Skip to main content

Advertisement

Log in

Epigenetic Regulation of Myofibroblast Phenotypes in Fibrosis

  • Activated Myofibroblasts and Fibrosis in Various Organs (T Kisseleva and Y Liu, Section Editors)
  • Published:
Current Pathobiology Reports

Abstract

Purpose of Review

Myofibroblasts are the fundamental drivers of fibrosing disorders; there is great value in better defining epigenetic networks involved in myofibroblast behavior. Complex epigenetic paradigms, which are likely organ and/or disease specific, direct pathologic myofibroblast phenotypes. In this review, we highlight epigenetic regulators and the mechanisms through which they shape myofibroblast phenotype in fibrotic diseases of different organs.

Recent Findings

Hundreds of genes and their expression contribute to the myofibroblast transcriptional regime influencing myofibroblast phenotype. An increasingly large number of epigenetic modifications have been identified in the regulation of these signaling pathways driving myofibroblast activation and disease progression. Drugs that inhibit or reverse profibrotic epigenetic modifications have shown promise in vitro and in vivo; however, no current epigenetic therapies have been approved to treat fibrosis. Newly described epigenetic mechanisms will be mentioned, along with potential therapeutic targets and innovative strategies to further understand myofibroblast-directed fibrosis.

Summary

Epigenetic regulators that direct myofibroblast behavior and differentiation into pathologic myofibroblast phenotypes in fibrotic disorders comprise both overlapping and organ-specific epigenetic mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. • El Taghdouini A, van Grunsven LA. Epigenetic regulation of hepatic stellate cell activation and liver fibrosis. Expert Rev Gastroenterol Hepatol. 2016;10(12):1397–408. https://doi.org/10.1080/17474124.2016.1251309. Review of epigenetic regulation of HSC activation in liver fibrosis.

    Article  PubMed  CAS  Google Scholar 

  2. Shiga K, Hara M, Nagasaki T, Sato T, Takahashi H, Takeyama H. Cancer-associated fibroblasts: their characteristics and their roles in tumor growth. Cancers. 2015;7(4):2443–58. https://doi.org/10.3390/cancers7040902.

    Article  PubMed  PubMed Central  Google Scholar 

  3. • Hinz B. Myofibroblasts. Exp Eye Res. 2016;142:56–70. https://doi.org/10.1016/j.exer.2015.07.009. Comprehensive review of current state of myofibroblast literature with an emphasis on myofibroblast involvement in ocular fibrosis.

    Article  CAS  PubMed  Google Scholar 

  4. Mann J, Chu DC, Maxwell A, Oakley F, Zhu NL, Tsukamoto H, et al. MeCP2 controls an epigenetic pathway that promotes myofibroblast transdifferentiation and fibrosis. Gastroenterology. 2010;138(2):705–714, 14.e1-4. https://doi.org/10.1053/j.gastro.2009.10.002.

    Article  CAS  PubMed  Google Scholar 

  5. Kohli RM, Zhang Y. TET enzymes, TDG and the dynamics of DNA demethylation. Nature. 2013;502(7472):472–9. https://doi.org/10.1038/nature12750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jang HS, Shin WJ, Lee JE, Do JT. CpG and non-CpG methylation in epigenetic gene regulation and brain function. Genes. 2017;8(6). https://doi.org/10.3390/genes8060148.

  7. Ghosh AK, Bhattacharyya S, Lafyatis R, Farina G, Yu J, Thimmapaya B, et al. p300 is elevated in systemic sclerosis and its expression is positively regulated by TGF-beta: epigenetic feed-forward amplification of fibrosis. J Invest Dermatol. 2013;133(5):1302–10. https://doi.org/10.1038/jid.2012.479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tang X, Peng R, Ren Y, Apparsundaram S, Deguzman J, Bauer CM, et al. BET bromodomain proteins mediate downstream signaling events following growth factor stimulation in human lung fibroblasts and are involved in bleomycin-induced pulmonary fibrosis. Mol Pharmacol. 2013;83(1):283–93. https://doi.org/10.1124/mol.112.081661.

    Article  CAS  PubMed  Google Scholar 

  9. Glenisson W, Castronovo V, Waltregny D. Histone deacetylase 4 is required for TGFbeta1-induced myofibroblastic differentiation. Biochim Biophys Acta. 2007;1773(10):1572–82. https://doi.org/10.1016/j.bbamcr.2007.05.016.

    Article  CAS  PubMed  Google Scholar 

  10. Coward WR, Watts K, Feghali-Bostwick CA, Knox A, Pang L. Defective histone acetylation is responsible for the diminished expression of cyclooxygenase 2 in idiopathic pulmonary fibrosis. Mol Cell Biol. 2009;29(15):4325–39. https://doi.org/10.1128/mcb.01776-08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang Y, Fan PS, Kahaleh B. Association between enhanced type I collagen expression and epigenetic repression of the FLI1 gene in scleroderma fibroblasts. Arthritis Rheum. 2006;54(7):2271–9. https://doi.org/10.1002/art.21948.

    Article  CAS  PubMed  Google Scholar 

  12. Noda S, Asano Y, Nishimura S, Taniguchi T, Fujiu K, Manabe I, et al. Simultaneous downregulation of KLF5 and Fli1 is a key feature underlying systemic sclerosis. Nat Commun. 2014;5:5797. https://doi.org/10.1038/ncomms6797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Coward WR, Watts K, Feghali-Bostwick CA, Jenkins G, Pang L. Repression of IP-10 by interactions between histone deacetylation and hypermethylation in idiopathic pulmonary fibrosis. Mol Cell Biol. 2010;30(12):2874–86. https://doi.org/10.1128/mcb.01527-09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jiang Y, Wang S, Zhao Y, Lin C, Zhong F, Jin L, et al. Histone H3K9 demethylase JMJD1A modulates hepatic stellate cells activation and liver fibrosis by epigenetically regulating peroxisome proliferator-activated receptor gamma. FASEB J. 2015;29(5):1830–41. https://doi.org/10.1096/fj.14-251751.

    Article  CAS  PubMed  Google Scholar 

  15. Bergmann C, Brandt A, Dees C, Zhang Y, Lin NY, Chen C et al. Jumonji domain containing protein 3 (JMJD3) as a novel epigenetic mechanism of fibroblast activation by regulation of Fra-2 [abstract]. American College of Rhuematology Annual Meeting; November 14, 20162016.

  16. Coward WR, Feghali-Bostwick CA, Jenkins G, Knox AJ, Pang L. A central role for G9a and EZH2 in the epigenetic silencing of cyclooxygenase-2 in idiopathic pulmonary fibrosis. FASEB J. 2014;28(7):3183–96. https://doi.org/10.1096/fj.13-241760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Beermann J, Piccoli MT, Viereck J, Thum T. Non-coding RNAs in development and disease: background, mechanisms, and therapeutic approaches. Physiol Rev. 2016;96(4):1297–325. https://doi.org/10.1152/physrev.00041.2015.

    Article  CAS  PubMed  Google Scholar 

  18. Song R, Fullerton DA, Ao L, Zhao KS, Reece TB, Cleveland JC Jr, et al. Altered microRNA expression is responsible for the pro-osteogenic phenotype of interstitial cells in calcified human aortic valves. J Am Heart Assoc. 2017;6(4):e005364. https://doi.org/10.1161/jaha.116.005364.

    Article  PubMed  PubMed Central  Google Scholar 

  19. van Rooij E, Sutherland LB, Thatcher JE, DiMaio JM, Naseem RH, Marshall WS, et al. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci U S A. 2008;105(35):13027–32. https://doi.org/10.1073/pnas.0805038105.

    Article  PubMed  PubMed Central  Google Scholar 

  20. da Costa Martins PA, Salic K, Gladka MM, Armand AS, Leptidis S, el Azzouzi H, et al. MicroRNA-199b targets the nuclear kinase Dyrk1a in an auto-amplification loop promoting calcineurin/NFAT signalling. Nat Cell Biol. 2010;12(12):1220–7. https://doi.org/10.1038/ncb2126.

    Article  PubMed  CAS  Google Scholar 

  21. Roderburg C, Urban GW, Bettermann K, Vucur M, Zimmermann H, Schmidt S, et al. Micro-RNA profiling reveals a role for miR-29 in human and murine liver fibrosis. Hepatology. 2011;53(1):209–18. https://doi.org/10.1002/hep.23922.

    Article  CAS  PubMed  Google Scholar 

  22. Roderburg C, Luedde M, Vargas Cardenas D, Vucur M, Mollnow T, Zimmermann HW, et al. miR-133a mediates TGF-beta-dependent derepression of collagen synthesis in hepatic stellate cells during liver fibrosis. J Hepatol. 2013;58(4):736–42. https://doi.org/10.1016/j.jhep.2012.11.022.

    Article  CAS  PubMed  Google Scholar 

  23. Li ZJ, Ou-Yang PH, Han XP. Profibrotic effect of miR-33a with Akt activation in hepatic stellate cells. Cell Signal. 2014;26(1):141–8. https://doi.org/10.1016/j.cellsig.2013.09.018.

    Article  PubMed  CAS  Google Scholar 

  24. Yu F, Guo Y, Chen B, Dong P, Zheng J. MicroRNA-17-5p activates hepatic stellate cells through targeting of Smad7. Lab Investig. 2015;95(7):781–9. https://doi.org/10.1038/labinvest.2015.58.

    Article  CAS  PubMed  Google Scholar 

  25. Liu G, Friggeri A, Yang Y, Milosevic J, Ding Q, Thannickal VJ, et al. miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. J Exp Med. 2010;207(8):1589–97. https://doi.org/10.1084/jem.20100035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pandit KV, Corcoran D, Yousef H, Yarlagadda M, Tzouvelekis A, Gibson KF, et al. Inhibition and role of let-7d in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2010;182(2):220–9. https://doi.org/10.1164/rccm.200911-1698OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cushing L, Kuang PP, Qian J, Shao F, Wu J, Little F, et al. miR-29 is a major regulator of genes associated with pulmonary fibrosis. Am J Respir Cell Mol Biol. 2011;45(2):287–94. https://doi.org/10.1165/rcmb.2010-0323OC.

    Article  CAS  PubMed  Google Scholar 

  28. Xiao J, Meng XM, Huang XR, Chung AC, Feng YL, Hui DS, et al. miR-29 inhibits bleomycin-induced pulmonary fibrosis in mice. Mol Ther. 2012;20(6):1251–60. https://doi.org/10.1038/mt.2012.36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dakhlallah D, Batte K, Wang Y, Cantemir-Stone CZ, Yan P, Nuovo G, et al. Epigenetic regulation of miR-17~92 contributes to the pathogenesis of pulmonary fibrosis. Am J Respir Crit Care Med. 2013;187(4):397–405. https://doi.org/10.1164/rccm.201205-0888OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lino Cardenas CL, Henaoui IS, Courcot E, Roderburg C, Cauffiez C, Aubert S, et al. miR-199a-5p is upregulated during fibrogenic response to tissue injury and mediates TGFbeta-induced lung fibroblast activation by targeting caveolin-1. PLoS Genet. 2013;9(2):e1003291. https://doi.org/10.1371/journal.pgen.1003291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Krupa A, Jenkins R, Luo DD, Lewis A, Phillips A, Fraser D. Loss of MicroRNA-192 promotes fibrogenesis in diabetic nephropathy. J Am Soc Nephrol. 2010;21(3):438–47. https://doi.org/10.1681/asn.2009050530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Qin W, Chung AC, Huang XR, Meng XM, Hui DS, Yu CM, et al. TGF-beta/Smad3 signaling promotes renal fibrosis by inhibiting miR-29. J Am Soc Nephrol. 2011;22(8):1462–74. https://doi.org/10.1681/asn.2010121308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ramdas V, McBride M, Denby L, Baker AH. Canonical transforming growth factor-beta signaling regulates disintegrin metalloprotease expression in experimental renal fibrosis via miR-29. Am J Pathol. 2013;183(6):1885–96. https://doi.org/10.1016/j.ajpath.2013.08.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kajihara I, Jinnin M, Yamane K, Makino T, Honda N, Igata T, et al. Increased accumulation of extracellular thrombospondin-2 due to low degradation activity stimulates type I collagen expression in scleroderma fibroblasts. Am J Pathol. 2012;180(2):703–14. https://doi.org/10.1016/j.ajpath.2011.10.030.

    Article  CAS  PubMed  Google Scholar 

  35. Ciechomska M, O’Reilly S, Suwara M, Bogunia-Kubik K, van Laar JM. MiR-29a reduces TIMP-1 production by dermal fibroblasts via targeting TGF-beta activated kinase 1 binding protein 1, implications for systemic sclerosis. PLoS One. 2014;9(12):e115596. https://doi.org/10.1371/journal.pone.0115596.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Maurer B, Stanczyk J, Jungel A, Akhmetshina A, Trenkmann M, Brock M, et al. MicroRNA-29, a key regulator of collagen expression in systemic sclerosis. Arthritis Rheum. 2010;62(6):1733–43. https://doi.org/10.1002/art.27443.

    Article  CAS  PubMed  Google Scholar 

  37. Zhu H, Li Y, Qu S, Luo H, Zhou Y, Wang Y, et al. MicroRNA expression abnormalities in limited cutaneous scleroderma and diffuse cutaneous scleroderma. J Clin Immunol. 2012;32(3):514–22. https://doi.org/10.1007/s10875-011-9647-y.

    Article  CAS  PubMed  Google Scholar 

  38. Nakashima T, Jinnin M, Yamane K, Honda N, Kajihara I, Makino T, et al. Impaired IL-17 signaling pathway contributes to the increased collagen expression in scleroderma fibroblasts. J Immunol. 2012;188(8):3573–83. https://doi.org/10.4049/jimmunol.1100591.

    Article  CAS  PubMed  Google Scholar 

  39. Honda N, Jinnin M, Kira-Etoh T, Makino K, Kajihara I, Makino T, et al. miR-150 down-regulation contributes to the constitutive type I collagen overexpression in scleroderma dermal fibroblasts via the induction of integrin beta3. Am J Pathol. 2013;182(1):206–16. https://doi.org/10.1016/j.ajpath.2012.09.023.

    Article  CAS  PubMed  Google Scholar 

  40. Honda N, Jinnin M, Kajihara I, Makino T, Makino K, Masuguchi S, et al. TGF-beta-mediated downregulation of microRNA-196a contributes to the constitutive upregulated type I collagen expression in scleroderma dermal fibroblasts. J Immunol. 2012;188(7):3323–31. https://doi.org/10.4049/jimmunol.1100876.

    Article  CAS  PubMed  Google Scholar 

  41. Li H, Yang R, Fan X, Gu T, Zhao Z, Chang D, et al. MicroRNA array analysis of microRNAs related to systemic scleroderma. Rheumatol Int. 2012;32(2):307–13. https://doi.org/10.1007/s00296-010-1615-y.

    Article  CAS  PubMed  Google Scholar 

  42. Yan Q, Chen J, Li W, Bao C, Fu Q. Targeting miR-155 to treat experimental scleroderma. Sci Rep. 2016;6(1):20314. https://doi.org/10.1038/srep20314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Christmann RB, Wooten A, Sampaio-Barros P, Borges CL, Carvalho CR, Kairalla RA, et al. miR-155 in the progression of lung fibrosis in systemic sclerosis. Arthritis Res Ther. 2016;18(1):155. https://doi.org/10.1186/s13075-016-1054-6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. • Bergmann C, Distler JH. Epigenetic factors as drivers of fibrosis in systemic sclerosis. Epigenomics. 2017;9(4):463–77. https://doi.org/10.2217/epi-2016-0150. Review of epigenetic factors involved in systemic sclerosis.

    Article  CAS  PubMed  Google Scholar 

  45. O’Reilly S, Ciechomska M, Fullard N, Przyborski S, van Laar JM. IL-13 mediates collagen deposition via STAT6 and microRNA-135b: a role for epigenetics. Sci Rep. 2016;6(1):25066. https://doi.org/10.1038/srep25066.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Xu X, Tan X, Tampe B, Nyamsuren G, Liu X, Maier LS, et al. Epigenetic balance of aberrant Rasal1 promoter methylation and hydroxymethylation regulates cardiac fibrosis. Cardiovasc Res. 2015;105(3):279–91. https://doi.org/10.1093/cvr/cvv015.

    Article  CAS  PubMed  Google Scholar 

  47. Xu X, Tan X, Hulshoff MS, Wilhelmi T, Zeisberg M, Zeisberg EM. Hypoxia-induced endothelial-mesenchymal transition is associated with RASAL1 promoter hypermethylation in human coronary endothelial cells. FEBS Lett. 2016;590(8):1222–33. https://doi.org/10.1002/1873-3468.12158.

    Article  CAS  PubMed  Google Scholar 

  48. Watson CJ, Collier P, Tea I, Neary R, Watson JA, Robinson C, et al. Hypoxia-induced epigenetic modifications are associated with cardiac tissue fibrosis and the development of a myofibroblast-like phenotype. Hum Mol Genet. 2014;23(8):2176–88. https://doi.org/10.1093/hmg/ddt614.

    Article  CAS  PubMed  Google Scholar 

  49. Tao H, Yang JJ, Chen ZW, Xu SS, Zhou X, Zhan HY, et al. DNMT3A silencing RASSF1A promotes cardiac fibrosis through upregulation of ERK1/2. Toxicology. 2014;323:42–50. https://doi.org/10.1016/j.tox.2014.06.006.

    Article  CAS  PubMed  Google Scholar 

  50. Olsen MB, Hildrestrand GA, Scheffler K, Vinge LE, Alfsnes K, Palibrk V, et al. NEIL3-dependent regulation of cardiac fibroblast proliferation prevents myocardial rupture. Cell Rep. 2017;18(1):82–92. https://doi.org/10.1016/j.celrep.2016.12.009.

    Article  CAS  PubMed  Google Scholar 

  51. Kim YS, Kang WS, Kwon JS, Hong MH, Jeong HY, Jeong HC, et al. Protective role of 5-azacytidine on myocardial infarction is associated with modulation of macrophage phenotype and inhibition of fibrosis. J Cell Mol Med. 2014;18(6):1018–27. https://doi.org/10.1111/jcmm.12248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Watson CJ, Horgan S, Neary R, Glezeva N, Tea I, Corrigan N, et al. Epigenetic therapy for the treatment of hypertension-induced cardiac hypertrophy and fibrosis. J Cardiovasc Pharmacol Ther. 2016;21(1):127–37. https://doi.org/10.1177/1074248415591698.

    Article  CAS  PubMed  Google Scholar 

  53. Tao H, Yang JJ, Hu W, Shi KH, Li J. HDAC6 promotes cardiac fibrosis progression through suppressing RASSF1A expression. Cardiology. 2016;133(1):18–26. https://doi.org/10.1159/000438781.

    Article  CAS  PubMed  Google Scholar 

  54. Williams SM, Golden-Mason L, Ferguson BS, Douglas KB, Cavasin MA, Demos-Davies K, et al. Class I HDACs regulate angiotensin II-dependent cardiac fibrosis via fibroblasts and circulating fibrocytes. J Mol Cell Cardiol. 2013;67:112–25. https://doi.org/10.1016/j.yjmcc.2013.12.013.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Nural-Guvener HF, Zakharova L, Nimlos J, Popovic S, Mastroeni D, Gaballa MA. HDAC class I inhibitor. Fibrogenesis Tissue Repair. 2014;7(1):10. https://doi.org/10.1186/1755-1536-7-10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Kao YH, Liou JP, Chung CC, Lien GS, Kuo CC, Chen SA, et al. Histone deacetylase inhibition improved cardiac functions with direct antifibrotic activity in heart failure. Int J Cardiol. 2013;168 https://doi.org/10.1016/j.ijcard.2013.07.111.

  57. Liu F, Levin MD, Petrenko NB, Lu MM, Wang T, Yuan LJ, et al. Histone-deacetylase inhibition reverses atrial arrhythmia inducibility and fibrosis in cardiac hypertrophy independent of angiotensin. J Mol Cell Cardiol. 2008;45 https://doi.org/10.1016/j.yjmcc.2008.08.015.

  58. Thum T, Gross C, Fiedler J, Fischer T, Kissler S, Bussen M, et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature. 2008;456(7224):980–4. https://doi.org/10.1038/nature07511.

    Article  CAS  PubMed  Google Scholar 

  59. Wang YS, Li SH, Guo J, Mihic A, Wu J, Sun L, et al. Role of miR-145 in cardiac myofibroblast differentiation. J Mol Cell Cardiol. 2014;66:94–105. https://doi.org/10.1016/j.yjmcc.2013.08.007.

    Article  CAS  PubMed  Google Scholar 

  60. Renaud L, Harris LG, Mani SK, Kasiganesan H, Chou JC, Baicu CF, et al. HDACs regulate miR-133a expression in pressure overload-induced cardiac fibrosis. Circ Heart Fail. 2015;8(6):1094–104. https://doi.org/10.1161/circheartfailure.114.001781.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Wu Y, Bu F, Yu H, Li W, Huang C, Meng X, et al. Methylation of Septin9 mediated by DNMT3a enhances hepatic stellate cells activation and liver fibrogenesis. Toxicol Appl Pharmacol. 2017;315:35–49. https://doi.org/10.1016/j.taap.2016.12.002.

    Article  CAS  PubMed  Google Scholar 

  62. Shi C, Li G, Tong Y, Deng Y, Fan J. Role of CTGF gene promoter methylation in the development of hepatic fibrosis. Am J Transl Res. 2016;8(1):125–32.

    PubMed  PubMed Central  Google Scholar 

  63. Bian EB, Huang C, Wang H, Chen XX, Zhang L, Lv XW, et al. Repression of Smad7 mediated by DNMT1 determines hepatic stellate cell activation and liver fibrosis in rats. Toxicol Lett. 2014;224(2):175–85. https://doi.org/10.1016/j.toxlet.2013.10.038.

    Article  CAS  PubMed  Google Scholar 

  64. Bian E-B, Huang C, Ma T-T, Tao H, Zhang H, Cheng C, et al. DNMT1-mediated PTEN hypermethylation confers hepatic stellate cell activation and liver fibrogenesis in rats. Toxicol Appl Pharmacol. 2012;264(1):13–22. https://doi.org/10.1016/j.taap.2012.06.022.

    Article  CAS  PubMed  Google Scholar 

  65. Yang JJ, Tao H, Huang C, Shi KH, Ma TT, Bian EB, et al. DNA methylation and MeCP2 regulation of PTCH1 expression during rats hepatic fibrosis. Cell Signal. 2013;25(5):1202–11. https://doi.org/10.1016/j.cellsig.2013.01.005.

    Article  CAS  PubMed  Google Scholar 

  66. Mann J, Oakley F, Akiboye F, Elsharkawy A, Thorne AW, Mann DA. Regulation of myofibroblast transdifferentiation by DNA methylation and MeCP2: implications for wound healing and fibrogenesis. Cell Death Differ. 2007;14(2):275–85. https://doi.org/10.1038/sj.cdd.4401979.

    Article  CAS  PubMed  Google Scholar 

  67. Qin L, Han YP. Epigenetic repression of matrix metalloproteinases in myofibroblastic hepatic stellate cells through histone deacetylases 4: implication in tissue fibrosis. Am J Pathol. 2010;177(4):1915–28. https://doi.org/10.2353/ajpath.2010.100011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Pannem RR, Dorn C, Hellerbrand C, Massoumi R. Cylindromatosis gene CYLD regulates hepatocyte growth factor expression in hepatic stellate cells through interaction with histone deacetylase 7. Hepatology. 2014;60(3):1066–81. https://doi.org/10.1002/hep.27209.

    Article  CAS  PubMed  Google Scholar 

  69. Page A, Paoli PP, Hill SJ, Howarth R, Wu R, Kweon SM, et al. Alcohol directly stimulates epigenetic modifications in hepatic stellate cells. J Hepatol. 2015;62(2):388–97. https://doi.org/10.1016/j.jhep.2014.09.033.

    Article  CAS  PubMed  Google Scholar 

  70. Perugorria MJ, Wilson CL, Zeybel M, Walsh M, Amin S, Robinson S, et al. Histone methyltransferase ASH1 orchestrates fibrogenic gene transcription during myofibroblast transdifferentiation. Hepatology. 2012;56(3):1129–39. https://doi.org/10.1002/hep.25754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ding N, Yu RT, Subramaniam N, Sherman MH, Wilson C, Rao R, et al. A vitamin D receptor/SMAD genomic circuit gates hepatic fibrotic response. Cell. 2013;153(3):601–13. https://doi.org/10.1016/j.cell.2013.03.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zeybel M, Luli S, Sabater L, Hardy T, Oakley F, Leslie J, et al. A proof-of-concept for epigenetic therapy of tissue fibrosis: inhibition of liver fibrosis progression by 3-deazaneplanocin a. Mol Ther. 2017;25(1):218–31. https://doi.org/10.1016/j.ymthe.2016.10.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kaimori A, Potter JJ, Choti M, Ding Z, Mezey E, Koteish AA. Histone deacetylase inhibition suppresses the transforming growth factor beta1-induced epithelial-to-mesenchymal transition in hepatocytes. Hepatology. 2010;52(3):1033–45. https://doi.org/10.1002/hep.23765.

    Article  CAS  PubMed  Google Scholar 

  74. Ding N, Hah N, Yu RT, Sherman MH, Benner C, Leblanc M, et al. BRD4 is a novel therapeutic target for liver fibrosis. Proc Natl Acad Sci U S A. 2015;112(51):15713–8. https://doi.org/10.1073/pnas.1522163112.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Wang Y, Chen C, Deng Z, Bian E, Huang C, Lei T, et al. Repression of TSC1/TSC2 mediated by MeCP2 regulates human embryo lung fibroblast cell differentiation and proliferation. Int J Biol Macromol. 2017;96:578–88. https://doi.org/10.1016/j.ijbiomac.2016.12.062.

    Article  PubMed  CAS  Google Scholar 

  76. Sanders YY, Pardo A, Selman M, Nuovo GJ, TO T, Siegal GP, et al. Thy-1 promoter hypermethylation: a novel epigenetic pathogenic mechanism in pulmonary fibrosis. Am J Respir Cell Mol Biol. 2008;39(5):610–8. https://doi.org/10.1165/rcmb.2007-0322OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Sanders YY, TO T, Varisco BM, Hagood JS. Epigenetic regulation of thy-1 by histone deacetylase inhibitor in rat lung fibroblasts. Am J Respir Cell Mol Biol. 2011;45(1):16–23. https://doi.org/10.1165/rcmb.2010-0154OC.

    Article  CAS  PubMed  Google Scholar 

  78. Guo W, Shan B, Klingsberg RC, Qin X, Lasky JA. Abrogation of TGF-beta1-induced fibroblast-myofibroblast differentiation by histone deacetylase inhibition. Am J Physiol Lung Cell Mol Physiol. 2009;297(5):L864–70. https://doi.org/10.1152/ajplung.00128.2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Korfei M, Skwarna S, Henneke I, MacKenzie B, Klymenko O, Saito S, et al. Aberrant expression and activity of histone deacetylases in sporadic idiopathic pulmonary fibrosis. Thorax. 2015;70(11):1022–32. https://doi.org/10.1136/thoraxjnl-2014-206411.

    Article  PubMed  Google Scholar 

  80. Huang SK, Scruggs AM, Donaghy J, Horowitz JC, Zaslona Z, Przybranowski S, et al. Histone modifications are responsible for decreased Fas expression and apoptosis resistance in fibrotic lung fibroblasts. Cell Death Dis. 2013;4(5):e621. https://doi.org/10.1038/cddis.2013.146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Sanders YY, Hagood JS, Liu H, Zhang W, Ambalavanan N, Thannickal VJ. Histone deacetylase inhibition promotes fibroblast apoptosis and ameliorates pulmonary fibrosis in mice. Eur Respir J. 2014;43(5):1448–58. https://doi.org/10.1183/09031936.00095113.

    Article  CAS  PubMed  Google Scholar 

  82. Davies ER, Haitchi HM, Thatcher TH, Sime PJ, Kottmann RM, Ganesan A, et al. Spiruchostatin A inhibits proliferation and differentiation of fibroblasts from patients with pulmonary fibrosis. Am J Respir Cell Mol Biol. 2012;46(5):687–94. https://doi.org/10.1165/rcmb.2011-0040OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Tang X, Peng R, Phillips JE, Deguzman J, Ren Y, Apparsundaram S, et al. Assessment of Brd4 inhibition in idiopathic pulmonary fibrosis lung fibroblasts and in vivo models of lung fibrosis. Am J Pathol. 2013;183(2):470–9. https://doi.org/10.1016/j.ajpath.2013.04.020.

    Article  CAS  PubMed  Google Scholar 

  84. Bechtel W, McGoohan S, Zeisberg EM, Muller GA, Kalbacher H, Salant DJ, et al. Methylation determines fibroblast activation and fibrogenesis in the kidney. Nat Med. 2010;16(5):544–50. https://doi.org/10.1038/nm.2135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Chang YT, Yang CC, Pan SY, Chou YH, Chang FC, Lai CF, et al. DNA methyltransferase inhibition restores erythropoietin production in fibrotic murine kidneys. J Clin Invest. 2016;126(2):721–31. https://doi.org/10.1172/jci82819.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Pang M, Kothapally J, Mao H, Tolbert E, Ponnusamy M, Chin YE, et al. Inhibition of histone deacetylase activity attenuates renal fibroblast activation and interstitial fibrosis in obstructive nephropathy. Am J Physiol Renal Physiol. 2009;297(4):F996–f1005. https://doi.org/10.1152/ajprenal.00282.2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ponnusamy M, Zhou X, Yan Y, Tang J, Tolbert E, Zhao TC, et al. Blocking sirtuin 1 and 2 inhibits renal interstitial fibroblast activation and attenuates renal interstitial fibrosis in obstructive nephropathy. J Pharmacol Exp Ther. 2014;350(2):243–56. https://doi.org/10.1124/jpet.113.212076.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Xu H, Wu X, Qin H, Tian W, Chen J, Sun L, et al. Myocardin-related transcription factor a epigenetically regulates renal fibrosis in diabetic nephropathy. Clin J Am Soc Nephrol. 2015;26(7):1648–60. https://doi.org/10.1681/asn.2014070678.

    Article  CAS  Google Scholar 

  89. Dees C, Schlottmann I, Funke R, Distler A, Palumbo-Zerr K, Zerr P, et al. The Wnt antagonists DKK1 and SFRP1 are downregulated by promoter hypermethylation in systemic sclerosis. Ann Rheum Dis. 2014;73(6):1232–9. https://doi.org/10.1136/annrheumdis-2012-203194.

    Article  CAS  PubMed  Google Scholar 

  90. Svegliati S, Marrone G, Pezone A, Spadoni T, Grieco A, Moroncini G, et al. Oxidative DNA damage induces the ATM-mediated transcriptional suppression of the Wnt inhibitor WIF-1 in systemic sclerosis and fibrosis. Sci Signal. 2014;7(341):ra84. https://doi.org/10.1126/scisignal.2004592.

    Article  PubMed  CAS  Google Scholar 

  91. Huber LC, Distler JH, Moritz F, Hemmatazad H, Hauser T, Michel BA, et al. Trichostatin A prevents the accumulation of extracellular matrix in a mouse model of bleomycin-induced skin fibrosis. Arthritis Rheum. 2007;56(8):2755–64. https://doi.org/10.1002/art.22759.

    Article  CAS  PubMed  Google Scholar 

  92. Hemmatazad H, Rodrigues HM, Maurer B, Brentano F, Pileckyte M, Distler JH, et al. Histone deacetylase 7, a potential target for the antifibrotic treatment of systemic sclerosis. Arthritis Rheum. 2009;60(5):1519–29. https://doi.org/10.1002/art.24494.

    Article  PubMed  Google Scholar 

  93. Bhattacharyya S, Ghosh AK, Pannu J, Mori Y, Takagawa S, Chen G, et al. Fibroblast expression of the coactivator p300 governs the intensity of profibrotic response to transforming growth factor beta. Arthritis Rheum. 2005;52(4):1248–58. https://doi.org/10.1002/art.20996.

    Article  CAS  PubMed  Google Scholar 

  94. Zerr P, Palumbo-Zerr K, Huang J, Tomcik M, Sumova B, Distler O, et al. Sirt1 regulates canonical TGF-beta signalling to control fibroblast activation and tissue fibrosis. Ann Rheum Dis. 2016;75(1):226–33. https://doi.org/10.1136/annrheumdis-2014-205740.

    Article  CAS  PubMed  Google Scholar 

  95. Wei J, Ghosh AK, Chu H, Fang F, Hinchcliff ME, Wang J, et al. The histone deacetylase Sirtuin 1 is reduced in systemic sclerosis and abrogates fibrotic responses by targeting transforming growth factor beta signaling. Arthritis Rheumatol. 2015;67(5):1323–34. https://doi.org/10.1002/art.39061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Akamata K, Wei J, Bhattacharyya M, Cheresh P, Bonner MY, Arbiser JL, et al. SIRT3 is attenuated in systemic sclerosis skin and lungs, and its pharmacologic activation mitigates organ fibrosis. Oncotarget. 2016;7(43):69321–36. https://doi.org/10.18632/oncotarget.12504.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Kramer M, Dees C, Huang J, Schlottmann I, Palumbo-Zerr K, Zerr P, et al. Inhibition of H3K27 histone trimethylation activates fibroblasts and induces fibrosis. Ann Rheum Dis. 2013;72(4):614–20. https://doi.org/10.1136/annrheumdis-2012-201615.

    Article  PubMed  CAS  Google Scholar 

  98. Ciechomska M, O’Reilly S, Przyborski S, Oakley F, Bogunia-Kubik K, van Laar JM. Histone demethylation and toll-like receptor 8-dependent cross-talk in monocytes promotes transdifferentiation of fibroblasts in systemic sclerosis via Fra-2. Arthritis Rheumatol. 2016;68(6):1493–504. https://doi.org/10.1002/art.39602.

    Article  CAS  PubMed  Google Scholar 

  99. Wang Z, Jinnin M, Nakamura K, Harada M, Kudo H, Nakayama W, et al. Long non-coding RNA TSIX is upregulated in scleroderma dermal fibroblasts and controls collagen mRNA stabilization. Exp Dermatol. 2016;25(2):131–6. https://doi.org/10.1111/exd.12900.

    Article  CAS  PubMed  Google Scholar 

  100. Riau AK, Wong TT, Lan W, Finger SN, Chaurasia SS, Hou AH, et al. Aberrant DNA methylation of matrix remodeling and cell adhesion related genes in pterygium. PLoS One. 2011;6(2):e14687. https://doi.org/10.1371/journal.pone.0014687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Engelsvold DH, Utheim TP, Olstad OK, Gonzalez P, Eidet JR, Lyberg T, et al. miRNA and mRNA expression profiling identifies members of the miR-200 family as potential regulators of epithelial-mesenchymal transition in pterygium. Exp Eye Res. 2013;115:189–98. https://doi.org/10.1016/j.exer.2013.07.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Tao H, Yang JJ, Shi KH, Deng ZY, Li J. DNA methylation in cardiac fibrosis: new advances and perspectives. Toxicology. 2014;323:125–9. https://doi.org/10.1016/j.tox.2014.07.002.

    Article  CAS  PubMed  Google Scholar 

  103. Nural-Guvener H, Zakharova L, Feehery L, Sljukic S, Gaballa M. Anti-fibrotic effects of class I HDAC inhibitor, mocetinostat is associated with IL-6/Stat3 signaling in ischemic heart failure. Int J Mol Sci. 2015;16(5):11482–99. https://doi.org/10.3390/ijms160511482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. • Grimaldi V, De Pascale MR, Zullo A, Soricelli A, Infante T, Mancini FP, et al. Evidence of epigenetic tags in cardiac fibrosis. J Cardiol. 2017;69(2):401–8. https://doi.org/10.1016/j.jjcc.2016.10.004. A review of epigenetic changes involved in cardiac fibrosis.

    Article  PubMed  Google Scholar 

  105. Stratton MS, McKinsey TA. Epigenetic regulation of cardiac fibrosis. J Mol Cell Cardiol. 2016;92:206–13. https://doi.org/10.1016/j.yjmcc.2016.02.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Liu AC, Joag VR, Gotlieb AI. The emerging role of valve interstitial cell phenotypes in regulating heart valve pathobiology. Am J Pathol. 2007;171(5):1407–18. https://doi.org/10.2353/ajpath.2007.070251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Karin D, Koyama Y, Brenner D, Kisseleva T. The characteristics of activated portal fibroblasts/myofibroblasts in liver fibrosis. Differentiation. 2016;92(3):84–92. https://doi.org/10.1016/j.diff.2016.07.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Nwosu ZC, Alborzinia H, Wolfl S, Dooley S, Liu Y. Evolving insights on metabolism, autophagy, and epigenetics in liver myofibroblasts. Front Physiol. 2016;7:191. https://doi.org/10.3389/fphys.2016.00191.

    Article  PubMed  PubMed Central  Google Scholar 

  109. • Tzouvelekis A, Kaminski N. Epigenetics in idiopathic pulmonary fibrosis. Biochem Cell Biol. 2015;93(2):159–70. https://doi.org/10.1139/bcb-2014-0126. Review of epigenetic mechanisms involved in IPF.

    Article  CAS  PubMed  Google Scholar 

  110. Pandit KV, Milosevic J, Kaminski N. MicroRNAs in idiopathic pulmonary fibrosis. Transl Res. 2011;157(4):191–9. https://doi.org/10.1016/j.trsl.2011.01.012.

    Article  CAS  PubMed  Google Scholar 

  111. Sanders YY, Ambalavanan N, Halloran B, Zhang X, Liu H, Crossman DK, et al. Altered DNA methylation profile in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2012;186(6):525–35. https://doi.org/10.1164/rccm.201201-0077OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Tampe D, Zeisberg M. A primer on the epigenetics of kidney fibrosis. Minerva Med. 2012;103(4):267–78.

    CAS  PubMed  Google Scholar 

  113. Kim KW, Park SH, Kim JC. Fibroblast biology in pterygia. Exp Eye Res. 2016;142:32–9. https://doi.org/10.1016/j.exer.2015.01.010.

    Article  CAS  PubMed  Google Scholar 

  114. Page A, Paoli P, Moran Salvador E, White S, French J, Mann J. Hepatic stellate cell transdifferentiation involves genome-wide remodeling of the DNA methylation landscape. J Hepatol. 2016;64(3):661–73. https://doi.org/10.1016/j.jhep.2015.11.024.

    Article  CAS  PubMed  Google Scholar 

  115. Niki T, Rombouts K, De Bleser P, De Smet K, Rogiers V, Schuppan D, et al. A histone deacetylase inhibitor, trichostatin A, suppresses myofibroblastic differentiation of rat hepatic stellate cells in primary culture. Hepatology. 1999;29(3):858–67. https://doi.org/10.1002/hep.510290328.

    Article  CAS  PubMed  Google Scholar 

  116. Park KC, Park JH, Jeon JY, Kim SY, Kim JM, Lim CY, et al. A new histone deacetylase inhibitor improves liver fibrosis in BDL rats through suppression of hepatic stellate cells. Br J Pharmacol. 2014;171(21):4820–30. https://doi.org/10.1111/bph.12590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Liu Y, Wang Z, Wang J, Lam W, Kwong S, Li F, et al. A histone deacetylase inhibitor, largazole, decreases liver fibrosis and angiogenesis by inhibiting transforming growth factor-β and vascular endothelial growth factor signalling. Liver Int. 2013;33(4):504–15. https://doi.org/10.1111/liv.12034.

    Article  CAS  PubMed  Google Scholar 

  118. Mannaerts I, Nuytten NR, Rogiers V, Vanderkerken K, van Grunsven LA, Geerts A. Chronic administration of valproic acid inhibits activation of mouse hepatic stellate cells in vitro and in vivo. Hepatology. 2010;51(2):603–14. https://doi.org/10.1002/hep.23334.

    Article  CAS  PubMed  Google Scholar 

  119. Hardy T, Zeybel M, Day CP, Dipper C, Masson S, McPherson S, et al. Plasma DNA methylation: a potential biomarker for stratification of liver fibrosis in non-alcoholic fatty liver disease. Gut. 2017;66(7):1321–8. https://doi.org/10.1136/gutjnl-2016-311526.

    Article  PubMed  Google Scholar 

  120. Bowman SK. Discovering enhancers by mapping chromatin features in primary tissue. Genomics. 2015;106(3):140–4. https://doi.org/10.1016/j.ygeno.2015.06.006.

    Article  CAS  PubMed  Google Scholar 

  121. Clark SJ, Lee HJ, Smallwood SA, Kelsey G, Reik W. Single-cell epigenomics: powerful new methods for understanding gene regulation and cell identity. Genome Biol. 2016;17(1):72. https://doi.org/10.1186/s13059-016-0944-x.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Lang AH, Li H, Collins JJ, Mehta P. Epigenetic landscapes explain partially reprogrammed cells and identify key reprogramming genes. PLoS Comput Biol. 2014;10(8):e1003734. https://doi.org/10.1371/journal.pcbi.1003734.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Glass CK, Natoli G. Molecular control of activation and priming in macrophages. Nat Immunol. 2016;17(1):26–33. https://doi.org/10.1038/ni.3306.

    Article  CAS  PubMed  Google Scholar 

  124. Dahl KN, Ribeiro AJ, Lammerding J. Nuclear shape, mechanics, and mechanotransduction. Circ Res. 2008;102(11):1307–18. https://doi.org/10.1161/circresaha.108.173989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Xu X, Tao Y, Gao X, Zhang L, Li X, Zou W, et al. A CRISPR-based approach for targeted DNA demethylation. Cell discovery. 2016;2:16009. https://doi.org/10.1038/celldisc.2016.9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Parrilla-Doblas JT, Ariza RR, Roldan-Arjona T. Targeted DNA demethylation in human cells by fusion of a plant 5-methylcytosine DNA glycosylase to a sequence-specific DNA binding domain. Epigenetics. 2017;12(4):296–303. https://doi.org/10.1080/15592294.2017.1294306.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Thu Elizabeth Duong is a Fellow in the Pediatric Scientist Development Program. This project was supported by Award Number K12-HD000850 from the Eunice Kennedy Shriver National Institute of Child Health and Human Development. The work in this publication was supported in part by the National Heart, Lung, and Blood Institute (NHLBI) of the National Institutes of Health (NIH) under Award Number U01HL122626 for J.S.H., as well as 1R01HL111169.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James S. Hagood.

Ethics declarations

Conflict of Interest

Dr. Hagood reports personal fees from Kyowa Hakko Kirin, Co., Ltd., outside the submitted work.

Thu Elizabeth Duong declares no conflicts of interest.

Thu Duong and James Hagood declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Activated Myofibroblasts and Fibrosis in Various Organs

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duong, T.E., Hagood, J.S. Epigenetic Regulation of Myofibroblast Phenotypes in Fibrosis. Curr Pathobiol Rep 6, 79–96 (2018). https://doi.org/10.1007/s40139-018-0155-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40139-018-0155-0

Keywords

Navigation