    Article  CAS  Google Scholar 

  77. •• Tan SHS, Kwan YT, Neo WJ, Chong JY, Kuek TYJ, See JZF, Wong KL, Toh WS, Hui JHP. Intra-articular injections of mesenchymal stem cells without adjuvant therapies for knee osteoarthritis: a systematic review and meta-analysis. Am J Sports Med. 2021;49:3113–24. Current systematic review and meta-analysis of level I or II studies examining the MSCs treatment for knee osteoarthritis

    Article  PubMed  Google Scholar 

  78. • Mautner K, Bowers R, Easley K, Fausel Z, Robinson R. Functional outcomes following microfragmented adipose tissue versus bone marrow aspirate concentrate injections for symptomatic knee osteoarthritis. Stem Cells Transl Med. 2019;8:1149–56. High-quality prospective cohort study comparing BMSCs and ASCs treatment for knee osteoarthritis

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Centeno C, Pitts J, Al-Sayegh H, Freeman M. Efficacy of Autologous Bone Marrow Concentrate for Knee Osteoarthritis with and without Adipose Graft. Biomed Res Int. 2014;2014:1–9.

    Article  Google Scholar 

  80. Koh Y-G, Choi Y-J, Kwon S-K, Kim Y-S, Yeo J-E. Clinical results and second-look arthroscopic findings after treatment with adipose-derived stem cells for knee osteoarthritis. Knee Surgery, Sports Traumatol, Arthrosc. 2015;23:1308–16.

    Article  Google Scholar 

  81. Fodor PB, Paulseth SG. Adipose derived stromal cell (ADSC) injections for pain management of osteoarthritis in the human knee joint. Aesthet Surg J. 2016;36:229–36.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Schaaf.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bryant, D., Chase, P., Shannon, D. et al. Role of Stem Cells for Knee Cartilage Injuries in Athletes. Curr Phys Med Rehabil Rep 11, 255–264 (2023). https://doi.org/10.1007/s40141-023-00404-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40141-023-00404-8

Keywords

Navigation