Skip to main content

Advertisement

Log in

Cartilage repair techniques in the knee: stem cell therapies

  • Cartilage Repair Techniques in the Knee (A Dhawan, Section Editor)
  • Published:
Current Reviews in Musculoskeletal Medicine Aims and scope Submit manuscript

Abstract

Among the surgical options for large full-thickness chondral injuries, cell-based therapy has been practiced and its satisfactory outcomes have been reported. One area that appears promising is cell-based therapies utilizing stem cells. Various tissues within the human body contain mesenchymal stem cells (MSCs) from where these can be harvested. These include bone marrow, adipose, synovium, peripheral blood, and umbilical cord. In this article, both preclinical animal studies and clinical studies dealing with the use of MSCs for cartilage repair of the knee are reviewed. Majority of the clinical papers have shown promising results; however, there are a limited number of studies of high evidence level. Clinical significance of the stem cell therapy as compared to other surgical options as well as optimization of the procedure in terms of cell type and delivery method is still to be determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance INTRODUCTION

  1. Anderson JA, Little D, Toth AP, et al. Stem cell therapies for knee cartilage repair: the current status of preclinical and clinical studies. Am J Sports Med. 2014;42(9):2253–61. Recent review of stem cell therapy fro knee cartilage repair including both animal and clinical studies.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Bornes TD, Adesida AB, Jomha NM. Mesenchymal stem cells in the treatment of traumatic articular cartilage defects: a comprehensive review. Arthritis Res Ther. 2014;16(5):432.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Pastides P, Chimutengwende-Gordon M, Maffulli N, et al. Stem cell therapy for human cartilage defects: a systematic review. Osteoarthr Cartil. 2013;21(5):646–54.

    Article  CAS  PubMed  Google Scholar 

  4. Filardo G, Madry H, Jelic M, et al. Mesenchymal stem cells for the treatment of cartilage lesions: from preclinical findings to clinical application in orthopaedics. Knee Surg Sports Traumatol Arthrosc. 2013;21(8):1717–29.

    Article  PubMed  Google Scholar 

  5. Kon E, Roffi A, Filardo G, et al. Scaffold-based cartilage treatments: with or without cells? A systematic review of preclinical and clinical evidence. Arthroscopy. 2015;31(4):767–75.

    Article  PubMed  Google Scholar 

  6. Horwitz EM, Le Blanc K, Dominici M, et al. Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy. 2005;7(5):393–5.

    Article  CAS  PubMed  Google Scholar 

  7. Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–7.

    Article  CAS  PubMed  Google Scholar 

  8. Estes BT, Diekman BO, Gimble JM, et al. Isolationof adipose-derived stem cells and their induction to a chondrogenic phenotype. Nat Protoc. 2010;5:1294–311.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. De Bari C, Dell’Accio F, Tyzanowski P, et al. Multipotent mesenchymal stem cells from adult synovial membrane. Arthritis Rheum. 2001;44(8):1928–42.

    Article  PubMed  Google Scholar 

  10. Fong CY, Subramanian A, Gauthaman K, et al. Human umbilical cord Wharton’s jelly stem cells undergo enhanced chondrogenic differentiation when grown on nanofibrous scaffolds and in a sequential two-stage culture medium environment. Stem Cell Rev. 2102;8:195–209.

    Article  Google Scholar 

Animal studies

  1. Wakitani S, Goto T, Pineda SJ, et al. Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. J Bone Joint Surg Am. 1994;76-A:579–92.

    Google Scholar 

  2. Mason JM, Breitbart AS, Barcia M. Cartilage and bone regeneration using gene-enhanced tissue engineering. Clin Orthop Relat Res. 2000;379Suppl:S171-8.

  3. Wakitani S, Yamamoto T, et al. Response of the donor and recipient cells in mesenchymal cell transplantation to cartilage defect. Microsc Res Tech. 2002;58(1):14–8.

    Article  PubMed  Google Scholar 

  4. Kayakabe M, Tsutsumi S, Watanabe H, et al. Transplantation of autologous rabbit BM-derived mesenchymal stromal cells embedded in hyaluronic acid gel sponge into osteochondral defects of the knee. Cytotherapy. 2006;8(4):343–53.

    Article  CAS  PubMed  Google Scholar 

  5. Fan H, Liu H, Zhu R, et al. Comparison of chondral defects repair with in vitro and in vivo differentiated mesenchymal stem cells. Cell Transplant. 2007;16(8):823–32.

    Article  PubMed  Google Scholar 

  6. Chang F, Ishii T, Yanai T, et al. Repair of large full-thickness articular cartilage defects by transplantation of autologous uncultured bone-marrow-derived mononuclear cells. J Orthop Res. 2008;26(1):18–26.

    Article  PubMed  Google Scholar 

  7. Loken S, Jakobsen RB, Aroen A, et al. Bone marrow mesenchymal stem cells in a hyaluronan scaffold for treatment of an osteochondral defect in a rabbit model. Knee Surg Sports Traumatol Arthrosc. 2008;16(10):896–903.

    Article  CAS  PubMed  Google Scholar 

  8. Zhou XZ, Leung VY, Dong QR, et al. Mesenchymal stem cell-based repair of articular cartilage with polyglycolic acid-hydroxyapatite biphasic scaffold. Int J Artif Organs. 2008;31(6):480–9.

    CAS  PubMed  Google Scholar 

  9. Pei M, Yan Z, Shoukry M, et al. Failure of xenoimplantation using porcine synovium-derived stem cell-based cartilage tissue constructs for the repair of rabbit osteochondral defects. J Orthop Res. 2010;28(8):1064–70.

    CAS  PubMed  Google Scholar 

  10. Xie J, Han Z, Naito M, et al. Articular cartilage tissue engineering based on a mechano-active scaffold made of poly(L-lactide-co-epsilon-caprolactone): in vivo performance in adult rabbits. J Biomed Mater Res B Appl Biomater. 2010;94(1):80–8.

    PubMed  Google Scholar 

  11. Dashtdar H, Rothan HA, Tay T, et al. A preliminary study comparing the use of allogenic chondrogenic pre-differentiated and undifferentiated mesenchymal stem cells for the repair of full thickness articular cartilage defects in rabbits. J Orthop Res. 2011;29(9):1336–42.

    Article  PubMed  Google Scholar 

  12. Mimura T, Imai S, Okumura N, et al. Spatiotemporal control of proliferation and differentiation of bone marrow-derived mesenchymal stem cells recruited using collagen hydrogel for repair of articular cartilage defects. J Biomed Mater Res B Appl Biomater. 2011;98(2):360–8.

    Article  PubMed  Google Scholar 

  13. Tay LX, Ahmad RE, Dashtdar H, et al. Treatment outcomes of alginate-embedded allogenic mesenchymal stem cells versus autologous chondrocytes for the repair of focal articular cartilage defects in a rabbit model. Am J Sports Med. 2012;40(1):83–90.

    Article  PubMed  Google Scholar 

  14. Li F, Chen YZ, Miao ZN, et al. Human placenta-derived mesenchymal stem cells with silk fibroin biomaterial in the repair of articular cartilage defects. Cell Reprogram. 2012;14(4):334–41.

    CAS  PubMed  Google Scholar 

  15. Nogami M, Tsuno H, Koike C, et al. Isolation and characterization of human amniotic mesenchymal stem cells and their chondrogenic differentiation. Transplantation. 2012;93(12):1221–8.

    Article  CAS  PubMed  Google Scholar 

  16. Singh NK, Singh GR, Jeong DK, et al. Healing of full-thickness articular cartilage defects treated with cultured autologous chondrogenic satellite cells isolated from chondral stem cell niche in rabbits. J Surg Res. 2013;183(2):629–38.

    Article  CAS  PubMed  Google Scholar 

  17. Lee JC, Min HJ, Park HJ, et al. Synovial membrane-derived mesenchymal stem cells supported by platelet-rich plasma can repair osteochondral defects in a rabbit model. Arthroscopy. 2013;29(6):1034–46.

    Article  PubMed  Google Scholar 

  18. Reyes R, Pec MK, Sanchez E, et al. Comparative osteochondral defect repair: stem cells versus chondrocytes versus bone morphogenetic protein-2, solely or in combination. Eur Cell Mater. 2013;25:351–65.

    CAS  PubMed  Google Scholar 

  19. Qi Y, Du Y, Li W, et al. Cartilage repair using mesenchymal stem (MSC) sheet and MSCs-loaded bilayer PLGA scaffold in a rabbit model. Knee Surg Sports Traumatol Arthrosc. 2014;22(6):1424–33.

    Article  PubMed  Google Scholar 

  20. Zhu S, Zhang B, Man C, et al. Combined effects of connective tissue growth factor-modified bone marrow-derived mesenchymal stem cells and NaOH-treated PLGA scaffolds on the repair of articular cartilage defect in rabbits. Cell Transplant. 2014;23(6):715–27.

    Article  PubMed  Google Scholar 

  21. Liu PF, Guo L, Zhao DW, et al. Study of human acellular amniotic membrane loading bone marrow mesenchymal stem cells in repair of articular cartilage defect in rabbits. Genet Mol Res. 2014;13(3):7992–8001.

    Article  CAS  PubMed  Google Scholar 

  22. Hori J, Deie M, Kobayashi T, et al. Articular cartilage repair using an intra-articular magnet and synovium-derived cells. J Orthop Res. 2011;29(4):531–8.

    Article  PubMed  Google Scholar 

  23. Lee JM, Im GI. SOX trio-co-transduced adipose stem cells in fibrin gel to enhance cartilage repair and delay the progression of osteoarthritis in the rat. Biomaterials. 2012;33(7):2016–24.

    Article  CAS  PubMed  Google Scholar 

  24. Uto S, Nishizawa S, Takasawa Y, et al. Bone and cartilage repair by transplantation of induced pluripotent stem cells in murine joint defect model. Biomed Res. 2013;34(6):281–8.

    Article  CAS  PubMed  Google Scholar 

  25. Chung JY, Song M, Ha CW, et al. Comparison of articular cartilage repair with different hydrogel-human umbilical cord blood-derived mesenchymal stem cell composites in a rat model. Stem Cell Res Ther. 2014;5(2):39.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Cheng A, Kapacee Z, Peng J, et al. Cartilage repair using human embryonic stem cell-derived chondroprogenitor. Stem Cells. 2014;3(11):1287–94.

    CAS  Google Scholar 

  27. Jung M, Kaszap B, Redohl A, et al. Enhanced early tissue regeneration after matrix-assisted autologous mesenchymal stem cell transplantation in full thickness chondral defects in a minipig model. Cell Transplant. 2009;18(8):923–32.

    Article  PubMed  Google Scholar 

  28. Necas A, Planka L, Srnec R, et al. Quality of newly formed cartilaginous tissue in defects of articular surface after transplantation of mesenchymal stem cells in a composite scaffold based on collagen I with chitosan micro-and nanofibres. Physiol Res. 2010;59(4):605–14.

    CAS  PubMed  Google Scholar 

  29. Chang CH, Kuo TF, Lin FH, et al. Tissue engineering-based cartilage repair with mesenchymal stem cells in a porcine model. J Orthop Res. 2011;29(12):1874–80.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang Y, Wang F, Chen J, et al. Bone marrow-derived mesenchymal stem cells versus bone marrow nucleated cells in the treatment of chondral defects. Int Orthop. 2012;36(5):1079–86.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Nakamura T, Sekiya I, Muneta T, et al. Arthroscopic histological and MRI analyses of cartilage repair after a minimally invasive method of transplantation of allogeneic synovial mesenchymal stromal cells into cartilage defects in pigs. Cytotherapy. 2012;14(3):327–38.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Pei M, He F, Li J, et al. Repair of large animal partial-thickness cartilage defects through intraarticular injection of matrix-rejuvenated synovium-derived stem cells. Tissue Eng Part A. 2013;19(9–10):1144–54.

    Article  CAS  PubMed  Google Scholar 

  33. Fujie H, Nakamura N. Frictional properties of articular cartilage-like tissues repaired with a mesenchymal stem cell-based tissue engineered construct. Conf Proc IEEE Eng Med Biol Soc. 2013;2013:401–4.

    PubMed  Google Scholar 

  34. Ha CW, Park YB, Chung JY, et al. Cartilage repair using composites of human umbilical cord blood-derived mesenchymal stem cells and hyaluronic acid hydrogel in a minipig model. Stem Cells Transl Med. 2015.

  35. Guo X, Wang C, Zhang, et al. Repair of large articular defects with implants of autologous mesenchymal stem cells seeded into beta-calcium phosphate in a sheep model. Tissue Eng. 2004;10:1818–29.

    Article  CAS  PubMed  Google Scholar 

  36. Mrugala D, Bony C, Neves N, et al. Phenotypic and functional characterisation of ovine mesenchymal stem cells: application to a cartilage defect model. Ann Rheum Dis. 2008;67(3):288–95.

    Article  CAS  PubMed  Google Scholar 

  37. Hopper N, Wardale J, Brooks R, et al. Peripheral blood mononuclear cells enhance cartilage repair in in vivo osteochondral defect model. PLoS One. 2015;10(8), e0133937.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Mcllwraith CW, Frisbie DD, Rodkey WG, et al. Evaluation of intra-articular mesenchymal stem cells to augment healing of microfractured chondral defects. Arthroscopy. 2011;27(11):1552–61.

    Article  Google Scholar 

  39. Nam HY, Karunanithi P, Loo WC, et al. The effects of staged intra-articular injection of cultured autologous mesenchymal stromal cells on the repair of damaged cartilage: a pilot study in caprine model. Arthritis Res Ther. 2013;15(5):R129.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Wayne JS, McDowell CL, Shields KJ, et al. IN vivo response of polylactic acid-alginate scaffolds and bone marrow-derived cells for cartilage tissue engineering. Tissue Eng. 2005;11:953–63.

    Article  CAS  PubMed  Google Scholar 

  41. Mizuno M, Kobayashi S, Takebe T, et al. Brief report: reconstruction of joint hyaline cartilage by autologous progenitor cells derived from ear elastic cartilage. Stem Cells. 2014;32(3):816–21.

    Article  PubMed  Google Scholar 

  42. Ma A, Jiang L, Song L, et al. Reconstruction of cartilage with clonal mesenchymal stem cell-acellular dermal matrix in cartilage defect model in nonhuman primates. Int Immunopharmacol. 2013;16(3):399–408.

    Article  PubMed  Google Scholar 

Clinical studies (Bone marrow derived stem cell)

  1. Mackay AM, Beck SC, Murphy JM, et al. Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow. Tissue Eng. 1998;4(4):415–28.

    Article  CAS  PubMed  Google Scholar 

  2. Yoo JU, Barthel TS, Nishimura K, et al. The chondrogenic potential of human bone-marrow-derived mesenchymal progenitor cells. J Bone Joint Surg Am. 1998;80(12):1745–57.

    CAS  PubMed  Google Scholar 

  3. Kuroda R, Ishida K, Matsumoto T, et al. Treatment of a full-thickness articular cartilage defect in the femoral condyle of an athlete with autologous bone-marrow stromal cells. Osteoarthr Cartil. 2007;15(2):226–31.

    Article  CAS  PubMed  Google Scholar 

  4. Wakitani S, Nawata M, Tensho K, et al. Repair of articular cartilage defects in the patello-femoral joint with autologous bone marrow mesenchymal cell transplantation: three case reports involving nine defects in five knees. J Tissue Eng Regen Med. 2007;1(1):74–9.

    Article  PubMed  Google Scholar 

  5. Haleem AM, Singergy AA, Sabry D, et al. The clinical use of human culture-expanded autologous bone marrow mesenchymal stem cells transplanted on platelet-rich fibrin glue in the treatment of articular cartilage defects: a pilot study and preliminary results. Cartil. 2010;1(4):253–61.

    Article  Google Scholar 

  6. Nejadnik H, Hui JH, Feng Choong EP, et al. Autologous bone marrow-derived mesenchymal stem cells versus autologous chondrocyte implantation: an observational cohort study. Am J Sports Med. 2010;38(6):1110–6.

    Article  PubMed  Google Scholar 

  7. Kasemkijwattana C, Hongeng S, Kesprayura S, et al. Autologous bone marrow mesenchymal stem cells implantation for cartilage defects: two cases report. J Med Assoc Thail. 2011;94(3):395–40.

    Google Scholar 

  8. Lee KB, Wang VT, Chan YH, et al. A novel, minimally-invasive technique of cartilage repair in the human knee using arthroscopic microfracture and injections of mesenchymal stem cells and hyaluronic acid—a prospective comparative study on safety and short-term efficacy. Ann Acad Med Singap. 2012;41(11):511–7.

    PubMed  Google Scholar 

  9. Wong KL, Lee KB, Tai BC, et al. Injectable cultured bone marrow-derived mesenchymal stem cells in varus knees with cartilage defects undergoing high tibial osteotomy: a prospective randomized controlled clinical trial with 2 years’ follow-up. Arthroscopy. 2013;29(12):2020–8. A study of high evidence level examining the effect of postoperative intraarticular stem cell injection on cartilage regeneration after high tibial osteotomy.

    Article  PubMed  Google Scholar 

(Adipose tissue)

  1. Koh YG, Choi YJ, Kwon OR, et al. Second-look arthroscopic evaluation of cartilage lesions after mesenchymal stem cell implantation in osteoarthritic knees. Am J Sports Med. 2014;42(7):1628–37.

    Article  PubMed  Google Scholar 

  2. Koh YG, Kwon OR, Kim YS, et al. Comparative outcomes of open-wedge high tibial osteotomy with platelet-rich plasma alone or in combination with mesenchymal stem cell treatment: a prospective study. Arthroscopy. 2014;30(11):1453–60.

    Article  PubMed  Google Scholar 

  3. Kim YS, Choi YJ, Suh DS, et al. Mesenchymal stem cell implantation in osteoarthritic knee: is fibrin glue effective as a scaffold? Am J Sports Med. 2015;43(1):176–85.

    Article  PubMed  Google Scholar 

(Synovial tissue)

  1. Sekiya I, Muneta T, Horie M, et al. Arthroscopic transplantation of synovial stem cells improves clinical outcomes in knees with cartilage defects. Clin Orthop Relat Res. 2015;473(7):2316–26.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Akgun I, Unlu MC, Erdal OA, et al. Matrix-induced autologous mesenchymal stem cell implantation versus matrix-induced autologous chondrocyte implantation in the treatment of chondral defects of the knee: a 2-year randomized study. Arch Orthop Trauma Surg. 2015;135(2):251–63.

    Article  PubMed  Google Scholar 

(Peripheral blood)

  1. Saw KY, Anz A, Siew-Yoke Jee C, Merican S, et al. Articular cartilage regeneration with autologous peripheral blood stem cells versus hyaluronic acid: a randomized controlled trial. Arthroscopy. 2013;29(4):684–94.

    Article  PubMed  Google Scholar 

  2. Saw KY, Anz A, Merican S, et al. Articular cartilage regeneration with autologous peripheral blood progenitor cells and hyaluronic acid after arthroscopic subchondral drilling: a report of 5 cases with histology. Arthroscopy. 2011;27(4):493–506.

    Article  PubMed  Google Scholar 

  3. Turajane T, Chaweewannakom U, Larbpaiboonpong V, et al. Combination of intra-articular autologous activated peripheral blood stem cells with growth factor addition/ preservation and hyarluronic acid in conjunction with arthroscopic microdrilling mesenchymal cell stimulation improves quality of life and regenerates articular cartilage in early osteoarthritic knee disease. J Med Assoc Thail. 2013;96(5):580–8.

    Google Scholar 

  4. Fu WL, Ao TF, Ke XY, et al. Repair of large full-thickness cartilage defect activating endogenous peripheral blood stem cells and autogenous periosteum flap transplantation combined with patellofemoral realignment. Knee. 2014;21(2):609–12.

    Article  PubMed  Google Scholar 

  5. Saw KY, Anz A, Jee CS, et al. High tibial osteotomy in combination with chondrogenesis after stem cell therapy: a histologic report of 8 cases. Arthroscopy 2015.

(One-step procedure)

  1. Buda R, Vannini F, Cavallo M, et al. Osteochondral lesions of the knee: a new one-step technique with bone marrow derived cells. J Bone Joint Surg Am. 2012;92(Supple 2):2–11.

    Google Scholar 

  2. Gobbi A, Karnatzikos G, Sankineani SR. One-step surgery with multipotent stem cells for the treatment of large full-thickness chondral defects of the knee. Am J Sports Med. 2014;42(3):648–57. A recent clinical study showing the potential efficacy of one-step surgery with the use of bone marrow concentrate and scaffold in cartilage repair surgery.

    Article  PubMed  Google Scholar 

Future directions (Other cell sources)

  1. Matsumoto T, Kubo S, Meszaros LB, et al. The influence of sex on the chondrogenic potential of muscle-derived stem cells: implications for cartilage regeneration and repair. Arthritis Rheum. 2008;58(12):3809–19.

    Article  CAS  PubMed  Google Scholar 

  2. Li F, Chen YZ, Miao ZN, et al. Human placenta-derived mesenchymal stem cells with silk fibroin biomaterial in the repair of articular cartilage defects. Cell Reprogram. 2012;14(4):334–41.

    CAS  PubMed  Google Scholar 

  3. Nobami M, Tsuno H, Koike C, et al. Isolation and characterization of human amniotic mesenchymal stem cells and their chondrogenic differentiation. Trans Plantation. 2012;93(12):1221–8.

    Google Scholar 

  4. Park YB, Song M, Lee CH, et al. Cartilage repair by human umbilical cord blood-derived mesenchymal stem cells with different hydrogels in a rat model. J Orthop Res. 2015.

  5. Mizuno M, Kobayashi S, Takebe T, et al. Brief report: reconstruction of joint hyaline cartilage by autologous progenitor cells derived from ear elastic cartilage. Stem Cells. 2014;32(3):816–21.

    Article  PubMed  Google Scholar 

(Embryomic stem cell and induced pluripotent stem cell)

  1. Olee T, Grogan SP, Lotz MK, et al. Repair of cartilage defects in arthritic tissue with differentiated human embryonic stem cells. Tissue Eng Part A. 2014;20(3–4):683–92.

    PubMed Central  PubMed  Google Scholar 

  2. Diekman BO, Christoforou N, Wilard VP, et al. Cartilage tissue engineering using differentiated and purified induced pluripotent stem cells. Proc Natl Acad Sci U S A. 2012;109(47):19172–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Tsumaki N, Okada M, Yamashita A. iPS cell technologies and cartilage regeneration. Bone. 2015;70:48–54.

    Article  CAS  PubMed  Google Scholar 

(Biological enhancement of cartilage regeneration)

  1. Venkatesan JK, Ekici M, Madry H, et al. SOX9 gene transfer via safe, stable, replication-defective recombinant adeno-associated virus vectors as a novel, powerful tool to enhance the chondrogenic potential of human mesenchymal stem cells. Stem Cell Res Ther. 2012;3(3):22.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Frisch J, Venkatesan JK, Rey-Rico A, et al. Determination of the chondrogenic differentiation processes in human bone marrow-derived mesenchymal stem cells genetically modified to overexpress transforming growth factor-βvia recombinant adeno-associated viral vectors. 2014;25(12):1050–60.

  3. Ahmed TA, Hincke MT. Mesenchymal stem cell-based tissue engineering strategies for repair of articular cartilage. Histol Histopathol. 2014;29(6):669–89.

    CAS  PubMed  Google Scholar 

  4. Tang Y, Wang B. Gene- and stem cell-based therapeutics for cartilage regeneration and repair. Stem Cell Res Ther. 2015;6:78.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Chirba MA, Sweetapple B, Hannon CP, et al. FDA regulation of adult stem cell therapies as used in sports medicine. J Knee Surg. 2015;28(1):55–62.

    Article  PubMed  Google Scholar 

Download references

Compliance with ethics guidelines

Conflict of interest

Dr. Yoshiya has received money from the Arthroscopy Journal for serving as an Associate Editor.

Dr. Dhawan has received money from the Arthroscopy Journal for serving as an Associate Editor and for lectures and serving as a consultant for Smith & Nephew, Arthrex, and BioMet.

Human and animal rights and informed consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinichi Yoshiya.

Additional information

This article is part of the Topical Collection on Cartilage Repair Techniques in the Knee

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoshiya, S., Dhawan, A. Cartilage repair techniques in the knee: stem cell therapies. Curr Rev Musculoskelet Med 8, 457–466 (2015). https://doi.org/10.1007/s12178-015-9302-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12178-015-9302-y

Keywords

Navigation