Skip to main content
Log in

Reproducibility of shear wave elastography measuresof the Achilles tendon

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Objective

To assess the reproducibility of shear wave elastography (SWE) measures in the Achilles tendon (AT) in vivo.

Materials and methods

Shear wave velocity (SWV) of 14 healthy volunteers [7 males, 7 females; mean age 26.5 ± 3.8 years, mean height 171.6 ± 10.9 cm, mean Victorian Institute of Sports Assessment Achilles questionnaire (VISA-A) score 99.4 ± 1.2] was measured with the foot relaxed and fixed at 90°. Data were collected over five consecutive measures and 5 consecutive days.

Results

Mean SWV values ranged from 7.91 m/s–9.56 m/s ± 0.27–0.50 m/s. Coefficient of variation (CV), correlations and intra-class correlation coefficient (ICC) scores ranged from 2.9%–6.3%, 0.4–0.7 and 0.54–0.85 respectively. No significant differences were noted for longitudinal or transverse data with respect to protocol or time and no significant differences were noted for foot position in transverse data. Significant differences in SWV values were noted between foot positions for longitudinal scanning (p = <0.05), with a relaxed foot position providing SWV values on average 0.47 m/s faster than a fixed position. Increased reproducibility was obtained with the foot relaxed. ICC between operators was 0.70 for transverse and 0.80 for longitudinal scanning.

Conclusions

Reproducible SWE measures were obtained over a 1-h period as well as a period of 5 consecutive days with more reliable measures obtained from a longitudinal plane using a relaxed foot position. SWE also has a high level of agreement between operators making SWE a reproducible technique for quantitatively assessing the mechanical properties of the human AT in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Pang B, Ying M. Sonographic measurement of Achilles tendons in asymptomatic subjects. J Ultrasound Med. 2006;25:1291–6.

    Article  PubMed  Google Scholar 

  2. Wren T, Yerby S, Beaupré G, Carter D. Mechanical properties of the human Achilles tendon. Clin Biomech. 2001;16:245–51.

    Article  CAS  Google Scholar 

  3. Morrissey D, Roskilly A, Twycross-Lewis R, Isinkaye T, Screen H, Woledge R, et al. The effect of eccentric and concentric calf muscle training on Achilles tendon stiffness. Clin Rehabil. 2011;25:238–47.

    Article  PubMed  Google Scholar 

  4. Rasmussen OS. Sonography of tendons. Scand J Med Sci Sports. 2000;10:360–4.

    Article  CAS  PubMed  Google Scholar 

  5. Horton L. Correlation of B-mode sonography and compression elastography for diagnosis of tendon degeneration: a pictorial review. Ultrasound. 2013;21:176–80.

    Article  Google Scholar 

  6. Ooi CC, Malliaras P, Schneider ME, Connell DA. “Soft, hard, or just right?” applications and limitations of axial-strain sonoelastography and shear-wave elastography in the assessment of tendon injuries. Skelet Radiol. 2013;43:1–12.

    Article  Google Scholar 

  7. Brum J, Bernal M, Gennisson JL, Tanter M. In vivo evaluation of the elastic anisotropy of the human Achilles tendon using shear wave dispersion analysis. Phys Med Biol. 2014;59:505–23.

    Article  CAS  PubMed  Google Scholar 

  8. Payne C, Webborn N, Watt P, Cercignani M. Poor reproducibility of compression elastography in the Achilles tendon: same day and consecutive day measurements. Skelet Radiol. 2017;46:889–95.

    Article  Google Scholar 

  9. Chen X, Cui L, He P, Shen W, Qian Y, Wang J. Shear wave elastographic characterization of normal and torn Achilles tendons a pilot study. J Ultrasound Med. 2013;32:449–55.

    Article  PubMed  Google Scholar 

  10. Eby SF, Song P, Chen S, Chen Q, Greenleaf JF, An K-N. Validation of shear wave elastography in skeletal muscle. J Biomech. 2013;46:2381–7.

    Article  PubMed  Google Scholar 

  11. Hoskins PR. Principles of ultrasound elastography. Ultrasound. 2012;20:8–15.

    Article  Google Scholar 

  12. Siemens. Tissue strain analytics virtual touch tissue imaging and quantification. 2008.

  13. Garra B. Tissue elasticity imaging using ultrasound. Appl Radiol. 2011;1:24–30.

    Google Scholar 

  14. Drakonaki EE, Allen GM, Wilson DJ. Real-time ultrasound elastography of the normal Achilles tendon: reproducibility and pattern description. Clin Radiol. 2009;64:1196–202.

    Article  CAS  PubMed  Google Scholar 

  15. Arda K, Ciledag N, Aktas E, Aribas BK, Köse K. Quantitative assessment of normal soft-tissue elasticity using shear-wave ultrasound elastography. AJR Am J Roentgenol. 2011;197:532–6.

    Article  PubMed  Google Scholar 

  16. Kot BCW, Zhang ZJ, Lee AWC, Leung VYF, Fu SN. Elastic modulus of muscle and tendon with shear wave ultrasound elastography: variations with different technical settings. PLoS One. 2012;7:e44348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Aubry S, Risson J, Kastler A, Barbier-Brion B, Siliman G, Runge M, et al. Biomechanical properties of the calcaneal tendon in vivo assessed by transient shear wave elastography. Skelet Radiol. 2013;42:1143–50.

    Article  Google Scholar 

  18. Chang JM, Won J-K, Lee K-B, Park IA, Yi A, Moon WK. Comparison of shear-wave and strain ultrasound elastography in the differentiation of benign and malignant breast lesions. Am J Roentgenol. 2013;201:W347–56.

    Article  Google Scholar 

  19. DeWall RJ, Slane LC, Lee KS, Thelen DG. Spatial variations in Achilles tendon shear wave speed. J Biomech. 2014;47:2685–92.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Cosgrove DO, Berg WA, Doré CJ, Skyba DM, Henry J-P, Gay J, et al. Shear wave elastography for breast masses is highly reproducible. Eur Radiol. 2012;22:1023–32.

    Article  PubMed  Google Scholar 

  21. Peltz CD, Haladik JA, Divine G, Siegal D, van Holsbeeck M, Bey MJ. ShearWave elastography: repeatability for measurement of tendon stiffness. Skelet Radiol. 2013;42:1151–6.

    Article  CAS  Google Scholar 

  22. Ferraioli G, Tinelli C, Zicchetti M, Above E, Poma G, Di Gregorio M, et al. Reproducibility of real-time shear wave elastography in the evaluation of liver elasticity. Eur J Radiol. 2012;81:3102–6.

    Article  PubMed  Google Scholar 

  23. Rosengarten SD, Cook JL, Bryant AL, Cordy JT, Daffy J, Docking SI. Australian football players’ Achilles tendons respond to game loads within 2 days: an ultrasound tissue characterisation (UTC) study. Br J Sports Med. 2015;49:183–7.

    Article  PubMed  Google Scholar 

  24. Iversen J, Bartels E, Langberg H. The Victorian Institute of Sports Assessment–Achilles questionnaire (VISA-A)–a reliable tool for measuring Achilles tendinopathy. Int J Sports Phys Ther. 2012;7:76–84.

    PubMed  PubMed Central  Google Scholar 

  25. Ianculescu V, Ciolovan LM, Dunant A, Vielh P, Mazouni C, Delaloge S, et al. Added value of virtual touch IQ shear wave elastography in the ultrasound assessment of breast lesions. Eur J Radiol. 2014;83:773–7.

    Article  PubMed  Google Scholar 

  26. Doherty J, Trahey G, Nightingale K, Palmeri M. Acoustic radiation force elasticity imaging in diagnostic ultrasound. IEEE Trans Ultrason Ferroelectr Freq Control. 2013;60:685–701.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mahieu NN, McNair P, Cools A, D’Haen C, Vandermeulen K, Witvrouw E. Effect of eccentric training on the plantar flexor muscle-tendon tissue properties. Med Sci Sports Exerc. 2008;40:117–23.

    Article  PubMed  Google Scholar 

  28. Chino K, Akagi R, Dohi M, Fukashiro S, Takahashi H. Reliability and validity of quantifying absolute muscle hardness using ultrasound elastography. PLoS One. 2012;7:e45764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hopkins WG. Measures of reliability in sports medicine and science. Sport Med. 2000;30:1–15.

    Article  CAS  Google Scholar 

  30. Dancey C, Reidy J. Statistics without maths for psychology using SPSS for windows. 3rd ed. New Jersey: Pearson Prentice Hall; 2004.

    Google Scholar 

  31. De Zordo T, Fink C, Feuchtner GM, Smekal V, Reindl M, Klauser AS. Real-time sonoelastography findings in healthy Achilles tendons. AJR Am J Roentgenol. 2009;193:W134–8.

    Article  PubMed  Google Scholar 

  32. Kongsgaard M, Nielsen CH, Hegnsvad S, Aagaard P, Magnusson SP. Mechanical properties of the human Achilles tendon, in vivo. Clin Biomech. 2011;26:772–7.

    Article  CAS  Google Scholar 

  33. Tanter M, Pernot M. Real time quantitative elastography using supersonic shear wave imaging. IEEE Int Symp Biomed Imaging From Nano to Macro. 2010;276–9.

  34. Bruton A, Conway JH, Holgate ST. Reliability: what is it, and how is it measured? Physiotherapy. 2000;86:94–9.

    Article  Google Scholar 

  35. Yoshitake Y, Takai Y, Kanehisa H, Shinohara M. Muscle shear modulus measured with ultrasound shear-wave elastography across a wide range of contraction intensity. Muscle Nerve. 2014;50:103–13.

    Article  PubMed  Google Scholar 

  36. Sarvazyan A, Hall T, Urban M, Fatemi M, Aglyamov S, Garra B. An overview of elastography—an emerging branch of medical imaging. Curr Med Imaging Rev. 2011;7:255–82.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hodgson RJ, O’Connor PJ, Grainger AJ. Tendon and ligament imaging. Br J Radiol. 2012;85:1157–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ryan M, Grau S, Krauss I, Maiwald C, Taunton J, Horstmann T. Kinematic analysis of runners with Achilles mid-portion tendinopathy. Foot Ankle Int. 2009;30:1190–5.

    Article  PubMed  Google Scholar 

  39. Ahn K-S, Kang CH, Hong S-J, Jeong W-K. Ultrasound elastography of lateral epicondylosis: clinical feasibility of quantitative elastographic measurements. AJR Am J Roentgenol. 2014;202:1094–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine Payne.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Payne, C., Watt, P., Cercignani, M. et al. Reproducibility of shear wave elastography measuresof the Achilles tendon. Skeletal Radiol 47, 779–784 (2018). https://doi.org/10.1007/s00256-017-2846-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-017-2846-8

Keywords

Navigation