Skip to main content

Advertisement

Log in

Molecular determinants of mesenchymal cell activation in fibroproliferative diseases

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Uncontrolled scarring, or fibrosis, can interfere with the normal function of virtually all tissues of the body, ultimately leading to organ failure and death. Fibrotic diseases represent a major cause of death in industrialized countries. Unfortunately, no curative treatments for these conditions are yet available, highlighting the critical need for a better fundamental understanding of molecular mechanisms that may be therapeutically tractable. The ultimate indispensable effector cells responsible for deposition of extracellular matrix proteins that comprise scars are mesenchymal cells, namely fibroblasts and myofibroblasts. In this review, we focus on the biology of these cells and the molecular mechanisms that regulate their pertinent functions. We discuss key pro-fibrotic mediators, signaling pathways, and transcription factors that dictate their activation and persistence. Because of their possible clinical and therapeutic relevance, we also consider potential brakes on mesenchymal cell activation and cellular processes that may facilitate myofibroblast clearance from fibrotic tissue—topics that have in general been understudied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wynn TA (2008) Cellular and molecular mechanisms of fibrosis. J Pathol 214:199–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gao B, Bataller R (2011) Alcoholic liver disease: pathogenesis and new therapeutic targets. Gastroenterology 141:1572–1585

    Article  CAS  PubMed  Google Scholar 

  3. Straub JM, New J, Hamilton CD, Lominska C, Shnayder Y, Thomas SM (2015) Radiation-induced fibrosis: mechanisms and implications for therapy. J Cancer Res Clin Oncol 141:1985–1994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mossman BT, Churg A (1998) Mechanisms in the pathogenesis of asbestosis and silicosis. Am J Respir Crit Care Med 157:1666–1680

    Article  CAS  PubMed  Google Scholar 

  5. Ringelhan M, McKeating JA, Protzer U (2017) Viral hepatitis and liver cancer. Philos Trans R Soc Lond B Biol Sci. https://doi.org/10.1098/rstb.2016.0274

    Article  CAS  Google Scholar 

  6. Klingel K, Sauter M, Bock CT, Szalay G, Schnorr JJ, Kandolf R (2004) Molecular pathology of inflammatory cardiomyopathy. Med Microbiol Immunol 193:101–107

    Article  CAS  PubMed  Google Scholar 

  7. Lok SS, Haider Y, Howell D, Stewart JP, Hasleton PS, Egan JJ (2002) Murine gammaherpes virus as a cofactor in the development of pulmonary fibrosis in bleomycin resistant mice. Eur Respir J 20:1228–1232

    Article  CAS  PubMed  Google Scholar 

  8. Anand AS, Joseph PB, Vera-Vazquez E (2014) A case of pulmonary fibrosis associated with rheumatoid arthritis, scleroderma sine scleroderma and ANCA associated vasculitis. Springerplus 3:513

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Talman V, Ruskoaho H (2016) Cardiac fibrosis in myocardial infarction-from repair and remodeling to regeneration. Cell Tissue Res 365:563–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zechner D, Knapp N, Bobrowski A, Radecke T, Genz B, Vollmar B (2014) Diabetes increases pancreatic fibrosis during chronic inflammation. Exp Biol Med (Maywood) 239:670–676

    Article  CAS  Google Scholar 

  11. Werner S, Grose R (2003) Regulation of wound healing by growth factors and cytokines. Physiol Rev 83:835–870

    Article  CAS  PubMed  Google Scholar 

  12. Sisson TH et al (2010) Targeted injury of type II alveolar epithelial cells induces pulmonary fibrosis. Am J Respir Crit Care Med 181:254–263

    Article  CAS  PubMed  Google Scholar 

  13. Povedano JM, Martinez P, Flores JM, Mulero F, Blasco MA (2015) Mice with pulmonary fibrosis driven by telomere dysfunction. Cell Rep 12:286–299

    Article  CAS  PubMed  Google Scholar 

  14. Thannickal VJ (2013) Mechanistic links between aging and lung fibrosis. Biogerontology 14:609–615

    Article  CAS  PubMed  Google Scholar 

  15. Biernacka A, Frangogiannis NG (2011) Aging and cardiac fibrosis. Aging Dis 2:158–173

    PubMed  PubMed Central  Google Scholar 

  16. Delire B, Lebrun V, Selvais C, Henriet P, Bertrand A, Horsmans Y, Leclercq IA (2016) Aging enhances liver fibrotic response in mice through hampering extracellular matrix remodeling. Aging (Albany NY) 9:98–113

    Article  Google Scholar 

  17. Yang HC, Fogo AB (2014) Fibrosis and renal aging. Kidney Int Suppl 2011(4):75–78

    Article  CAS  Google Scholar 

  18. Bullard JE, Wert SE, Whitsett JA, Dean M, Nogee LM (2005) ABCA3 mutations associated with pediatric interstitial lung disease. Am J Respir Crit Care Med 172:1026–1031

    Article  PubMed  PubMed Central  Google Scholar 

  19. Stock CJ et al (2013) Mucin 5B promoter polymorphism is associated with idiopathic pulmonary fibrosis but not with development of lung fibrosis in systemic sclerosis or sarcoidosis. Thorax 68:436–441

    Article  PubMed  Google Scholar 

  20. Wang C et al (2014) Mucin 5B promoter polymorphism is associated with susceptibility to interstitial lung diseases in Chinese males. PLoS One 9:e104919

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Wynn TA, Vannella KM (2016) Macrophages in tissue repair, regeneration, and fibrosis. Immunity 44:450–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kendall RT, Feghali-Bostwick CA (2014) Fibroblasts in fibrosis: novel roles and mediators. Front Pharmacol 5:123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Duffield JS, Lupher M, Thannickal VJ, Wynn TA (2013) Host responses in tissue repair and fibrosis. Annu Rev Pathol 8:241–276

    Article  CAS  PubMed  Google Scholar 

  24. Xia H et al (2008) Pathological integrin signaling enhances proliferation of primary lung fibroblasts from patients with idiopathic pulmonary fibrosis. J Exp Med 205:1659–1672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Penke LR, Speth JM, Dommeti VL, White ES, Bergin IL, Peters-Golden M (2018) FOXM1 is a critical driver of lung fibroblast activation and fibrogenesis. J Clin Invest 128:2389–2405

    Article  PubMed  PubMed Central  Google Scholar 

  26. Dabiri G, Tumbarello DA, Turner CE, Van de Water L (2008) Hic-5 promotes the hypertrophic scar myofibroblast phenotype by regulating the TGF-beta1 autocrine loop. J Invest Dermatol 128:2518–2525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bechtel W et al (2010) Methylation determines fibroblast activation and fibrogenesis in the kidney. Nat Med 16:544–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wettlaufer SH, Scott JP, McEachin RC, Peters-Golden M, Huang SK (2016) Reversal of the transcriptome by prostaglandin E2 during myofibroblast dedifferentiation. Am J Respir Cell Mol Biol 54:114–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Duong TE, Hagood JS (2018) Epigenetic regulation of myofibroblast phenotypes in fibrosis. Curr Pathobiol Rep 6:79–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hu B, Gharaee-Kermani M, Wu Z, Phan SH (2010) Epigenetic regulation of myofibroblast differentiation by DNA methylation. Am J Pathol 177:21–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Czuwara-Ladykowska J, Shirasaki F, Jackers P, Watson DK, Trojanowska M (2001) Fli-1 inhibits collagen type I production in dermal fibroblasts via an Sp1-dependent pathway. J Biol Chem 276:20839–20848

    Article  CAS  PubMed  Google Scholar 

  32. Asano Y, Czuwara J, Trojanowska M (2007) Transforming growth factor-beta regulates DNA binding activity of transcription factor Fli1 by p300/CREB-binding protein-associated factor-dependent acetylation. J Biol Chem 282:34672–34683

    Article  CAS  PubMed  Google Scholar 

  33. Wang Y, Fan PS, Kahaleh B (2006) Association between enhanced type I collagen expression and epigenetic repression of the FLI1 gene in scleroderma fibroblasts. Arthritis Rheum 54:2271–2279

    Article  CAS  PubMed  Google Scholar 

  34. Li B, Wang JH (2011) Fibroblasts and myofibroblasts in wound healing: force generation and measurement. J Tissue Viability 20:108–120

    Article  PubMed  Google Scholar 

  35. Hinz B (2007) Formation and function of the myofibroblast during tissue repair. J Invest Dermatol 127:526–537

    Article  CAS  PubMed  Google Scholar 

  36. Desmouliere A, Redard M, Darby I, Gabbiani G (1995) Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar. Am J Pathol 146:56–66

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Jun JI, Lau LF (2010) The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing. Nat Cell Biol 12:676–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jun JI, Lau LF (2010) Cellular senescence controls fibrosis in wound healing. Aging (Albany NY) 2:627–631

    Article  CAS  Google Scholar 

  39. Kisseleva T et al (2012) Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis. Proc Natl Acad Sci USA 109:9448–9453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dodi AE et al (2018) Regulation of fibroblast Fas expression by soluble and mechanical pro-fibrotic stimuli. Respir Res 19:91

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Buhling F, Wille A, Rocken C, Wiesner O, Baier A, Meinecke I, Welte T, Pap T (2005) Altered expression of membrane-bound and soluble CD95/Fas contributes to the resistance of fibrotic lung fibroblasts to FasL induced apoptosis. Respir Res 6:37

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Tanaka T, Yoshimi M, Maeyama T, Hagimoto N, Kuwano K, Hara N (2002) Resistance to Fas-mediated apoptosis in human lung fibroblast. Eur Respir J 20:359–368

    Article  CAS  PubMed  Google Scholar 

  43. Huang SK, Scruggs AM, Donaghy J, Horowitz JC, Zaslona Z, Przybranowski S, White ES, Peters-Golden M (2013) Histone modifications are responsible for decreased Fas expression and apoptosis resistance in fibrotic lung fibroblasts. Cell Death Dis 4:e621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Horowitz JC et al (2012) Survivin expression induced by endothelin-1 promotes myofibroblast resistance to apoptosis. Int J Biochem Cell Biol 44:158–169

    Article  CAS  PubMed  Google Scholar 

  45. Ajayi IO et al (2013) X-linked inhibitor of apoptosis regulates lung fibroblast resistance to Fas-mediated apoptosis. Am J Respir Cell Mol Biol 49:86–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ricci A et al (2013) Decreased expression of autophagic beclin 1 protein in idiopathic pulmonary fibrosis fibroblasts. J Cell Physiol 228:1516–1524

    Article  CAS  PubMed  Google Scholar 

  47. White ES, Atrasz RG, Dickie EG, Aronoff DM, Stambolic V, Mak TW, Moore BB, Peters-Golden M (2005) Prostaglandin E(2) inhibits fibroblast migration by E-prostanoid 2 receptor-mediated increase in PTEN activity. Am J Respir Cell Mol Biol 32:135–141

    Article  CAS  PubMed  Google Scholar 

  48. Li Y et al (2011) Severe lung fibrosis requires an invasive fibroblast phenotype regulated by hyaluronan and CD44. J Exp Med 208:1459–1471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Michael DR et al (2011) The human hyaluronan synthase 2 (HAS2) gene and its natural antisense RNA exhibit coordinated expression in the renal proximal tubular epithelial cell. J Biol Chem 286:19523–19532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Patouraux S et al (2017) CD44 is a key player in non-alcoholic steatohepatitis. J Hepatol 67:328–338

    Article  CAS  PubMed  Google Scholar 

  51. Stone RC, Pastar I, Ojeh N, Chen V, Liu S, Garzon KI, Tomic-Canic M (2016) Epithelial-mesenchymal transition in tissue repair and fibrosis. Cell Tissue Res 365:495–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bucala R, Spiegel LA, Chesney J, Hogan M, Cerami A (1994) Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol Med 1:71–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Piera-Velazquez S, Li Z, Jimenez SA (2011) Role of endothelial-mesenchymal transition (EndoMT) in the pathogenesis of fibrotic disorders. Am J Pathol 179:1074–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Humphreys BD et al (2010) Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am J Pathol 176:85–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Marangoni RG et al (2015) Myofibroblasts in murine cutaneous fibrosis originate from adiponectin-positive intradermal progenitors. Arthritis Rheumatol 67:1062–1073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Walker N et al (2011) Resident tissue-specific mesenchymal progenitor cells contribute to fibrogenesis in human lung allografts. Am J Pathol 178:2461–2469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hung C et al (2013) Role of lung pericytes and resident fibroblasts in the pathogenesis of pulmonary fibrosis. Am J Respir Crit Care Med 188:820–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rock JR, Barkauskas CE, Cronce MJ, Xue Y, Harris JR, Liang J, Noble PW, Hogan BL (2011) Multiple stromal populations contribute to pulmonary fibrosis without evidence for epithelial to mesenchymal transition. Proc Natl Acad Sci USA 108:E1475–E1483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Xie T et al (2016) Transcription factor TBX4 regulates myofibroblast accumulation and lung fibrosis. J Clin Invest 126:3063–3079

    Article  PubMed  PubMed Central  Google Scholar 

  60. Scholten D, Osterreicher CH, Scholten A, Iwaisako K, Gu G, Brenner DA, Kisseleva T (2010) Genetic labeling does not detect epithelial-to-mesenchymal transition of cholangiocytes in liver fibrosis in mice. Gastroenterology 139:987–998

    Article  CAS  PubMed  Google Scholar 

  61. Lin SL, Kisseleva T, Brenner DA, Duffield JS (2008) Pericytes and perivascular fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of the kidney. Am J Pathol 173:1617–1627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mederacke I, Hsu CC, Troeger JS, Huebener P, Mu X, Dapito DH, Pradere JP, Schwabe RF (2013) Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology. Nat Commun 4:2823

    Article  PubMed  CAS  Google Scholar 

  63. Habiel DM, Hogaboam C (2014) Heterogeneity in fibroblast proliferation and survival in idiopathic pulmonary fibrosis. Front Pharmacol 5:2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Habiel DM, Hogaboam CM (2017) Heterogeneity of fibroblasts and myofibroblasts in pulmonary fibrosis. Curr Pathobiol Rep 5:101–110

    Article  PubMed  PubMed Central  Google Scholar 

  65. Xie T et al (2018) Single-cell deconvolution of fibroblast heterogeneity in mouse pulmonary fibrosis. Cell Rep 22:3625–3640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sommer M, Schaller R, Funfstuck R, Bohle A, Bohmer FD, Muller GA, Stein G (1999) Abnormal growth and clonal proliferation of fibroblasts in an animal model of unilateral ureteral obstruction. Nephron 82:39–50

    Article  CAS  PubMed  Google Scholar 

  67. Jordana M, Schulman J, McSharry C, Irving LB, Newhouse MT, Jordana G, Gauldie J (1988) Heterogeneous proliferative characteristics of human adult lung fibroblast lines and clonally derived fibroblasts from control and fibrotic tissue. Am Rev Respir Dis 137:579–584

    Article  CAS  PubMed  Google Scholar 

  68. Raghu G, Chen YY, Rusch V, Rabinovitch PS (1988) Differential proliferation of fibroblasts cultured from normal and fibrotic human lungs. Am Rev Respir Dis 138:703–708

    Article  CAS  PubMed  Google Scholar 

  69. Wuyts WA, Cavazza A, Rossi G, Bonella F, Sverzellati N, Spagnolo P (2014) Differential diagnosis of usual interstitial pneumonia: when is it truly idiopathic? Eur Respir Rev 23:308–319

    Article  PubMed  Google Scholar 

  70. Fernandez IE, Eickelberg O (2012) The impact of TGF-beta on lung fibrosis: from targeting to biomarkers. Proc Am Thorac Soc 9:111–116

    Article  CAS  PubMed  Google Scholar 

  71. Dobaczewski M, Chen W, Frangogiannis NG (2011) Transforming growth factor (TGF)-beta signaling in cardiac remodeling. J Mol Cell Cardiol 51:600–606

    Article  CAS  PubMed  Google Scholar 

  72. Leask A (2007) TGFbeta, cardiac fibroblasts, and the fibrotic response. Cardiovasc Res 74:207–212

    Article  CAS  PubMed  Google Scholar 

  73. Fabregat I, Moreno-Caceres J, Sanchez A, Dooley S, Dewidar B, Giannelli G, Ten Dijke P, Consortium, I.-L (2016) TGF-beta signalling and liver disease. FEBS J 283:2219–2232

    Article  CAS  PubMed  Google Scholar 

  74. Meng XM, Nikolic-Paterson DJ, Lan HY (2016) TGF-beta: the master regulator of fibrosis. Nat Rev Nephrol 12:325–338

    Article  CAS  PubMed  Google Scholar 

  75. Meng XM, Tang PM, Li J, Lan HY (2015) TGF-beta/Smad signaling in renal fibrosis. Front Physiol 6:82

    Article  PubMed  PubMed Central  Google Scholar 

  76. Hagimoto N, Kuwano K, Inoshima I, Yoshimi M, Nakamura N, Fujita M, Maeyama T, Hara N (2002) TGF-beta 1 as an enhancer of Fas-mediated apoptosis of lung epithelial cells. J Immunol 168:6470–6478

    Article  CAS  PubMed  Google Scholar 

  77. Branton MH, Kopp JB (1999) TGF-beta and fibrosis. Microbes Infect 1:1349–1365

    Article  CAS  PubMed  Google Scholar 

  78. Hong KM, Belperio JA, Keane MP, Burdick MD, Strieter RM (2007) Differentiation of human circulating fibrocytes as mediated by transforming growth factor-beta and peroxisome proliferator-activated receptor gamma. J Biol Chem 282:22910–22920

    Article  CAS  PubMed  Google Scholar 

  79. Grotendorst GR (1997) Connective tissue growth factor: a mediator of TGF-beta action on fibroblasts. Cytokine Growth Factor Rev 8:171–179

    Article  CAS  PubMed  Google Scholar 

  80. Rodriguez-Pascual F, Reimunde FM, Redondo-Horcajo M, Lamas S (2004) Transforming growth factor-beta induces endothelin-1 expression through activation of the Smad signaling pathway. J Cardiovasc Pharmacol 44(Suppl 1):S39–S42

    Article  CAS  PubMed  Google Scholar 

  81. Myster DL, Duronio RJ (2000) To differentiate or not to differentiate? Curr Biol 10:R302–R304

    Article  CAS  PubMed  Google Scholar 

  82. Biernacka A, Dobaczewski M, Frangogiannis NG (2011) TGF-beta signaling in fibrosis. Growth Factors 29:196–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lin CH et al (2013) Connective tissue growth factor induces collagen I expression in human lung fibroblasts through the Rac1/MLK3/JNK/AP-1 pathway. Biochim Biophys Acta 1833:2823–2833

    Article  CAS  PubMed  Google Scholar 

  84. Gallelli L et al (2005) Endothelin-1 induces proliferation of human lung fibroblasts and IL-11 secretion through an ET(A) receptor-dependent activation of MAP kinases. J Cell Biochem 96:858–868

    Article  CAS  PubMed  Google Scholar 

  85. Piacentini L, Gray M, Honbo NY, Chentoufi J, Bergman M, Karliner JS (2000) Endothelin-1 stimulates cardiac fibroblast proliferation through activation of protein kinase C. J Mol Cell Cardiol 32:565–576

    Article  CAS  PubMed  Google Scholar 

  86. Frazier K, Williams S, Kothapalli D, Klapper H, Grotendorst GR (1996) Stimulation of fibroblast cell growth, matrix production, and granulation tissue formation by connective tissue growth factor. J Invest Dermatol 107:404–411

    Article  CAS  PubMed  Google Scholar 

  87. Clark JG, Madtes DK, Raghu G (1993) Effects of platelet-derived growth factor isoforms on human lung fibroblast proliferation and procollagen gene expression. Exp Lung Res 19:327–344

    Article  CAS  PubMed  Google Scholar 

  88. Simmons JG, Pucilowska JB, Keku TO, Lund PK (2002) IGF-I and TGF-beta1 have distinct effects on phenotype and proliferation of intestinal fibroblasts. Am J Physiol Gastrointest Liver Physiol 283:G809–G818

    Article  CAS  PubMed  Google Scholar 

  89. Laato M, Kahari VM, Niinikoski J, Vuorio E (1987) Epidermal growth factor increases collagen production in granulation tissue by stimulation of fibroblast proliferation and not by activation of procollagen genes. Biochem J 247:385–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hostettler KE et al (2014) Anti-fibrotic effects of nintedanib in lung fibroblasts derived from patients with idiopathic pulmonary fibrosis. Respir Res 15:157

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Siddesha JM et al (2013) Angiotensin II stimulates cardiac fibroblast migration via the differential regulation of matrixins and RECK. J Mol Cell Cardiol 65:9–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Battegay EJ, Raines EW, Colbert T, Ross R (1995) TNF-alpha stimulation of fibroblast proliferation. Dependence on platelet-derived growth factor (PDGF) secretion and alteration of PDGF receptor expression. J Immunol 154:6040–6047

    CAS  PubMed  Google Scholar 

  93. Kohan M, Breuer R, Berkman N (2009) Osteopontin induces airway remodeling and lung fibroblast activation in a murine model of asthma. Am J Respir Cell Mol Biol 41:290–296

    Article  CAS  PubMed  Google Scholar 

  94. Lertchirakarn V, Birner R, Messer HH (1998) Effects of interleukin-1 beta on human pulpal fibroblast proliferation and collagen synthesis. J Endod 24:409–413

    Article  CAS  PubMed  Google Scholar 

  95. Monroe JG, Haldar S, Prystowsky MB, Lammie P (1988) Lymphokine regulation of inflammatory processes: interleukin-4 stimulates fibroblast proliferation. Clin Immunol Immunopathol 49:292–298

    Article  CAS  PubMed  Google Scholar 

  96. Saito A, Okazaki H, Sugawara I, Yamamoto K, Takizawa H (2003) Potential action of IL-4 and IL-13 as fibrogenic factors on lung fibroblasts in vitro. Int Arch Allergy Immunol 132:168–176

    Article  CAS  PubMed  Google Scholar 

  97. Olman MA, White KE, Ware LB, Simmons WL, Benveniste EN, Zhu S, Pugin J, Matthay MA (2004) Pulmonary edema fluid from patients with early lung injury stimulates fibroblast proliferation through IL-1 beta-induced IL-6 expression. J Immunol 172:2668–2677

    Article  CAS  PubMed  Google Scholar 

  98. Liao WT et al (2010) Enhanced MCP-1 release by keloid CD14+ cells augments fibroblast proliferation: role of MCP-1 and Akt pathway in keloids. Exp Dermatol 19:e142–e150

    Article  PubMed  Google Scholar 

  99. Liu X et al (2015) Role of human pulmonary fibroblast-derived MCP-1 in cell activation and migration in experimental silicosis. Toxicol Appl Pharmacol 288:152–160

    Article  CAS  PubMed  Google Scholar 

  100. Puxeddu I, Bader R, Piliponsky AM, Reich R, Levi-Schaffer F, Berkman N (2006) The CC chemokine eotaxin/CCL11 has a selective profibrogenic effect on human lung fibroblasts. J Allergy Clin Immunol 117:103–110

    Article  CAS  PubMed  Google Scholar 

  101. Zhang YE (2017) Non-smad signaling pathways of the TGF-beta family. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a022129

    Article  CAS  Google Scholar 

  102. Ji H, Tang H, Lin H, Mao J, Gao L, Liu J, Wu T (2014) Rho/Rock cross-talks with transforming growth factor-beta/Smad pathway participates in lung fibroblast-myofibroblast differentiation. Biomed Rep 2:787–792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Lamouille S, Xu J, Derynck R (2014) Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 15:178–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Jiang C, Huang H, Liu J, Wang Y, Lu Z, Xu Z (2012) Fasudil, a Rho-kinase inhibitor, attenuates bleomycin-induced pulmonary fibrosis in mice. Int J Mol Sci 13:8293–8307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Monaghan-Benson E, Wittchen ES, Doerschuk CM, Burridge K (2018) A Rnd3/p190RhoGAP pathway regulates RhoA activity in idiopathic pulmonary fibrosis fibroblasts. Mol Biol Cell 29:2165–2175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Conte E, Fruciano M, Fagone E, Gili E, Caraci F, Iemmolo M, Crimi N, Vancheri C (2011) Inhibition of PI3K prevents the proliferation and differentiation of human lung fibroblasts into myofibroblasts: the role of class I P110 isoforms. PLoS One 6:e24663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Horowitz JC, Lee DY, Waghray M, Keshamouni VG, Thomas PE, Zhang H, Cui Z, Thannickal VJ (2004) Activation of the pro-survival phosphatidylinositol 3-kinase/AKT pathway by transforming growth factor-beta1 in mesenchymal cells is mediated by p38 MAPK-dependent induction of an autocrine growth factor. J Biol Chem 279:1359–1367

    Article  CAS  PubMed  Google Scholar 

  108. Kim G, Jun JB, Elkon KB (2002) Necessary role of phosphatidylinositol 3-kinase in transforming growth factor beta-mediated activation of Akt in normal and rheumatoid arthritis synovial fibroblasts. Arthritis Rheum 46:1504–1511

    Article  CAS  PubMed  Google Scholar 

  109. Chen G, Chen H, Wang C, Peng Y, Sun L, Liu H, Liu F (2012) Rapamycin ameliorates kidney fibrosis by inhibiting the activation of mTOR signaling in interstitial macrophages and myofibroblasts. PLoS One 7:e33626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Chen JK, Chen J, Neilson EG, Harris RC (2005) Role of mammalian target of rapamycin signaling in compensatory renal hypertrophy. J Am Soc Nephrol 16:1384–1391

    Article  CAS  PubMed  Google Scholar 

  111. Gao XM, Wong G, Wang B, Kiriazis H, Moore XL, Su YD, Dart A, Du XJ (2006) Inhibition of mTOR reduces chronic pressure-overload cardiac hypertrophy and fibrosis. J Hypertens 24:1663–1670

    Article  CAS  PubMed  Google Scholar 

  112. Patsenker E, Schneider V, Ledermann M, Saegesser H, Dorn C, Hellerbrand C, Stickel F (2011) Potent antifibrotic activity of mTOR inhibitors sirolimus and everolimus but not of cyclosporine A and tacrolimus in experimental liver fibrosis. J Hepatol 55:388–398

    Article  CAS  PubMed  Google Scholar 

  113. Romero Y et al (2016) mTORC1 activation decreases autophagy in aging and idiopathic pulmonary fibrosis and contributes to apoptosis resistance in IPF fibroblasts. Aging Cell 15:1103–1112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Sarbassov DD, Ali SM, Kim DH, Guertin DA, Latek RR, Erdjument-Bromage H, Tempst P, Sabatini DM (2004) Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 14:1296–1302

    Article  CAS  PubMed  Google Scholar 

  115. Guertin DA et al (2006) Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. Dev Cell 11:859–871

    Article  CAS  PubMed  Google Scholar 

  116. Jung SA et al (2007) Upregulation of TGF-beta-induced tissue transglutaminase expression by PI3K-Akt pathway activation in human subconjunctival fibroblasts. Invest Ophthalmol Vis Sci 48:1952–1958

    Article  PubMed  Google Scholar 

  117. Wettlaufer SH, Penke LR, Okunishi K, Peters-Golden M (2017) Distinct PKA regulatory subunits mediate PGE2 inhibition of TGFbeta-1-stimulated collagen I translation and myofibroblast differentiation. Am J Physiol Lung Cell Mol Physiol 313:L722–L731

    Article  PubMed  PubMed Central  Google Scholar 

  118. Ivaska J, Reunanen H, Westermarck J, Koivisto L, Kahari VM, Heino J (1999) Integrin alpha2beta1 mediates isoform-specific activation of p38 and upregulation of collagen gene transcription by a mechanism involving the alpha2 cytoplasmic tail. J Cell Biol 147:401–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Sato M, Shegogue D, Gore EA, Smith EA, McDermott PJ, Trojanowska M (2002) Role of p38 MAPK in transforming growth factor beta stimulation of collagen production by scleroderma and healthy dermal fibroblasts. J Invest Dermatol 118:704–711

    Article  CAS  PubMed  Google Scholar 

  120. Penke LR, Huang SK, White ES, Peters-Golden M (2014) Prostaglandin E2 inhibits alpha-smooth muscle actin transcription during myofibroblast differentiation via distinct mechanisms of modulation of serum response factor and myocardin-related transcription factor-A. J Biol Chem 289:17151–17162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Zhang YE (2009) Non-Smad pathways in TGF-beta signaling. Cell Res 19:128–139

    Article  CAS  PubMed  Google Scholar 

  122. Hashimoto S, Gon Y, Takeshita I, Matsumoto K, Maruoka S, Horie T (2001) Transforming growth Factor-beta1 induces phenotypic modulation of human lung fibroblasts to myofibroblast through a c-Jun-NH2-terminal kinase-dependent pathway. Am J Respir Crit Care Med 163:152–157

    Article  CAS  PubMed  Google Scholar 

  123. Hashimoto S, Gon Y, Takeshita I, Maruoka S, Horie T (2001) IL-4 and IL-13 induce myofibroblastic phenotype of human lung fibroblasts through c-Jun NH2-terminal kinase-dependent pathway. J Allergy Clin Immunol 107:1001–1008

    Article  CAS  PubMed  Google Scholar 

  124. Yoshida K et al (2005) Transforming growth factor-beta and platelet-derived growth factor signal via c-Jun N-terminal kinase-dependent Smad2/3 phosphorylation in rat hepatic stellate cells after acute liver injury. Am J Pathol 166:1029–1039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Utsugi M, Dobashi K, Ishizuka T, Masubuchi K, Shimizu Y, Nakazawa T, Mori M (2003) C-Jun-NH2-terminal kinase mediates expression of connective tissue growth factor induced by transforming growth factor-beta1 in human lung fibroblasts. Am J Respir Cell Mol Biol 28:754–761

    Article  CAS  PubMed  Google Scholar 

  126. Black SA Jr, Palamakumbura AH, Stan M, Trackman PC (2007) Tissue-specific mechanisms for CCN2/CTGF persistence in fibrotic gingiva: interactions between cAMP and MAPK signaling pathways, and prostaglandin E2-EP3 receptor mediated activation of the c-JUN N-terminal kinase. J Biol Chem 282:15416–15429

    Article  CAS  PubMed  Google Scholar 

  127. Yamanaka O, Saika S, Ohnishi Y, Kim-Mitsuyama S, Kamaraju AK, Ikeda K (2007) Inhibition of p38MAP kinase suppresses fibrogenic reaction in conjunctiva in mice. Mol Vis 13:1730–1739

    CAS  PubMed  Google Scholar 

  128. Shi-Wen X et al (2006) Constitutive ALK5-independent c-Jun N-terminal kinase activation contributes to endothelin-1 overexpression in pulmonary fibrosis: evidence of an autocrine endothelin loop operating through the endothelin A and B receptors. Mol Cell Biol 26:5518–5527

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Akhmetshina A et al (2008) Rho-associated kinases are crucial for myofibroblast differentiation and production of extracellular matrix in scleroderma fibroblasts. Arthritis Rheum 58:2553–2564

    Article  CAS  PubMed  Google Scholar 

  130. Liu X, Sun SQ, Hassid A, Ostrom RS (2006) cAMP inhibits transforming growth factor-beta-stimulated collagen synthesis via inhibition of extracellular signal-regulated kinase 1/2 and Smad signaling in cardiac fibroblasts. Mol Pharmacol 70:1992–2003

    Article  CAS  PubMed  Google Scholar 

  131. Sun Q, Wu Y, Zhao F, Wang J (2017) Maresin 1 inhibits transforming growth factor-beta1-induced proliferation, migration and differentiation in human lung fibroblasts. Mol Med Rep 16:1523–1529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Ju W et al (2012) Inhibition of alpha-SMA by the ectodomain of FGFR2c attenuates lung fibrosis. Mol Med 18:992–1002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Lai JM et al (2016) Redox-sensitive MAPK and Notch3 regulate fibroblast differentiation and activation: a dual role of ERK1/2. Oncotarget 7:43731–43745

    Article  PubMed  PubMed Central  Google Scholar 

  134. Hecker L, Jagirdar R, Jin T, Thannickal VJ (2011) Reversible differentiation of myofibroblasts by MyoD. Exp Cell Res 317:1914–1921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Midgley AC, Rogers M, Hallett MB, Clayton A, Bowen T, Phillips AO, Steadman R (2013) Transforming growth factor-beta1 (TGF-beta1)-stimulated fibroblast to myofibroblast differentiation is mediated by hyaluronan (HA)-facilitated epidermal growth factor receptor (EGFR) and CD44 co-localization in lipid rafts. J Biol Chem 288:14824–14838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. He S, Liu X, Yang Y, Huang W, Xu S, Yang S, Zhang X, Roberts MS (2010) Mechanisms of transforming growth factor beta(1)/Smad signalling mediated by mitogen-activated protein kinase pathways in keloid fibroblasts. Br J Dermatol 162:538–546

    Article  CAS  PubMed  Google Scholar 

  137. Jiang Y, Wu C, Boye A, Wu J, Wang J, Yang X, Yang Y (2015) MAPK inhibitors modulate Smad2/3/4 complex cyto-nuclear translocation in myofibroblasts via Imp7/8 mediation. Mol Cell Biochem 406:255–262

    Article  CAS  PubMed  Google Scholar 

  138. Carthy JM, Garmaroudi FS, Luo Z, McManus BM (2011) Wnt3a induces myofibroblast differentiation by upregulating TGF-beta signaling through SMAD2 in a beta-catenin-dependent manner. PLoS One 6:e19809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Vuga LJ, Ben-Yehudah A, Kovkarova-Naumovski E, Oriss T, Gibson KF, Feghali-Bostwick C, Kaminski N (2009) WNT5A is a regulator of fibroblast proliferation and resistance to apoptosis. Am J Respir Cell Mol Biol 41:583–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Konigshoff M, Balsara N, Pfaff EM, Kramer M, Chrobak I, Seeger W, Eickelberg O (2008) Functional Wnt signaling is increased in idiopathic pulmonary fibrosis. PLoS One 3:e2142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Dees C et al (2014) The Wnt antagonists DKK1 and SFRP1 are downregulated by promoter hypermethylation in systemic sclerosis. Ann Rheum Dis 73:1232–1239

    Article  CAS  PubMed  Google Scholar 

  142. Liu J et al (2018) Methylation of secreted frizzled-related protein 1 (SFRP1) promoter downregulates Wnt/beta-catenin activity in keloids. J Mol Histol 49:185–193

    Article  CAS  PubMed  Google Scholar 

  143. Baarsma HA et al (2011) Activation of WNT/beta-catenin signaling in pulmonary fibroblasts by TGF-beta(1) is increased in chronic obstructive pulmonary disease. PLoS One 6:e25450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Cao P, Aoki Y, Badri L, Walker NM, Manning CM, Lagstein A, Fearon ER, Lama VN (2017) Autocrine lysophosphatidic acid signaling activates beta-catenin and promotes lung allograft fibrosis. J Clin Invest 127:1517–1530

    Article  PubMed  PubMed Central  Google Scholar 

  145. Epstein Shochet G, Brook E, Israeli-Shani L, Edelstein E, Shitrit D (2017) Fibroblast paracrine TNF-alpha signaling elevates integrin A5 expression in idiopathic pulmonary fibrosis (IPF). Respir Res 18:122

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Margadant C, Sonnenberg A (2010) Integrin-TGF-beta crosstalk in fibrosis, cancer and wound healing. EMBO Rep 11:97–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Chiquet M, Renedo AS, Huber F, Fluck M (2003) How do fibroblasts translate mechanical signals into changes in extracellular matrix production? Matrix Biol 22:73–80

    Article  CAS  PubMed  Google Scholar 

  148. O’Toole TE et al (1994) Integrin cytoplasmic domains mediate inside-out signal transduction. J Cell Biol 124:1047–1059

    Article  PubMed  Google Scholar 

  149. Orr AW, Helmke BP, Blackman BR, Schwartz MA (2006) Mechanisms of mechanotransduction. Dev Cell 10:11–20

    Article  CAS  PubMed  Google Scholar 

  150. Gui Y, Li J, Lu Q, Feng Y, Wang M, He W, Yang J, Dai C (2018) Yap/Taz mediates mTORC2-stimulated fibroblast activation and kidney fibrosis. J Biol Chem 293:16364–16375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Qin Z, Xia W, Fisher GJ, Voorhees JJ, Quan T (2018) YAP/TAZ regulates TGF-beta/Smad3 signaling by induction of Smad7 via AP-1 in human skin dermal fibroblasts. Cell Commun Signal 16:18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Xu F, Liu C, Zhou D, Zhang L (2016) TGF-beta/SMAD pathway and its regulation in hepatic fibrosis. J Histochem Cytochem 64:157–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Samarakoon R, Higgins PJ (2008) Integration of non-SMAD and SMAD signaling in TGF-beta1-induced plasminogen activator inhibitor type-1 gene expression in vascular smooth muscle cells. Thromb Haemost 100:976–983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Jonk LJ, Itoh S, Heldin CH, ten Dijke P, Kruijer W (1998) Identification and functional characterization of a Smad binding element (SBE) in the JunB promoter that acts as a transforming growth factor-beta, activin, and bone morphogenetic protein-inducible enhancer. J Biol Chem 273:21145–21152

    Article  CAS  PubMed  Google Scholar 

  155. ten Dijke P, Miyazono K, Heldin CH (2000) Signaling inputs converge on nuclear effectors in TGF-beta signaling. Trends Biochem Sci 25:64–70

    Article  PubMed  Google Scholar 

  156. Roach KM, Wulff H, Feghali-Bostwick C, Amrani Y, Bradding P (2014) Increased constitutive alphaSMA and Smad2/3 expression in idiopathic pulmonary fibrosis myofibroblasts is KCa3.1-dependent. Respir Res 15:155

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Sandbo N, Kregel S, Taurin S, Bhorade S, Dulin NO (2009) Critical role of serum response factor in pulmonary myofibroblast differentiation induced by TGF-beta. Am J Respir Cell Mol Biol 41:332–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Zhang M, Fang H, Zhou J, Herring BP (2007) A novel role of Brg1 in the regulation of SRF/MRTFA-dependent smooth muscle-specific gene expression. J Biol Chem 282:25708–25716

    Article  CAS  PubMed  Google Scholar 

  159. Plantier L, Renaud H, Respaud R, Marchand-Adam S, Crestani B (2016) Transcriptome of cultured lung fibroblasts in idiopathic pulmonary fibrosis: meta-analysis of publically available microarray datasets reveals repression of inflammation and immunity pathways. Int J Mol Sci. https://doi.org/10.3390/ijms17122091

    Article  PubMed Central  CAS  Google Scholar 

  160. Chen J, Zhong Q, Wang J, Cameron RS, Borke JL, Isales CM, Bollag RJ (2001) Microarray analysis of Tbx2-directed gene expression: a possible role in osteogenesis. Mol Cell Endocrinol 177:43–54

    Article  CAS  PubMed  Google Scholar 

  161. Teng H, Davis E, Abrahams A, Mowla S, Parker MI, Prince S (2007) A role for Tbx2 in the regulation of the alpha2(1) collagen gene in human fibroblasts. J Cell Biochem 102:618–625

    Article  CAS  PubMed  Google Scholar 

  162. Horie M et al (2018) TBX4 is involved in the super-enhancer-driven transcriptional programs underlying features specific to lung fibroblasts. Am J Physiol Lung Cell Mol Physiol 314:L177–L191

    Article  PubMed  CAS  Google Scholar 

  163. Fan W, Huang X, Chen C, Gray J, Huang T (2004) TBX3 and its isoform TBX3 + 2a are functionally distinctive in inhibition of senescence and are overexpressed in a subset of breast cancer cell lines. Cancer Res 64:5132–5139

    Article  CAS  PubMed  Google Scholar 

  164. Balli D et al (2013) Foxm1 transcription factor is required for lung fibrosis and epithelial-to-mesenchymal transition. EMBO J 32:231–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Paoli P, Giannoni E, Chiarugi P (2013) Anoikis molecular pathways and its role in cancer progression. Biochim Biophys Acta 1833:3481–3498

    Article  CAS  PubMed  Google Scholar 

  166. Thannickal VJ, Horowitz JC (2006) Evolving concepts of apoptosis in idiopathic pulmonary fibrosis. Proc Am Thorac Soc 3:350–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Im J, Lawrence J, Seelig D, Nho RS (2018) FoxM1-dependent RAD51 and BRCA2 signaling protects idiopathic pulmonary fibrosis fibroblasts from radiation-induced cell death. Cell Death Dis 9:584

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Black M, Milewski D, Le T, Ren X, Xu Y, Kalinichenko VV, Kalin TV (2018) FOXF1 inhibits pulmonary fibrosis by preventing CDH2-CDH11 cadherin switch in myofibroblasts. Cell Rep 23:442–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Malin D et al (2007) Forkhead box F1 is essential for migration of mesenchymal cells and directly induces integrin-beta3 expression. Mol Cell Biol 27:2486–2498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Correll KA et al (2018) TGF beta inhibits HGF, FGF7, and FGF10 expression in normal and IPF lung fibroblasts. Physiol Rep 6:e13794

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Zhou T, Luo M, Cai W, Zhou S, Feng D, Xu C, Wang H (2018) Runt-related transcription factor 1 (RUNX1) promotes TGF-beta-induced renal tubular epithelial-to-mesenchymal transition (EMT) and renal fibrosis through the PI3K subunit p110delta. EBioMedicine 31:217–225

    Article  PubMed  PubMed Central  Google Scholar 

  172. Kim W, Barron DA, San Martin R, Chan KS, Tran LL, Yang F, Ressler SJ, Rowley DR (2014) RUNX1 is essential for mesenchymal stem cell proliferation and myofibroblast differentiation. Proc Natl Acad Sci USA 111:16389–16394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Anderson G et al (2018) RUNX-mediated growth arrest and senescence are attenuated by diverse mechanisms in cells expressing RUNX1 fusion oncoproteins. J Cell Biochem 119:2750–2762

    Article  CAS  PubMed  Google Scholar 

  174. Navarro V, Roig P, Nieto A, Jimenez J, Tuset C, Tuset L, Navarro R, Juan G (1988) A small outbreak of HIV infection among commercial plasma donors. Lancet 2:42

    CAS  PubMed  Google Scholar 

  175. Yan J, Zhang Z, Yang J, Mitch WE, Wang Y (2015) JAK3/STAT6 stimulates bone marrow-derived fibroblast activation in renal fibrosis. J Am Soc Nephrol 26:3060–3071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Kaikkonen MU, Lam MT, Glass CK (2011) Non-coding RNAs as regulators of gene expression and epigenetics. Cardiovasc Res 90:430–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Kato M (2018) Noncoding RNAs as therapeutic targets in early stage diabetic kidney disease. Kidney Res Clin Pract 37:197–209

    Article  PubMed  PubMed Central  Google Scholar 

  178. Teng KY, Ghoshal K (2015) Role of noncoding RNAs as biomarker and therapeutic targets for liver fibrosis. Gene Expr 16:155–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Zhang Y et al (2018) Critical effects of long non-coding RNA on fibrosis diseases. Exp Mol Med 50:e428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Lu Q, Guo Z, Xie W, Jin W, Zhu D, Chen S, Ren T (2018) The lncRNA H19 mediates pulmonary fibrosis by regulating the miR-196a/COL1A1 axis. Inflammation 41:896–903

    Article  CAS  PubMed  Google Scholar 

  181. Tao H, Cao W, Yang JJ, Shi KH, Zhou X, Liu LP, Li J (2016) Long noncoding RNA H19 controls DUSP5/ERK1/2 axis in cardiac fibroblast proliferation and fibrosis. Cardiovasc Pathol 25:381–389

    Article  CAS  PubMed  Google Scholar 

  182. Zhao X et al (2018) lncRNA PFAR promotes lung fibroblast activation and fibrosis by targeting miR-138 to regulate the YAP1-twist axis. Mol Ther 26:2206–2217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Jiang H et al (2018) Inhibition of lncRNA PFRL prevents pulmonary fibrosis by disrupting the miR-26a/smad2 loop. Am J Physiol Lung Cell Mol Physiol 315:L563–L575

    Article  CAS  PubMed  Google Scholar 

  184. Li X et al (2018) lncRNA PFAL promotes lung fibrosis through CTGF by competitively binding miR-18a. FASEB J 32:5285–5297

    Article  CAS  PubMed  Google Scholar 

  185. Zhang K et al (2017) The liver-enriched lnc-LFAR1 promotes liver fibrosis by activating TGFbeta and Notch pathways. Nat Commun 8:144

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Qu X et al (2017) MIAT is a pro-fibrotic long non-coding RNA governing cardiac fibrosis in post-infarct myocardium. Sci Rep 7:42657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Liang H et al (2018) LncRNA PFL contributes to cardiac fibrosis by acting as a competing endogenous RNA of let-7d. Theranostics 8:1180–1194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Bian EB et al (2017) Hotair facilitates hepatic stellate cells activation and fibrogenesis in the liver. Biochim Biophys Acta Mol Basis Dis 1863:674–686

    Article  CAS  PubMed  Google Scholar 

  189. Tao H, Zhang JG, Qin RH, Dai C, Shi P, Yang JJ, Deng ZY, Shi KH (2017) LncRNA GAS5 controls cardiac fibroblast activation and fibrosis by targeting miR-21 via PTEN/MMP-2 signaling pathway. Toxicology 386:11–18

    Article  CAS  PubMed  Google Scholar 

  190. Yu F et al (2015) Long non-coding RNA growth arrest-specific transcript 5 (GAS5) inhibits liver fibrogenesis through a mechanism of competing endogenous RNA. J Biol Chem 290:28286–28298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. He Y et al (2014) Inhibitory effects of long noncoding RNA MEG3 on hepatic stellate cells activation and liver fibrogenesis. Biochim Biophys Acta 1842:2204–2215

    Article  CAS  PubMed  Google Scholar 

  192. Dattaroy D et al (2015) Micro-RNA 21 inhibition of SMAD7 enhances fibrogenesis via leptin-mediated NADPH oxidase in experimental and human nonalcoholic steatohepatitis. Am J Physiol Gastrointest Liver Physiol 308:G298–G312

    Article  CAS  PubMed  Google Scholar 

  193. Liu G, Friggeri A, Yang Y, Milosevic J, Ding Q, Thannickal VJ, Kaminski N, Abraham E (2010) miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. J Exp Med 207:1589–1597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. McClelland AD et al (2015) miR-21 promotes renal fibrosis in diabetic nephropathy by targeting PTEN and SMAD7. Clin Sci (Lond) 129:1237–1249

    Article  CAS  Google Scholar 

  195. Yuan J et al (2017) Mir-21 promotes cardiac fibrosis after myocardial infarction via targeting Smad7. Cell Physiol Biochem 42:2207–2219

    Article  CAS  PubMed  Google Scholar 

  196. Zhang J, Xu D, Li N, Li Y, He Y, Hu X, Lyu L, He L (2017) Downregulation of microRNA-31 inhibits proliferation and induces apoptosis by targeting HIF1AN in human keloid. Oncotarget 8:74623–74634

    Article  PubMed  PubMed Central  Google Scholar 

  197. Cui H, Ge J, Xie N, Banerjee S, Zhou Y, Antony VB, Thannickal VJ, Liu G (2017) miR-34a inhibits lung fibrosis by inducing lung fibroblast senescence. Am J Respir Cell Mol Biol 56:168–178

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Li WQ et al (2011) The rno-miR-34 family is upregulated and targets ACSL1 in dimethylnitrosamine-induced hepatic fibrosis in rats. FEBS J 278:1522–1532

    Article  CAS  PubMed  Google Scholar 

  199. Zhou Y, Xiong M, Niu J, Sun Q, Su W, Zen K, Dai C, Yang J (2014) Secreted fibroblast-derived miR-34a induces tubular cell apoptosis in fibrotic kidney. J Cell Sci 127:4494–4506

    CAS  PubMed  Google Scholar 

  200. Nho RS, Im J, Ho YY, Hergert P (2014) MicroRNA-96 inhibits FoxO3a function in IPF fibroblasts on type I collagen matrix. Am J Physiol Lung Cell Mol Physiol 307:L632–L642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Yang S et al (2013) miR-145 regulates myofibroblast differentiation and lung fibrosis. FASEB J 27:2382–2391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Milosevic J et al (2012) Profibrotic role of miR-154 in pulmonary fibrosis. Am J Respir Cell Mol Biol 47:879–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Artlett CM, Sassi-Gaha S, Hope JL, Feghali-Bostwick CA, Katsikis PD (2017) Mir-155 is overexpressed in systemic sclerosis fibroblasts and is required for NLRP3 inflammasome-mediated collagen synthesis during fibrosis. Arthritis Res Ther 19:144

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  204. Pottier N et al (2009) Identification of keratinocyte growth factor as a target of microRNA-155 in lung fibroblasts: implication in epithelial-mesenchymal interactions. PLoS One 4:e6718

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  205. Zhang D, Cui Y, Li B, Luo X, Li B, Tang Y (2016) miR-155 regulates high glucose-induced cardiac fibrosis via the TGF-beta signaling pathway. Mol BioSyst 13:215–224

    Article  PubMed  CAS  Google Scholar 

  206. Lino Cardenas CL et al (2013) miR-199a-5p Is upregulated during fibrogenic response to tissue injury and mediates TGFbeta-induced lung fibroblast activation by targeting caveolin-1. PLoS Genet 9:e1003291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Bodempudi V et al (2014) miR-210 promotes IPF fibroblast proliferation in response to hypoxia. Am J Physiol Lung Cell Mol Physiol 307:L283–L294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Fierro-Fernandez M et al (2015) miR-9-5p suppresses pro-fibrogenic transformation of fibroblasts and prevents organ fibrosis by targeting NOX4 and TGFBR2. EMBO Rep 16:1358–1377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Hong Y et al (2016) MiR-22 may suppress fibrogenesis by targeting TGFbetaR I in cardiac fibroblasts. Cell Physiol Biochem 40:1345–1353

    Article  CAS  PubMed  Google Scholar 

  210. Liang H et al (2014) The antifibrotic effects and mechanisms of microRNA-26a action in idiopathic pulmonary fibrosis. Mol Ther 22:1122–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Cui H, Banerjee S, Xie N, Ge J, Liu RM, Matalon S, Thannickal VJ, Liu G (2016) MicroRNA-27a-3p is a negative regulator of lung fibrosis by targeting myofibroblast differentiation. Am J Respir Cell Mol Biol 54:843–852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Cushing L et al (2011) miR-29 is a major regulator of genes associated with pulmonary fibrosis. Am J Respir Cell Mol Biol 45:287–294

    Article  CAS  PubMed  Google Scholar 

  213. Huang C et al (2017) MicroRNA-101 attenuates pulmonary fibrosis by inhibiting fibroblast proliferation and activation. J Biol Chem 292:16420–16439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Yang S et al (2012) Participation of miR-200 in pulmonary fibrosis. Am J Pathol 180:484–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Venugopal SK, Jiang J, Kim TH, Li Y, Wang SS, Torok NJ, Wu J, Zern MA (2010) Liver fibrosis causes downregulation of miRNA-150 and miRNA-194 in hepatic stellate cells, and their overexpression causes decreased stellate cell activation. Am J Physiol Gastrointest Liver Physiol 298:G101–G106

    Article  CAS  PubMed  Google Scholar 

  216. Huang SK, Wettlaufer SH, Chung J, Peters-Golden M (2008) Prostaglandin E2 inhibits specific lung fibroblast functions via selective actions of PKA and Epac-1. Am J Respir Cell Mol Biol 39:482–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Tanaka K et al (2003) Inhibition of induction of myofibroblasts by interferon gamma in a human fibroblast cell line. Int Immunopharmacol 3:1273–1280

    Article  CAS  PubMed  Google Scholar 

  218. Ghosh AK, Bhattacharyya S, Wei J, Kim S, Barak Y, Mori Y, Varga J (2009) Peroxisome proliferator-activated receptor-gamma abrogates Smad-dependent collagen stimulation by targeting the p300 transcriptional coactivator. FASEB J 23:2968–2977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Nuwormegbe SA, Sohn JH, Kim SW (2017) A PPAR-gamma agonist rosiglitazone suppresses fibrotic response in human pterygium fibroblasts by modulating the p38 MAPK pathway. Invest Ophthalmol Vis Sci 58:5217–5226

    Article  CAS  PubMed  Google Scholar 

  220. Wei J et al (2010) PPARgamma downregulation by TGFss in fibroblast and impaired expression and function in systemic sclerosis: a novel mechanism for progressive fibrogenesis. PLoS One 5:e13778

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  221. Kyoung Kim H, Kyoung Kim Y, Song IH, Baek SH, Lee SR, Hye Kim J, Kim JR (2005) Down-regulation of a forkhead transcription factor, FOXO3a, accelerates cellular senescence in human dermal fibroblasts. J Gerontol A Biol Sci Med Sci 60:4–9

    Article  PubMed  Google Scholar 

  222. Sagana RL et al (2009) Phosphatase and tensin homologue on chromosome 10 (PTEN) directs prostaglandin E2-mediated fibroblast responses via regulation of E prostanoid 2 receptor expression. J Biol Chem 284:32264–32271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Xin Z et al (2018) FOXO1/3: potential suppressors of fibrosis. Ageing Res Rev 41:42–52

    Article  CAS  PubMed  Google Scholar 

  224. Gu X, Xu D, Fu L, Wang Y, Mei C, Gao X (2017) KLF 15 works as an early anti-fibrotic transcriptional regulator in Ang II-induced renal fibrosis via down-regulation of CTGF expression. Kidney Blood Press Res 42:999–1012

    Article  CAS  PubMed  Google Scholar 

  225. Wang B, Haldar SM, Lu Y, Ibrahim OA, Fisch S, Gray S, Leask A, Jain MK (2008) The Kruppel-like factor KLF15 inhibits connective tissue growth factor (CTGF) expression in cardiac fibroblasts. J Mol Cell Cardiol 45:193–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Blikslager AT, Roberts MC, Rhoads JM, Argenzio RA (1997) Prostaglandins I2 and E2 have a synergistic role in rescuing epithelial barrier function in porcine ileum. J Clin Invest 100:1928–1933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Uribe A, Alam M, Midtvedt T (1992) E2 prostaglandins modulate cell proliferation in the small intestinal epithelium of the rat. Digestion 52:157–164

    Article  CAS  PubMed  Google Scholar 

  228. Nishihara H, Kizaka-Kondoh S, Insel PA, Eckmann L (2003) Inhibition of apoptosis in normal and transformed intestinal epithelial cells by cAMP through induction of inhibitor of apoptosis protein (IAP)-2. Proc Natl Acad Sci USA 100:8921–8926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Bitterman PB, Wewers MD, Rennard SI, Adelberg S, Crystal RG (1986) Modulation of alveolar macrophage-driven fibroblast proliferation by alternative macrophage mediators. J Clin Invest 77:700–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Thomas PE, Peters-Golden M, White ES, Thannickal VJ, Moore BB (2007) PGE(2) inhibition of TGF-beta1-induced myofibroblast differentiation is Smad-independent but involves cell shape and adhesion-dependent signaling. Am J Physiol Lung Cell Mol Physiol 293:L417–L428

    Article  CAS  PubMed  Google Scholar 

  231. Huang SK, White ES, Wettlaufer SH, Grifka H, Hogaboam CM, Thannickal VJ, Horowitz JC, Peters-Golden M (2009) Prostaglandin E(2) induces fibroblast apoptosis by modulating multiple survival pathways. FASEB J 23:4317–4326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Moore BB, Ballinger MN, White ES, Green ME, Herrygers AB, Wilke CA, Toews GB, Peters-Golden M (2005) Bleomycin-induced E prostanoid receptor changes alter fibroblast responses to prostaglandin E2. J Immunol 174:5644–5649

    Article  CAS  PubMed  Google Scholar 

  233. Kamio K et al (2007) Prostacyclin analogs inhibit fibroblast contraction of collagen gels through the cAMP-PKA pathway. Am J Respir Cell Mol Biol 37:113–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Lovgren AK, Jania LA, Hartney JM, Parsons KK, Audoly LP, Fitzgerald GA, Tilley SL, Koller BH (2006) COX-2-derived prostacyclin protects against bleomycin-induced pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 291:L144–L156

    Article  CAS  PubMed  Google Scholar 

  235. Sisson TH et al (2018) Phosphodiesterase 4 inhibition reduces lung fibrosis following targeted type II alveolar epithelial cell injury. Physiol Rep 6:e13753

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  236. Udalov S et al (2010) Effects of phosphodiesterase 4 inhibition on bleomycin-induced pulmonary fibrosis in mice. BMC Pulm Med 10:26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  237. Diakov I (1973) Study of the dependence of oxygen consumption on the lipopolysaccharide-protein complex content in the antigenic structure of Salmonella abortus ovis. Vet Med Nauki 10:27–32

    CAS  PubMed  Google Scholar 

  238. Coward WR, Watts K, Feghali-Bostwick CA, Knox A, Pang L (2009) Defective histone acetylation is responsible for the diminished expression of cyclooxygenase 2 in idiopathic pulmonary fibrosis. Mol Cell Biol 29:4325–4339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Walker NM, Badri LN, Wadhwa A, Wettlaufer S, Peters-Golden M, Lama VN (2012) Prostaglandin E2 as an inhibitory modulator of fibrogenesis in human lung allografts. Am J Respir Crit Care Med 185:77–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Liu F, Mih JD, Shea BS, Kho AT, Sharif AS, Tager AM, Tschumperlin DJ (2010) Feedback amplification of fibrosis through matrix stiffening and COX-2 suppression. J Cell Biol 190:693–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Huang SK, Fisher AS, Scruggs AM, White ES, Hogaboam CM, Richardson BC, Peters-Golden M (2010) Hypermethylation of PTGER2 confers prostaglandin E2 resistance in fibrotic fibroblasts from humans and mice. Am J Pathol 177:2245–2255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Mann J, Chu DC, Maxwell A, Oakley F, Zhu NL, Tsukamoto H, Mann DA (2010) MeCP2 controls an epigenetic pathway that promotes myofibroblast transdifferentiation and fibrosis. Gastroenterology 138:705–714 (714 e1–4)

    Article  CAS  PubMed  Google Scholar 

  243. Kapoor M, Kojima F, Qian M, Yang L, Crofford LJ (2007) Microsomal prostaglandin E synthase-1 deficiency is associated with elevated peroxisome proliferator-activated receptor gamma: regulation by prostaglandin E2 via the phosphatidylinositol 3-kinase and Akt pathway. J Biol Chem 282:5356–5366

    Article  CAS  PubMed  Google Scholar 

  244. Zhang X, Tang N, Hadden TJ, Rishi AK (2011) Akt, FoxO and regulation of apoptosis. Biochim Biophys Acta 1813:1978–1986

    Article  CAS  PubMed  Google Scholar 

  245. Nho RS, Peterson M, Hergert P, Henke CA (2013) FoxO3a (Forkhead Box O3a) deficiency protects idiopathic pulmonary fibrosis (IPF) fibroblasts from type I polymerized collagen matrix-induced apoptosis via caveolin-1 (cav-1) and Fas. PLoS ONE 8:e61017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Koo HY et al (2018) Fibroblast growth factor 2 decreases bleomycin-induced pulmonary fibrosis and inhibits fibroblast collagen production and myofibroblast differentiation. J Pathol 246:54–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Giannandrea M, Parks WC (2014) Diverse functions of matrix metalloproteinases during fibrosis. Dis Model Mech 7:193–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Alvarez D, Levine M, Rojas M (2015) Regenerative medicine in the treatment of idiopathic pulmonary fibrosis: current position. Stem Cells Cloning 8:61–65

    PubMed  PubMed Central  Google Scholar 

  249. Perrucci GL, Rurali E, Pompilio G (2018) Cardiac fibrosis in regenerative medicine: destroy to rebuild. J Thorac Dis 10:S2376–S2389

    Article  PubMed  PubMed Central  Google Scholar 

  250. Evans RA, Tian YC, Steadman R, Phillips AO (2003) TGF-beta1-mediated fibroblast-myofibroblast terminal differentiation-the role of Smad proteins. Exp Cell Res 282:90–100

    Article  CAS  PubMed  Google Scholar 

  251. Garrison G, Huang SK, Okunishi K, Scott JP, Kumar Penke LR, Scruggs AM, Peters-Golden M (2013) Reversal of myofibroblast differentiation by prostaglandin E(2). Am J Respir Cell Mol Biol 48:550–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Zmajkovicova K et al (2018) The antifibrotic activity of prostacyclin receptor agonism is mediated through inhibition of YAP/TAZ. Am J Respir Cell Mol Biol 60:578–591

    Article  CAS  PubMed  Google Scholar 

  253. Dolivo DM, Larson SA, Dominko T (2017) FGF2-mediated attenuation of myofibroblast activation is modulated by distinct MAPK signaling pathways in human dermal fibroblasts. J Dermatol Sci 88:339–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Horowitz JC, Thannickal VJ (2019) Mechanisms for the resolution of organ fibrosis. Physiology (Bethesda) 34:43–55

    CAS  Google Scholar 

  255. Jun JI, Lau LF (2018) Resolution of organ fibrosis. J Clin Invest 128:97–107

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH Grant HL094311 (to MPG) and an American Heart Association Fellowship Award (to LRP),

Funding

The authors declare no financial conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Peters-Golden.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Penke, L.R., Peters-Golden, M. Molecular determinants of mesenchymal cell activation in fibroproliferative diseases. Cell. Mol. Life Sci. 76, 4179–4201 (2019). https://doi.org/10.1007/s00018-019-03212-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-019-03212-3

Keywords

Navigation