Skip to main content
Log in

Poor reproducibility of compression elastography in the Achilles tendon: same day and consecutive day measurements

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Objective

To determine the reproducibility of compression elastography (CE) when measuring strain data, a measure of stiffness of the human Achilles tendon in vivo, over consecutive measures, consecutive days and when using different foot positions.

Materials and methods

Eight participants (4 males, 4 females; mean age 25.5 ± 2.51 years, range 21–30 years; height 173.6 ± 11.7 cm, range 156–189 cm) had five consecutive CE measurements taken on one day and a further five CE measures taken, one per day, at the same time of day, every day for a consecutive 5-day period. These 80 measurements were used to assess both the repeatability and reproducibility of the technique. Means, standard deviations, coefficient of variation (CV), Pearson correlation analysis (R) and intra-class correlation coefficients (ICC) were calculated.

Results

For CE data, all CVs were above 53%, R values indicated no-to-weak correlations between measures at best (range 0.01–0.25), and ICC values were all classified in the poor category (range 0.00–0.11). CVs for length and diameter measures were acceptably low indicating a high level of reliability.

Conclusions

Given the wide variation obtained in the CE results, it was concluded that CE using this specific system has a low level of reproducibility for measuring the stiffness of the human Achilles tendon in vivo over consecutive days, consecutive measures and in different foot positions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Milgrom C, Finestone A, Zin D, Mandel D, Novack V. Cold weather training: a risk factor for Achilles paratendinitis among recruits. Foot Ankle Int. 2003;24:398–401.

    Article  CAS  PubMed  Google Scholar 

  2. Wren TAL, Yerby SA, Beaupré GS, Carter DR. Mechanical properties of the human Achilles tendon. Clin Biomech. 2001;16:245–51.

    Article  CAS  Google Scholar 

  3. Murtaugh B, Ihm JM. Eccentric training for the treatment of tendinopathies. Curr Sports Med Rep. 2013;12:175–82.

    Article  PubMed  Google Scholar 

  4. Ophir J, Cespedes I, Ponnekanti H, Yazdi Y, Li X. Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging. 1991;13:111–34.

    Article  CAS  PubMed  Google Scholar 

  5. Horton L. Correlation of B-mode sonography and compression elastography for diagnosis of tendon degeneration: a pictorial review. Ultrasound. 2013;21:176–80.

    Article  Google Scholar 

  6. Sconfienza LM, Silvestri E, Orlandi D, et al. Real-time sonoelastography of the plantar fascia: comparison between patients with plantar fasciitis and healthy control subjects. Radiology. 2013;267:195–200.

    Article  PubMed  Google Scholar 

  7. Sarvazyan A, Hall TJ, Urban MW, Fatemi M, Aglyamov SR, Garra BS. An overview of elastography—an emerging branch of medical imaging. Curr Med Imaging Rev. 2011;7:255–82.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Itoigawa Y, Sperling JW, Steinmann SP, et al. Feasibility assessment of shear wave elastography to rotator cuff muscle. Clin Anat. 2015;28:213–8.

    Article  PubMed  Google Scholar 

  9. Ahn K-S, Kang CH, Hong S-J, Jeong W-K. Ultrasound elastography of lateral epicondylosis: clinical feasibility of quantitative elastographic measurements. AJR Am J Roentgenol. 2014;202:1094–9.

    Article  PubMed  Google Scholar 

  10. Porta F, Damjanov N, Galluccio F, Iagnocco A, Matucci-Cerinic M. Ultrasound elastography is a reproducible and feasible tool for the evaluation of the patellar tendon in healthy subjects. Int J Rheum Dis. 2014;17:760–4.

    Article  Google Scholar 

  11. Ooi CC, Malliaras P, Schneider ME, Connell DA. “Soft, hard, or just right?” Applications and limitations of axial-strain sonoelastography and shear-wave elastography in the assessment of tendon injuries. Skelet Radiol. 2013;43:1–12.

    Article  Google Scholar 

  12. Yamamoto Y, Yamaguchi S, Sasho T, et al. Quantitative ultrasound elastography with an acoustic coupler for Achilles tendon elasticity: measurement repeatability and normative values. J Ultrasound Med. 2015;35:159–66.

    Article  PubMed  Google Scholar 

  13. De Zordo T, Fink C, Feuchtner GM, Smekal V, Reindl M, Klauser AS. Real-time sonoelastography findings in healthy Achilles tendons. AJR Am J Roentgenol. 2009;193:W134–8.

    Article  PubMed  Google Scholar 

  14. Drakonaki EE, Allen GM, Wilson DJ. Real-time ultrasound elastography of the normal Achilles tendon: reproducibility and pattern description. Clin Radiol. 2009;64:1196–202.

    Article  CAS  PubMed  Google Scholar 

  15. Klauser AS, Miyamoto H, Tamegger M, et al. Achilles tendon assessed with sonoelastography: histologic agreement. Radiology. 2013;267:837–42.

    Article  PubMed  Google Scholar 

  16. Palle L, Reddy MB, Reddy KJ, Kumari MV. Technical note: real-time sonoelastography evaluation of Achilles tendon. Indian J Radiol Imaging. 2011;21:267–9.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Tan S, Kudaş S, Özcan AS, et al. Real-time sonoelastography of the Achilles tendon: pattern description in healthy subjects and patients with surgically repaired complete ruptures. Skelet Radiol. 2012;41:1067–72.

    Article  Google Scholar 

  18. Schneebeli A, Del Grande F, Vincenzo G, et al. Real-time sonoelastography using an external reference material: test-retest reliability of healthy Achilles tendons. Skelet Radiol. 2016;45:1045–52.

    Article  Google Scholar 

  19. Boesen MI, Koenig MJ, Torp-Pedersen S, Bliddal H, Langberg H. Tendinopathy and Doppler activity: the vascular response of the achilles tendon to exercise. Scand J Med Sci Sport. 2006;16:463–9.

    Article  CAS  Google Scholar 

  20. Rosengarten SD, Cook JL, Bryant AL, Cordy JT, Daffy J, Docking SI. Australian football players’ Achilles tendons respond to game loads within 2 days: an ultrasound tissue characterisation (UTC) study. Br J Sports. 2015;49:183–7.

    Article  Google Scholar 

  21. Wu CH, Chang KV, Mio S, Chen WS, Wang TG. Sonoelastography of the plantar fascia. Radiology. 2011;259:502–7.

    Article  PubMed  Google Scholar 

  22. Chino K, Akagi R, Dohi M, Fukashiro S, Takahashi H. Reliability and validity of quantifying absolute muscle hardness using ultrasound elastography. PLoS One. 2012;7, e45764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Arda K, Ciledag N, Aktas E, Aribas BK, Köse K. Quantitative assessment of normal soft-tissue elasticity using shear-wave ultrasound elastography. AJR Am J Roentgenol. 2011;197:532–6.

    Article  PubMed  Google Scholar 

  24. Treece G, Lindop J, Chen L, Housden J, Prager R, Gee A. Real-time quasi-static ultrasound elastography. Interface Focus. 2011;1:540–52.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Iversen JV, Bartels EM, Langberg H. The Victorian Institute of Sports Assessment—Achilles questionnaire (VISA-A)—a reliable tool for measuring Achilles tendinopathy. Int J Sports Phys Ther. 2012;7:76–84.

    PubMed  PubMed Central  Google Scholar 

  26. Brandenburg JE, Eby SF, Song P, et al. Ultrasound elastography: the new frontier in direct measurement of muscle stiffness. Arch Phys Med Rehabil. 2014;95:2207–19.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Calvete AC, Rodríguez JM, de Dios Berná-Mestre J, Rios A, Abellán-Rivero D, Reus M. Interobserver agreement for thyroid elastography value of the quality factor. J Ultrasound Med. 2013;32:495–504.

  28. Dancey C, Reidy J. Statistics without maths for psychology using SPSS for windows. 3rd ed. New Jersey: Pearson Prentice Hall; 2004.

    Google Scholar 

  29. Giraudeau B. Negative values of the intraclass correlation coefficient are not theoretically possible. J Clin Epidemiol. 1996;49:1205–6.

    Article  CAS  PubMed  Google Scholar 

  30. Ying M, Yeung E, Li B, Li W, Lui M, Tsoi C. Sonographic evaluation of the size of Achilles tendon: the effect of exercise and dominance of the ankle. Ultrasound Med Biol. 2003;29:637–42.

    Article  PubMed  Google Scholar 

  31. Chen XM, Cui LG, He P, Shen WW, Qian YJ, Wang JR. Shear wave elastographic characterization of normal and torn achilles tendons a pilot study. J Ultrasound Med. 2013;32:449–55.

    Article  PubMed  Google Scholar 

  32. Peltz CD, Haladik JA, Divine G, Siegal D, van Holsbeeck M, Bey MJ. ShearWave elastography: repeatability for measurement of tendon stiffness. Skelet Radiol. 2013;42:1151–6.

    Article  CAS  Google Scholar 

  33. Eby SF, Song P, Chen S, Chen Q, Greenleaf JF, An K-N. Validation of shear wave elastography in skeletal muscle. J Biomech. 2013;46:2381–7.

    Article  PubMed  Google Scholar 

  34. Klauser AS, Miyamoto H, Bellmann-Weiler R, Feuchtner GM, Wick MC, Jaschke WR. Sonoelastography: musculoskeletal applications. Radiology. 2014;272:622–33.

    Article  PubMed  Google Scholar 

  35. Sconfienza LM, Silvestri E, Cimmino MA. Sonoelastography in the evaluation of painful Achilles tendon in amateur athletes. Clin Exp Rheumatol. 2010;28:373–8.

    PubMed  Google Scholar 

  36. Obuchowski N, Lieber M. Statistics and methodology. Skelet Radiol. 2008;37:393–6.

    Article  Google Scholar 

  37. Hoskins PR. Principles of ultrasound elastography. Ultrasound. 2012;20:8–15.

    Article  Google Scholar 

  38. Drakonaki EE, Allen GM, Wilson DJ. Ultrasound elastography for musculoskeletal applications. Br J Radiol. 2012;85:1435–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. van Schie HTM, Bakker EM, Jonker AM, van Weeren PR. Computerized ultrasonographic tissue characterization of equine superficial digital flexor tendons by means of stability quantification of echo patterns in contiguous transverse ultrasonographic images. Am J Vet Res. 2003;64:366–75.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine Payne.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Payne, C., Webborn, N., Watt, P. et al. Poor reproducibility of compression elastography in the Achilles tendon: same day and consecutive day measurements. Skeletal Radiol 46, 889–895 (2017). https://doi.org/10.1007/s00256-017-2629-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-017-2629-2

Keywords

Navigation