Skip to main content
Log in

Current Status and Advancement of Ultrasound Imaging Technologies in Musculoskeletal Studies

  • Musculoskeletal Rehabilitation (K Onishi, Section Editor)
  • Published:
Current Physical Medicine and Rehabilitation Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This paper aims to review the currently available ultrasound imaging technologies in musculoskeletal studies by showcasing recent representative works in the field. Brief comments on the technical characteristics and potential advancement of these technologies are provided.

Recent Findings.

Other than the conventional brightness-mode (B-mode) ultrasound, recent ultrasound imaging technologies used for investigating musculoskeletal systems mainly include ultrasound elastography (UE), photoacoustic imaging (PAI), contrast agent-enhanced ultrasound (CEUS) imaging, and three-dimensional (3D) ultrasound imaging.

Summary

Current ultrasound imaging technologies provided a variety of noninvasive tools for studying specific problems in musculoskeletal systems. 3D volumetric imaging capability and incorporating the recent developments of artificial intelligence (AI) will potentially advance the current technologies more comprehensive and robust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Kocyigit F, Kuyucu E, Kocyigit A, et al. Investigation of biomechanical characteristics of intact supraspinatus tendons in subacromial impingement syndrome. Am J Phys Med Rehabil. 2016;95:588–96. https://doi.org/10.1097/PHM.0000000000000450.

    Article  PubMed  Google Scholar 

  2. • Payne C, Webborn N, Watt P, Cercignani M. Poor reproducibility of compression elastography in the Achilles tendon: same day and consecutive day measurements. Skeletal Radiol. 2017;46:889–95. https://doi.org/10.1007/s00256-017-2629-2. This paper argued controversy in reliability of CE and was supported by experimental data.

    Article  PubMed  Google Scholar 

  3. Andonian P, Viallon M, Le Goff C, et al. Shear-wave elastography assessments of quadriceps stiffness changes prior to, during and after prolonged exercise: a longitudinal study during an extreme mountain ultra-marathon. PLoS ONE. 2016;11:e0161855. https://doi.org/10.1371/journal.pone.0161855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Alfuraih AM, Tan AL, O’Connor P, et al. The effect of ageing on shear wave elastography muscle stiffness in adults. Aging Clin Exp Res. 2019;31:1755–63. https://doi.org/10.1007/s40520-019-01139-0.

    Article  PubMed  PubMed Central  Google Scholar 

  5. • Hirata K, Kanehisa H, Miyamoto N. Association between medial gastrocnemius muscle-tendon unit architecture and ankle dorsiflexion range of motion with and without consideration of slack angle. PLoS ONE. 2021;16:1–12. https://doi.org/10.1371/journal.pone.0248125. This is the most recent in vivo study on SWE in the human musculoskeletal system.

    Article  CAS  Google Scholar 

  6. Zardi EM, Franceschetti E, Giorgi C, et al. Reliability of quantitative point shear-wave ultrasound elastography on vastus medialis muscle and quadriceps and patellar tendons. Med Ultrason. 2019;21:50–5. https://doi.org/10.11152/mu-1712.

    Article  PubMed  Google Scholar 

  7. Payne C, Watt P, Cercignani M, Webborn N. Reproducibility of shear wave elastography measuresof the Achilles tendon. Skeletal Radiol. 2018;47:779–84. https://doi.org/10.1007/s00256-017-2846-8.

    Article  PubMed  Google Scholar 

  8. Dorado Cortez C, Hermitte L, Ramain A, et al. Ultrasound shear wave velocity in skeletal muscle: a reproducibility study. Diagn Interv Imaging. 2016;97:71–9. https://doi.org/10.1016/j.diii.2015.05.010.

    Article  PubMed  Google Scholar 

  9. Ryu JA, Jeong WK. Current status of musculoskeletal application of shear wave elastography. Ultrasonography. 2017;36:185–97.

    Article  Google Scholar 

  10. • Chalchat E, Gennisson J-L, Peñailillo L, et al. Changes in the viscoelastic properties of the vastus lateralis muscle with fatigue. Front Physiol. 2020;11:307. https://doi.org/10.3389/fphys.2020.00307. This is a recent SWE study that included phase velocity reconstruction for quantifying viscoelastic property.

    Article  PubMed  PubMed Central  Google Scholar 

  11. • Wang AB, Perreault EJ, Royston TJ, Lee SSM. Changes in shear wave propagation within skeletal muscle during active and passive force generation. J Biomech. 2019;94:115–22. https://doi.org/10.1016/j.jbiomech.2019.07.019. This is a recent SWE study that included phase velocity reconstruction for quantifying viscoelastic property.

    Article  PubMed  PubMed Central  Google Scholar 

  12. van den Berg PJ, Daoudi K, Bernelot Moens HJ, Steenbergen W. Feasibility of photoacoustic/ultrasound imaging of synovitis in finger joints using a point-of-care system. Photoacoustics. 2017;8:8–14. https://doi.org/10.1016/j.pacs.2017.08.002.

    Article  PubMed  PubMed Central  Google Scholar 

  13. • Jo J, Xu G, Cao M, et al. A functional study of human inflammatory arthritis using photoacoustic imaging. Sci Rep. 2017;7:1–9. https://doi.org/10.1038/s41598-017-15147-5. This is an important study that showcased PAI application in the human musculoskeletal system.

    Article  CAS  Google Scholar 

  14. Sidhu PS, Cantisani V, Dietrich CF, et al. The EFSUMB guidelines and recommendations for the clinical practice of contrast-enhanced ultrasound (CEUS) in non-hepatic applications: update 2017 (Long Version). Ultraschall der Medizin. 2018;39:e2–44. https://doi.org/10.1055/a-0586-1107.

    Article  Google Scholar 

  15. Dietrich C, Averkiou M, Bachmann Nielsen M, et al. How to perform contrast-enhanced ultrasound (CEUS) affiliations. An introduction to terminology. Ultrasound Int Open. 2017;3:E2–15.

    Article  Google Scholar 

  16. Hotfiel T, Heiss R, Swoboda B, et al. Contrast-enhanced ultrasound as a new investigative tool in diagnostic imaging of muscle injuries - a pilot study evaluating conventional ultrasound, CEUS, and findings in MRI. Clin J Sport Med. 2018;28:332–8. https://doi.org/10.1097/JSM.0000000000000470.

    Article  PubMed  Google Scholar 

  17. Fischer C, Gross S, Zeifang F, et al. Contrast-enhanced ultrasound determines supraspinatus muscle atrophy after cuff repair and correlates to functional shoulder outcome. Am J Sports Med. 2018;46:2735–42. https://doi.org/10.1177/0363546518787266.

    Article  PubMed  Google Scholar 

  18. Obst SJ, Boyd R, Read F, Barber L. Quantitative 3-D ultrasound of the medial gastrocnemius muscle in children with unilateral spastic cerebral palsy. Ultrasound Med Biol. 2017;43:2814–23. https://doi.org/10.1016/j.ultrasmedbio.2017.08.929.

    Article  PubMed  Google Scholar 

  19. Cenni F, Bar-On L, Schless SH, et al. Medial gastrocnemius muscle–tendon junction and fascicle lengthening across the range of motion analyzed in 2-D and 3-D ultrasound images. Ultrasound Med Biol. 2018;44:2505–18. https://doi.org/10.1016/j.ultrasmedbio.2018.07.012.

    Article  PubMed  Google Scholar 

  20. Gijsbertse K, Sprengers AMJ, Nillesen MM, et al. Three-dimensional ultrasound strain imaging of skeletal muscles. Phys Med Biol. 2017;62:596–611. https://doi.org/10.1088/1361-6560/aa5077.

    Article  CAS  PubMed  Google Scholar 

  21. •• Papadacci C, Bunting EA, Konofagou EE. 3D quasi-static ultrasound elastography with plane wave in vivo. IEEE Trans Med Imaging. 2017;36:357–65. https://doi.org/10.1109/TMI.2016.2596706. This paper for the first time developed high-volume-rate 3D quasi-static ultrasound elastography.

    Article  PubMed  Google Scholar 

  22. Roux E, Ramalli A, Tortoli P, et al. 2-D ultrasound sparse arrays multidepth radiation optimization using simulated annealing and spiral-array inspired energy functions. IEEE Trans Ultrason Ferroelectr Freq Control. 2016;63:2138–49. https://doi.org/10.1109/TUFFC.2016.2602242.

    Article  PubMed  Google Scholar 

  23. Hai P, Yao J, Li G, et al. Photoacoustic elastography. Opt Lett. 2016;41:725. https://doi.org/10.1364/ol.41.000725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hai P, Zhou Y, Gong L, Wang LV. Quantitative photoacoustic elastography in humans. J Biomed Opt. 2016;21:066011. https://doi.org/10.1117/1.jbo.21.6.066011.

    Article  PubMed Central  Google Scholar 

  25. Siracusa J, Charlot K, Malgoyre A, et al. Resting muscle shear modulus measured with ultrasound shear-wave elastography as an alternative tool to assess muscle fatigue in humans. Front Physiol. 2019;10:626. https://doi.org/10.3389/fphys.2019.00626.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sheng Z, Sharma N, Kim K. Quantitative assessment of changes in muscle contractility due to fatigue during NMES: an ultrasound imaging approach. IEEE Trans Biomed Eng. 2020;67:832–41. https://doi.org/10.1109/TBME.2019.2921754.

    Article  PubMed  Google Scholar 

  27. Sheng Z, Sharma N, Kim K. Ultra-high-frame-rate ultrasound monitoring of muscle contractility changes due to neuromuscular electrical stimulation. Ann Biomed Eng. 2021;49:262–75. https://doi.org/10.1007/s10439-020-02536-7.

    Article  PubMed  Google Scholar 

  28. Dhawan AS, Mukherjee B, Patwardhan S, et al. Proprioceptive sonomyographic control: a novel method for intuitive and proportional control of multiple degrees-of-freedom for individuals with upper extremity limb loss. Sci Rep. 2019;9:1–15. https://doi.org/10.1038/s41598-019-45459-7.

    Article  CAS  Google Scholar 

  29. Zhang Q, Kim K, Sharma N. Prediction of ankle dorsiflexion moment by combined ultrasound sonography and electromyography. IEEE Trans Neural Syst Rehabil Eng. 2020;28:318–27. https://doi.org/10.1109/TNSRE.2019.2953588.

    Article  PubMed  Google Scholar 

  30. •• Hu H, Zhu X, Wang C, et al. Stretchable ultrasonic transducer arrays for three-dimensional imaging on complex surfaces. Sci Adv. 2018;4:3979. https://doi.org/10.1126/sciadv.aar3979. This work proposed design and implementation of a wearable stretchable ultrasound array transducer, which is unique in literature.

    Article  CAS  Google Scholar 

  31. • Flesch M, Pernot M, Provost J, et al. 4D in vivo ultrafast ultrasound imaging using a row-column addressed matrix and coherently-compounded orthogonal plane waves. Phys Med Biol. 2017;62:4571–88. https://doi.org/10.1088/1361-6560/aa63d9. This is a recent paper that investigated RCA approach for achieving element reduction in 3D volumetric imaging.

    Article  CAS  PubMed  Google Scholar 

  32. • Roux E, Varray F, Petrusca L, et al. Experimental 3-D ultrasound imaging with 2-D sparse arrays using focused and diverging waves. Sci Rep. 2018;8:1–12. https://doi.org/10.1038/s41598-018-27490-2. This is a recent paper that investigated sparse array approach for achieving element reduction in 3D volumetric imaging.

    Article  CAS  Google Scholar 

  33. •• Huijben IAM, Veeling BS, Janse K, et al. Learning sub-sampling and signal recovery with applications in ultrasound imaging. IEEE Trans Med Imaging. 2020;39:3955–66. https://doi.org/10.1109/TMI.2020.3008501. This is the most recent paper that proposed a general AI algorithm that can be used for sparse array design, as well as high-quality image recovery with partially sampled signals.

    Article  PubMed  Google Scholar 

  34. Burlina P, Billings S, Joshi N, Albayda J. Automated diagnosis of myositis from muscle ultrasound: exploring the use of machine learning and deep learning methods. PLoS ONE. 2017;12:1–15. https://doi.org/10.1371/journal.pone.0184059.

    Article  CAS  Google Scholar 

  35. Cunningham R, Sánchez MB, May G, Loram I (2018) Estimating full regional skeletal muscle fibre orientation from b-mode ultrasound images using convolutional, residual, and deconvolutional neural networks. J Imaging 4https://doi.org/10.3390/jimaging4020029

  36. Cipolletta E, Fiorentino MC, Moccia S, et al. Artificial intelligence for ultrasound informative image selection of metacarpal head cartilage. A pilot study Front Med. 2021;8:1–8. https://doi.org/10.3389/fmed.2021.589197.

    Article  Google Scholar 

  37. • Feigin M, Freedman D, Anthony BW. A deep learning framework for single-sided sound speed inversion in medical ultrasound. IEEE Trans Biomed Eng. 2020;67:1142–51. https://doi.org/10.1109/TBME.2019.2931195. This is a typical example that can showcase the application of AI in ultrasound imaging to obtain important physical parameters that can be hardly achieved by conventional image modalities.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jay Smith or Kang Kim.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Institutional Review Board (IRB) of the University of Pittsburgh and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Musculoskeletal Rehabilitation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheng, Z., Smith, J. & Kim, K. Current Status and Advancement of Ultrasound Imaging Technologies in Musculoskeletal Studies. Curr Phys Med Rehabil Rep 10, 45–51 (2022). https://doi.org/10.1007/s40141-021-00337-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40141-021-00337-0

Keywords

Navigation