Skip to main content

Advertisement

Log in

Experimental Models of Sinonasal Tumors for Preclinical Testing of Candidate Targeted Therapies

  • REVIEW
  • Published:
Current Otorhinolaryngology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This paper aims to describe the available in vitro and in vivo models of different sinonasal cancer subtypes as tools both for improving our knowledge of the signaling pathways involved in tumorigenesis and for evaluating the response to candidate therapeutic inhibitors in a preclinical setting.

Recent Findings

Starting as far back as 1981, in vitro tumor models have been established from sinonasal malignancies. However, especially in the last decade, new cell lines have been presented fully annotated with clinical and genetic data, making them ideal for testing candidate anti-cancer agents targeting specific oncogenic signaling pathways. In addition, first attempts have been made to create three-dimensional organoid cultures and mouse models, which may better reflect the cellular heterogeneity and architecture of the patients’ tumors.

Summary

Experimental models representing various sinonasal cancer subtypes are available and may help to bridge the gap between laboratory investigation and clinical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Bossi P, Saba NF, Vermorken JB, Strojan P, Pala L, de Bree R, Rodrigo JP, Lopez F, Hanna EY, Haigentz M, Takes RP, Slootweg PJ, Silver CE, Rinaldo A, Ferlito A. The role of systemic therapy in the management of sinonasal cancer: a critical review. Cancer Treat Rev. 2015;41:836–43.

    Article  CAS  PubMed  Google Scholar 

  2. Orlandi E, Cavalieri S, Granata R, Nicolai P, Castelnuovo P, Piazza C, Schreiber A, Turri-Zanoni M, Quattrone P, Miceli R, Infante G, Sessa F, Facco C, Calareso G, Iacovelli NA, Mattavelli D, Paderno A, Resteghini C, Locati LD, Licitra L, Bossi P. Locally advanced epithelial sinonasal tumors: the impact of multimodal approach. Laryngoscope. 2020;130:857–65.

    Article  PubMed  Google Scholar 

  3. Llorente JL, López F, Suárez C, Hermsen MA. Sinonasal carcinoma: clinical, pathological and genetic advances for new therapeutic opportunities. Nat Rev Clin Oncol. 2014;11:460–72.

    Article  PubMed  Google Scholar 

  4. Chakravarty D, Gao J, Phillips SM, Kundra R, Zhang H, Wang J, Rudolph JE, Yaeger R, Soumerai T, Nissan MH, Chang MT, Chandarlapaty S, Traina TA, Paik PK, Ho AL, Hantash FM, Grupe A, Baxi SS, Callahan MK, Snyder A, Chi P, Danila D, Gounder M, Harding JJ, Hellmann MD, Iyer G, Janjigian Y, Kaley T, Levine DA, Lowery M, Omuro A, Postow MA, Rathkopf D, Shoushtari AN, Shukla N, Voss M, Paraiso E, Zehir A, Berger MF, Taylor BS, Saltz LB, Riely GJ, Ladanyi M, Hyman DM, Baselga J, Sabbatini P, Solit DB, Schultz N. OncoKB: a precision oncology knowledge base. JCO Precis Oncol. 2017;2017:PO.17.00011.

    PubMed  Google Scholar 

  5. • Hermsen MA, Riobello C, García-Marín R, Cabal VN, Suárez-Fernández L, López F, Llorente JL. Translational genomics of sinonasal cancers. Semin Cancer Biol. 2020;61:101–9. For all major histological subtypes of sinonasal cancer, this paper presents and comments on all published genetic alterations that may serve as molecular targets for therapy with specific inhibitors.

    Article  CAS  PubMed  Google Scholar 

  6. https://www.rarecarenet.eu/. Accessed 9 Aug 2023.

  7. Markham MJ, Wachter K, Agarwal N, Bertagnolli MM, Chang SM, Dale W, Diefenbach CSM, Rodriguez-Galindo C, George DJ, Gilligan TD, Harvey RD, Johnson ML, Kimple RJ, Knoll MA, LoConte N, Maki RG, Meisel JL, Meyerhardt JA, Pennell NA, Rocque GB, Sabel MS, Schilsky RL, Schneider BJ, Tap WD, Uzzo RG, Westin SN. Clinical Cancer Advances 2020: annual report on progress against cancer from the American Society of Clinical Oncology. J Clin Oncol. 2020;38:1081.

    Article  PubMed  Google Scholar 

  8. DeSantis CE, Kramer JL, Jemal A. The burden of rare cancers in the United States. CA Cancer J Clin. 2017;67:261–72.

    Article  PubMed  Google Scholar 

  9. Billingham L, Malottki K, Steven N. Research methods to change clinical practice for patients with rare cancers. Lancet Oncol. 2016;17:e70-80.

    Article  PubMed  Google Scholar 

  10. Hauser S, Widera D, Qunneis F, Müller J, Zander C, Greiner J, Strauss C, Lüningschrör P, Heimann P, Schwarze H, Ebmeyer J, Sudhoff H, Araúzo-Bravo MJ, Greber B, Zaehres H, Schöler H, Kaltschmidt C, Kaltschmidt B. Isolation of novel multipotent neural crest-derived stem cells from adult human inferior turbinate. Stem Cells Dev. 2012;21:742–56.

    Article  CAS  PubMed  Google Scholar 

  11. Vivanco B, Llorente JL, Perez-Escuredo J, Alvarez Marcos C, Fresno MF, Hermsen MA. Benign lesions in mucosa adjacent to intestinal-type sinonasal adenocracinoma. Patholog Res Int. 2011;2011:230147.

    PubMed  PubMed Central  Google Scholar 

  12. Franchi A, et al. Intestinal metaplasia of the sinonasal mucosa adjacent to intestinal-type adenocarcinoma. A morphologic, immunohistochemical, and molecular study. Virchows Arch. 2015;466:161–8.

    Article  CAS  PubMed  Google Scholar 

  13. Agarwal S, van Zante A, Granados ML. Combined neuroendocrine and squamous cell carcinoma of the sinonasal tract: a morphologic and immunohistochemical analysis and review of literature. Head Neck Pathol. 2022;16(4):1019–33.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Barham HP, Said S, Ramakrishnan VR. Colliding tumor of the paranasal sinus. Allergy Rhinol (Providence). 2013;4(1):e13–6.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Franchi A, Palomba A, Miligi L, Ranucci V, Innocenti DR, Simoni A, Pepi M, Santucci M. Primary combined neuroendocrine and squamous cell carcinoma of the maxillary sinus: report of a case with immunohistochemical and molecular characterization. Head Neck Pathol. 2015;9:107–13.

    Article  PubMed  Google Scholar 

  16. Sugianto I, Yanagi Y, Hisatomi M, Okada S, Takeshita Y, Bamgbose BO, Asaumi J. Collision tumor of small cell carcinoma and squamous cell carcinoma of the maxillary sinus: case report. Mol Clin Oncol. 2022;16(5):96.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Brown SJ, Thavaraj S. Human papillomavirus-associated combined neuroendocrine and squamous cell carcinoma of the sinonasal tract. Head Neck Pathol. 2022;16(4):1227–9.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Jain R, Gramigna V, Sanchez-Marull R, Perez-Ordoñez B. Composite intestinal-type adenocarcinoma and small cell carcinoma of sinonasal tract. J Clin Pathol. 2009;62(7):634–7.

    Article  CAS  PubMed  Google Scholar 

  19. La Rosa S, Furlan D, Franzi F, Battaglia P, Frattini M, Zanellato E, Marando A, Sahnane N, Turri-Zanoni M, Castelnuovo P, Capella C. Mixed exocrine-neuroendocrine carcinoma of the nasal cavity: clinico-pathologic and molecular study of a case and review of the literature. Head Neck Pathol. 2013;7:76–84.

    Article  PubMed  Google Scholar 

  20. Attwood JE, Jeyaretna DS, Sheerin F, Shah KA. Mixed olfactory neuroblastoma and adenocarcinoma with in situ neuroendocrine hyperplasia. Head Neck Pathol. 2020;14(3):792–8.

    Article  PubMed  Google Scholar 

  21. Gandhoke CS, Dewan A, Gupta D, Syal SK, Jagetia A, Saran RK, Meher R, Srivastava AK, Singh D. A rare case report of mixed olfactory neuroblastoma: carcinoma with review of literature. Surg Neurol Int. 2017;26(8):83.

    Article  Google Scholar 

  22. Lao WP, Thompson JM, Evans L, Kim Y, Denham L, Lee SC. Mixed olfactory neuroblastoma and neuroendocrine carcinoma: an unusual case report and literature review. Surg Neurol Int. 2020;9(11):97.

    Article  Google Scholar 

  23. Nakamura Y, Suzuki M, Ozaki S, Yokota M, Nakayama M, Hattori H, Inagaki H, Murakami S. Sinonasal inverted papilloma associated with small cell neuroendocrine carcinoma: a case report and literature review of rare malignancies associated with inverted papilloma. Auris Nasus Larynx. 2019;46(4):641–50.

    Article  PubMed  Google Scholar 

  24. Karam SD, Jay AK, Anyanwu C, Steehler MK, Davidson B, Debrito P, Harter KW. Pathologic collision of inverted papilloma with esthesioneuroblastoma. Front Oncol. 2014;14(4):44.

    Google Scholar 

  25. Orgain CA, Shibuya TY, Thompson LD, Keschner DB, Garg R, Lee JT. Long-term follow-up of a patient with malignant transformation of inverted papilloma into sinonasal undifferentiated carcinoma. Allergy Rhinol (Providence). 2017;8(3):173–7.

    Article  PubMed  Google Scholar 

  26. Kang SY, McHugh JB, Sullivan SE, Marentette LJ, McKean EL. Sinonasal undifferentiated carcinoma and esthesioneuroblastoma recurring as nonintestinal adenocarcinoma. Laryngoscope. 2013;23:1121–4.

    Article  Google Scholar 

  27. Kim JS, Hong KH, Jang KY, Song JH. Sinonasal undifferentiated carcinoma originating from inverted papilloma: a case report. Medicine (Baltimore). 2017;96(45):e8584.

    Article  PubMed  Google Scholar 

  28. Valentini V, Giovannetti F, Cassoni A, Terenzi V, Priore P, Raponi I, Bosco S, Alesini F, Mezi S, Musio D, Tombolini V. Sinonasal undifferentiated carcinoma in a patient previously treated for an intestinal-type adenocarcinoma: metachronous neoplasms or recurrence of a different tumor type? Indian J Otolaryngol Head Neck Surg. 2019;71(Suppl 3):1779–81.

    Article  PubMed  Google Scholar 

  29. Larkin R, Hermsen MA, London NR Jr. Translocations and gene fusions in sinonasal malignancies. Curr Oncol Rep. 2023;25(4):269–78.

    Article  PubMed  Google Scholar 

  30. Taverna C, Agaimy A, Franchi A. Towards a molecular classification of sinonasal carcinomas: clinical implications and opportunities. Cancers (Basel). 2022;14(6):1463.

    Article  CAS  PubMed  Google Scholar 

  31. Turri-Zanoni M, Gravante G, Castelnuovo P. Molecular biomarkers in sinonasal cancers: new frontiers in diagnosis and treatment. Curr Oncol Rep. 2022;24(1):55–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. French C. NUT midline carcinoma. Nat Rev Cancer. 2014;14(3):149–50.

    Article  CAS  PubMed  Google Scholar 

  33. Kuo YJ, Lewis JS, Zhai C, Chen YA, Chernock RD, Hsieh MS, et al. DEK-AFF2 fusion-associated papillary squamous cell carcinoma of the sinonasal tract: clinicopathologic characterization of seven cases with deceptively bland morphology. Mod Pathol. 2021;34(10):1820–30.

    Article  CAS  PubMed  Google Scholar 

  34. Agaimy A, Hartmann A, Antonescu CR, Chiosea SI, El-Mofty SK, Geddert H, Iro H, Lewis JS Jr, Märkl B, Mills SE, Riener MO, Robertson T, Sandison A, Semrau S, Simpson RH, Stelow E, Westra WH, Bishop JA. SMARCB1 (INI-1)-deficient sinonasal carcinoma: a series of 39 cases expanding the morphologic and clinicopathologic spectrum of a recently described entity. Am J Surg Pathol. 2017;41(4):458–71.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Rooper LM, Uddin N, Gagan J, Brosens LAA, Magliocca KR, Edgar MA, Thompson LDR, Agaimy A, Bishop JA. Recurrent loss of SMARCA4 in sinonasal teratocarcinosarcoma. Am J Surg Pathol. 2020;44(10):1331–9.

    Article  PubMed  Google Scholar 

  36. Hermsen MA. Sinonasal cancer: molecular biomarkers for tumor classification and targeted treatment. ESMO Open. 2023;8(1):101043.

  37. El-Naggar AK, Chan JKC, Grandis JR, Takata T, Slootweg PJ. WHO classification of tumors pathology and genetics of head and neck tumors. Vol 4th ed. Lyon: IARC Press, 2017.

  38. •• Franchi A (ed). Pathology of sinonasal tumors and tumor-like lesions. Springer Nature Switzerland AG 2020. A great resource describing in detail the histological as well as immunohistochemical and genetic characteristics of all benign and malignant sinonasal tumors.

  39. Lu C, Ward PS, Kapoor GS, Rohle D, Turcan S, Abdel-Wahab O, Edwards CR, Khanin R, Figueroa ME, Melnick A, Wellen KE, O’Rourke DM, Berger SL, Chan TA, Levine RL, Mellinghoff IK, Thompson CB. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature. 2012;483:474–8.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Laco J, Chmelařová M, Vošmiková H, Sieglová K, Bubancová I, Dundr P, Němejcová K, Michálek J, Čelakovský P, Mottl R, Sirák I, Vošmik M, Ryška A. SMARCB1/INI1-deficient sinonasal carcinoma shows methylation of RASSF1 gene: a clinicopathological, immunohistochemical and molecular genetic study of a recently described entity. Pathol Res Pract. 2017;213(2):133–42.

    Article  CAS  PubMed  Google Scholar 

  41. Costales M, López-Hernández A, García-Inclán C, Vivanco B, López F, Llorente JL, Hermsen MA. Gene methylation profiling in sinonasal adenocarcinoma and squamous cell carcinoma. Otolaryngol Head Neck Surg. 2016;155(5):808–15.

    Article  PubMed  Google Scholar 

  42. Libera L, Ottini G, Sahnane N, Pettenon F, Turri-Zanoni M, Lambertoni A, Chiaravalli AM, Leone F, Battaglia P, Castelnuovo P, Uccella S, Furlan D, Facco C, Sessa F. Methylation drivers and prognostic implications in sinonasal poorly differentiated carcinomas. Cancers (Basel). 2021;13(19):5030.

    Article  CAS  PubMed  Google Scholar 

  43. Dogan S, Vasudevaraja V, Xu B, Serrano J, Ptashkin RN, Jung HJ, Chiang S, Jungbluth AA, Cohen MA, Ganly I, Berger MF, Momeni Boroujeni A, Ghossein RA, Ladanyi M, Chute DJ, Snuderl M. DNA methylation-based classification of sinonasal undifferentiated carcinoma. Mod Pathol. 2019;32(10):1447–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sahnane N, Ottini G, Turri-Zanoni M, Furlan D, Battaglia P, Karligkiotis A, Albeni C, Cerutti R, Mura E, Chiaravalli AM, Castelnuovo P, Sessa F, Facco C. Comprehensive analysis of HPV infection, EGFR exon 20 mutations and LINE1 hypomethylation as risk factors for malignant transformation of sinonasal-inverted papilloma to squamous cell carcinoma. Int J Cancer. 2019;144(6):1313–20.

    Article  CAS  PubMed  Google Scholar 

  45. •• Jurmeister P, Glöß S, Roller R, Leitheiser M, Schmid S, Mochmann LH, Payá Capilla E, Fritz R, Dittmayer C, Friedrich C, Thieme A, Keyl P, Jarosch A, Schallenberg S, Bläker H, Hoffmann I, Vollbrecht C, Lehmann A, Hummel M, Heim D, Haji M, Harter P, Englert B, Frank S, Hench J, Paulus W, Hasselblatt M, Hartmann W, Dohmen H, Keber U, Jank P, Denkert C, Stadelmann C, Bremmer F, Richter A, Wefers A, Ribbat-Idel J, Perner S, Idel C, Chiariotti L, Della Monica R, Marinelli A, Schüller U, Bockmayr M, Liu J, Lund VJ, Forster M, Lechner M, Lorenzo-Guerra SL, Hermsen M, Johann PD, Agaimy A, Seegerer P, Koch A, Heppner F, Pfister SM, Jones DTW, Sill M, von Deimling A, Snuderl M, Müller KR, Forgó E, Howitt BE, Mertins P, Klauschen F, Capper D. DNA methylation-based classification of sinonasal tumors. Nat Commun. 2022;13(1):7148. This study provides evidence for analysis of DNA methylation profiles to aid and refine classification of all sinonasal tumor subtypes.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  46. Mateo J. A framework to rank genomic alterations as targets for cancer precision medicine: the ESMO Scale for Clinical Actionability of molecular Targets (ESCAT). Ann Oncol. 2018;29:1895–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. •• Martin-Romano P. Implementing the European Society for Medical Oncology Scale for Clinical Actionability of Molecular Targets in a Comprehensive Profiling Program: impact on precision medicine oncology. JCO Precis Oncol. 2022;6:e2100484. Demonstration of the usefulness of a harmonized and standardized list of actionable molecular targets, ranked according to clinical evidence, for personalized cancer treatment.

    Article  PubMed  Google Scholar 

  48. Udager AM, Rolland DC, McHugh JB, Betz BL, Murga-Zamalloa C, Carey TE, Marentette LJ, Hermsen MA, DuRoss KE, Lim MS, Elenitoba-Johnson KS, Brown NA. High-frequency targetable EGFR mutations in sinonasal squamous cell carcinomas arising from inverted sinonasal papilloma. Cancer Res. 2015;75(13):2600–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cabal VN, Menendez M, Vivanco B, et al. EGFR mutation and HPV infection in sinonasal inverted papilloma and squamous cell carcinoma. Rhinol. 2020;58:368–76.

    CAS  Google Scholar 

  50. Uchi R, Jiromaru R, Yasumatsu R, Yamamoto H, Hongo T, Manako T, Sato K, Hashimoto K, Wakasaki T, Matsuo M, Nakagawa T. Genomic sequencing of cancer-related genes in sinonasal squamous cell carcinoma and coexisting inverted papilloma. Anticancer Res. 2021;41(1):71–9.

    Article  CAS  PubMed  Google Scholar 

  51. Brown NA, Plouffe KR, Yilmaz O, Weindorf SC, Betz BL, Carey TE, Seethala RR, McHugh JB, Tomlins SA, Udager AM. TP53 mutations and CDKN2A mutations/deletions are highly recurrent molecular alterations in the malignant progression of sinonasal papillomas. Mod Pathol. 2021;34(6):1133–42.

    Article  CAS  PubMed  Google Scholar 

  52. Menéndez Del Castro M, Naves Cabal V, Vivanco B, Suárez-Fernández L, López F, Llorente JL, Hermsen MA, Álvarez-Marcos C. Loss of p16 expression is a risk factor for recurrence in sinonasal inverted papilloma. Rhinology. 2022;60(6):453–61.

    Google Scholar 

  53. Esposito A, Stucchi E, Baronchelli M, Di Mauro P, Ferrari M, Lorini L, Gurizzan C, London NRJ, Hermsen M, Lechner M, Bossi P. Molecular basis and rationale for the use of targeted agents and immunotherapy in sinonasal cancers. J Clin Med. 2022;11(22):6787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. García-Inclán C, López-Hernández A, Alonso-Guervós M, Allonca E, Potes S, López F, Llorente JL, Hermsen M. Establishment and genetic characterization of six unique tumor cell lines as preclinical models for sinonasal squamous cell carcinoma. Sci Rep. 2014;4:4925.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Siegel F, Siegel S, Graham K, Kaplan B, Petersen K, Boemer U, et al. Preclinical activity of the first reversible, potent and selective inhibitor of EGFR exon 20 insertions. Cancer Res. 2023;81(13_Supplement):1470.

    Article  Google Scholar 

  56. Swenson W, Miller KA, Wuertz B, Jungbauer WN Jr, Ondrey FG. Establishment and characterization of an inverted papilloma-associated sinonasal squamous cell carcinoma cell line. Int Forum Allergy Rhinol. 2021;11:938–40.

    Article  PubMed  Google Scholar 

  57. Nukpook T, Ekalaksananan T, Kiyono T, Kasemsiri P, Teeramatwanich W, Vatanasapt P, et al. Establishment and genetic characterization of cell lines derived from proliferating nasal polyps and sinonasal inverted papillomas. Sci Rep. 2021;11:17100.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hieggelke L, Heydt C, Castiglione R, Rehker J, Merkelbach-Bruse S, Riobello C, Llorente JL, Hermsen MA, Buettner R. Mismatch repair deficiency and somatic mutations in human sinonasal tumors. Cancers. 2021;13(23):6081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pérez-Escuredo J, Martínez JG, Vivanco B, Marcos CÁ, Suárez C, Llorente JL, Hermsen MA. Wood dust-related mutational profile of TP53 in intestinal-type sinonasal adenocarcinoma. Hum Pathol. 2012;43(11):1894–901.

    Article  PubMed  Google Scholar 

  60. Díaz-Molina JP, Llorente JL, Vivanco B, Martínez-Camblor P, Fresno MF, Pérez-Escuredo J, Álvarez-Marcos C, Hermsen MA. Wnt-pathway activation in intestinal-type sinonasal adenocarcinoma. Rhinology. 2011;49(5):593–9.

    Article  PubMed  Google Scholar 

  61. Sánchez-Fernández P, Riobello C, Costales M, Vivanco B, Cabal VN, García-Marín R, Suárez-Fernández L, López F, Cabanillas R, Hermsen MA, Llorente JL. Next-generation sequencing for identification of actionable gene mutations in intestinal-type sinonasal adenocarcinoma. Sci Rep. 2021;11(1):2247.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  62. Riobello C, Sánchez-Fernández P, Cabal VN, García-Marín R, Suárez-Fernández L, Vivanco B, Blanco-Lorenzo V, Álvarez Marcos C, López F, Llorente JL, Hermsen MA. Aberrant signaling pathways in sinonasal intestinal-type adenocarcinoma. Cancers (Basel). 2021;13(19):5022.

    Article  CAS  PubMed  Google Scholar 

  63. Sjöstedt S, Schmidt AY, Vieira FG, Willemoe GL, Agander TK, Olsen C, Nielsen FC, von Buchwald C. Major driver mutations are shared between sinonasal intestinal-type adenocarcinoma and the morphologically identical colorectal adenocarcinoma. J Cancer Res Clin Oncol. 2021;147(4):1019–27.

    Article  PubMed  Google Scholar 

  64. Pérez-Escuredo J, García Martínez J, García-Inclán C, Vivanco B, Costales M, Álvarez Marcos C, Llorente JL, Hermsen MA. Establishment and genetic characterization of an immortal tumor cell line derived from intestinal-type sinonasal adenocarcinoma. Cell Oncol (Dordr). 2011;34(1):23–31.

    Article  PubMed  Google Scholar 

  65. Riobello C, López-Hernández A, Cabal VN, García-Marín R, Suárez-Fernández L, Sánchez-Fernández P, Vivanco B, Blanco V, López F, Franchi A, Llorente JL, Hermsen MA. IDH2 Mutation analysis in undifferentiated and poorly differentiated sinonasal carcinomas for diagnosis and clinical management. Am J Surg Pathol. 2020;44(3):396–405.

    Article  PubMed  Google Scholar 

  66. Glöss S, Jurmeister P, Thieme A, Schmid S, Cai WY, Serrette RN, Perner S, Ribbat-Idel J, Pagenstecher A, Bläker H, Keber U, Stadelmann C, Zechel S, Johann PD, Hasselblatt M, Paulus W, Thomas C, Dohmen H, Baumhoer D, Frank S, Agaimy A, Schüller U, Vasudevaraja V, Snuderl M, Liu CZ, Pfister DG, Jungbluth AA, Ghossein RA, Xu B, Capper D, Dogan S. IDH2 R172 Mutations across poorly differentiated sinonasal tract malignancies: forty molecularly homogenous and histologically variable cases with favorable outcome. Am J Surg Pathol. 2021;45(9):1190–204.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Classe M, Yao H, Mouawad R, et al. Integrated multi-omic analysis of esthesioneuroblastomas identifies two subgroups linked to cell ontogeny. Cell Rep. 2018;25:811.e5-821.e5.

    Article  Google Scholar 

  68. Takahashi Y, Kupferman ME, Bell D, Jiffar T, Lee JG, Xie TX, Li NW, Zhao M, Frederick MJ, Gelbard A, Myers JN, Hanna EY. Establishment and characterization of novel cell lines from sinonasal undifferentiated carcinoma. Clin Cancer Res. 2012;18(22):6178–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Takahashi Y, Lee J, Pickering C, Bell D, Jiffar TW, Myers JN, Hanna EY, Kupferman ME. Human epidermal growth factor receptor 2/neu as a novel therapeutic target in sinonasal undifferentiated carcinoma. Head Neck. 2016;38(Suppl 1):E1926–34.

    PubMed  PubMed Central  Google Scholar 

  70. Stirnweiss A, McCarthy K, Oommen J, Crook ML, Hardy K, Kees UR, Wilton SD, Anazodo A, Beesley AH. A novel BRD4-NUT fusion in an undifferentiated sinonasal tumor highlights alternative splicing as a contributing oncogenic factor in NUT midline carcinoma. Oncogenesis. 2015;4(11):e174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Stirnweiss A, Oommen J, Kotecha RS, Kees UR, Beesley AH. Molecular-genetic profiling and high-throughput in vitro drug screening in NUT midline carcinoma-an aggressive and fatal disease. Oncotarget. 2017;8(68):112313–29.

    Article  PubMed  PubMed Central  Google Scholar 

  72. French CA, Cheng ML, Hanna GJ, DuBois SG, Chau NG, Hann CL, Storck S, Salgia R, Trucco M, Tseng J, Stathis A, Piekarz R, Lauer UM, Massard C, Bennett K, Coker S, Tontsch-Grunt U, Sos ML, Liao S, Wu CJ, Polyak K, Piha-Paul SA, Shapiro GI. Report of the first international symposium on NUT carcinoma. Clin Cancer Res. 2022;28(12):2493–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Noguchi K, Urade M, Sakurai K, Nishimura N, Hashitani S, Kishimoto H. Small cell neuroendocrine carcinoma of the maxillary sinus: a case report and nude mouse transplantable model. Head Neck. 2002;24:491–6.

    Article  PubMed  Google Scholar 

  74. Noguchi K, et al. Establishment of a new cell line with neuronal differentiation derived from small cell neuroendocrine carcinoma of the maxillary sinus. Oncology. 2004;66:234–43.

    Article  CAS  PubMed  Google Scholar 

  75. Kakkar A, Ashraf SF, Rathor A, Adhya AK, Mani S, Sikka K, Jain D. SMARCA4/BRG1-deficient sinonasal carcinoma. Arch Pathol Lab Med. 2022;146(9):1122–30.

    Article  CAS  PubMed  Google Scholar 

  76. Rooper LM, Agaimy A, Gagan J, Simpson RHW, Thompson LDR, Trzcinska AM, Ud Din N, Bishop JA. Comprehensive molecular profiling of sinonasal teratocarcinosarcoma highlights recurrent SMARCA4 inactivation and CTNNB1 mutations. Am J Surg Pathol. 2023;47(2):224–33.

    Article  PubMed  Google Scholar 

  77. Agaimy A, Jain D, Uddin N, Rooper LM, Bishop JA. SMARCA4-deficient sinonasal carcinoma: a series of 10 cases expanding the genetic spectrum of SWI/SNF-driven sinonasal malignancies. Am J Surg Pathol. 2020;44(5):703–10.

    Article  PubMed  Google Scholar 

  78. Cruz FD, et al. Solid tumor differentiation therapy—is it possible? Oncotarget. 2012;3:559–67.

    Article  PubMed  Google Scholar 

  79. Capper D, Engel NW, Stichel D, Lechner M, Glöss S, Schmid S, Koelsche C, Schrimpf D, Niesen J, Wefers AK, Jones DTW, Sill M, Weigert O, Ligon KL, Olar A, Koch A, Forster M, Moran S, Tirado OM, Sáinz-Jaspeado M, Mora J, Esteller M, Alonso J, Del Muro XG, Paulus W, Felsberg J, Reifenberger G, Glatzel M, Frank S, Monoranu CM, Lund VJ, von Deimling A, Pfister S, Buslei R, Ribbat-Idel J, Perner S, Gudziol V, Meinhardt M, Schüller U. DNA methylation-based reclassification of olfactory neuroblastoma. Acta Neuropathol. 2018;136(2):255–71.

    Article  CAS  PubMed  Google Scholar 

  80. Stein E, Yen K. Targeted differentiation therapy with mutant IDH inhibitors: early experiences and parallels with other differentiation agents. Annu Rev Cancer Biol. 2017;1:379–401.

    Article  Google Scholar 

  81. Pirozzi CJ, Reitman ZJ, Yan H. Releasing the block: setting differentiation free with mutant IDH inhibitors. Cancer Cell. 2013;23:570–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Turcan S, Fabius AW, Borodovsky A, Pedraza A, Brennan C, Huse J, Viale A, Riggins GJ, Chan TA. Efficient induction of differentiation and growth inhibition in IDH1 mutant glioma cells by the DNMT inhibitor decitabine. Oncotarget. 2013;4:1729–36.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Saleh K, Classe M, Nguyen F, Moya-Plana A, Even C. Tazemetostat for the treatment of INI-1-deficient sinonasal tumor. Eur J Cancer. 2022;172:329–31.

    Article  CAS  PubMed  Google Scholar 

  84. Pernik MN, Bird CE, Traylor JI, Shi DD, Richardson TE, McBrayer SK, Abdullah KG. Patient-derived cancer organoids for precision oncology treatment. JPM. 2021;11:423.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Contessi Negrini N, Franchi A, Danti S. Biomaterial-assisted 3D in vitro tumor models: from organoid towards cancer tissue engineering approaches. Cancers (Basel). 2023;15:1201.

    Article  PubMed  Google Scholar 

  86. Hasbum A, Karabulut O, Reyes RE, Ricci C, Franchi A, Danti S, Chew SA. Combined application of patient-derived cells and biomaterials as 3D in vitro tumor models. Cancers. 2022;14:2503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Gunti S, Hoke ATK, Vu KP, London NR Jr. Organoid and spheroid tumor models: techniques and applications. Cancers. 2021;13:874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Danti S, Ricci C, Berrettini S, Franchi A. A scaffold platform for sinonasal cancers: in-depth tumor understanding for personalized therapy. Tissue Engineering and Regenerative Medicine International Society Asia‐Pacific Conference October 5-8, 2022, ICC Jeju, South Korea. https://doi.org/10.1089/ten.tea.2022.29036.abstracts.

  89. Danti S, Ricci C, Macchib T, Parchib P, Franchi A. 3D in vitro models of hard and soft tumours. Biomaterials and novel technologies for healthcare, 3rd International Biennial Conference BioMaH, October 18–21, 2022, Rome Italy. Proceedings ISBN 978 88 8080 500 7. https://biomah.ism.cnr.it/?page_id=665. Accessed 9 Aug 2023.

  90. Costales M, López F, García-Inclán C, Fernández S, Llorente JL, Hermsen M. Establishment and characterization of an orthotopic sinonasal squamous cell carcinoma mouse model. Head Neck. 2015;37(12):1769–75.

    Article  PubMed  Google Scholar 

  91. Cavazzana AO, Navarro S, Noguera R, Reynolds PC, Triche TJ. Olfactory neuroblastoma is not a neuroblastoma but is related to primitive neuroectodermal tumor (PNET). Prog Clin Biol Res. 1988;271:463–73.

    CAS  PubMed  Google Scholar 

  92. Sorensen PH, Wu JK, Berean KW, Lim JF, Donn W, Frierson HF, Reynolds CP, López-Terrada D, Triche TJ. Olfactory neuroblastoma is a peripheral primitive neuroectodermal tumor related to Ewing sarcoma. Proc Natl Acad Sci USA. 1996;93:1038–43.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ju SM, Chen F, Liu J, Qin G, Xie YL, Wang ZL, Wei XM. Establishment and characterization of an orthotopic murine model of mucosal malignant melanoma of the maxillary sinus. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2017;31(20):1599–602;1605.

  94. Riobello C, Casanueva Muruais R, Suárez-Fernández L, García-Marín R, Cabal VN, Blanco-Lorenzo V, Franchi A, Laco J, López F, Llorente JL, Hermsen MA. Intragenic NF1 deletions in sinonasal mucosal malignant melanoma. Pigment Cell Melanoma Res. 2022;35(1):88–96.

    Article  CAS  PubMed  Google Scholar 

  95. Hayward NK, et al. Whole-genome landscapes of major melanoma subtypes. Nature. 2017;545:175–80.

    Article  ADS  CAS  PubMed  Google Scholar 

  96. Lin W, Lu X, Yang H, Huang L, Huang W, Tang Y, Liu S, Wang H, Zhang Y. Metabolic heterogeneity protects metastatic mucosal melanomas cells from ferroptosis. Int J Mol Med. 2022;50(4):124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lyu J, Miao Y, Yu F, Chang C, Guo W, Zhu H. CDK4 and TERT amplification in head and neck mucosal melanoma. J Oral Pathol Med. 2021;50(10):971–8.

    Article  CAS  PubMed  Google Scholar 

  98. Shi C, Gu Z, Xu S, Ju H, Wu Y, Han Y, Li J, Li C, Wu J, Wang L, Li J, Zhou G, Ye W, Ren G, Zhang Z, Zhou R. Candidate therapeutic agents in a newly established triple wild-type mucosal melanoma cell line. Cancer Commun (Lond). 2022;42(7):627–47.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Lena Hieggelke and Prof. Dr. Reinhard Büttner for their longstanding collaboration and specifically for their whole exome analysis of the Oviedo cell lines published in references 54 and 64.

Funding

This study has been funded by Instituto de Salud Carlos III (ISCIII) through the project “PI19/00191” and “PI20/00383” and co-funded by the European Union, grant CB16/12/00390 from the Centro de Investigación Biomédica en Red de Cancer (CIBERONC), and grant IDI2018/155 Ayudas a Grupos PCTI Principado de Asturias. Helena Codina-Martínez is supported by Centro de Investigación Biomédica en Red de Cáncer grant CB16/12/00390 and Sara Lucila Lorenzo-Guerra is supported by Instituto de Salud Carlos III (ISCIII) grant FI20/00137.

Author information

Authors and Affiliations

Authors

Contributions

H.C-M: literature search, collection of relevant clinical and genetic data, review and editing of the manuscript. S.L.L-G: literature search, collection of relevant clinical and genetic data, review and editing of the manuscript. V.N.C: literature search, collection of relevant clinical and genetic data, review and editing of the manuscript. R.G-M: literature search, collection of relevant clinical and genetic data, review and editing of the manuscript. C.R: literature search, collection of relevant clinical and genetic data, review and editing of the manuscript. L.S-F: literature search, collection of relevant clinical and genetic data, review and editing of the manuscript. B.V: review and editing of the manuscript. V.B.L: review and editing of the manuscript. F.L: review and editing of the manuscript. P.S-F: review and editing of the manuscript. M.A.H: literature search, writing main manuscript. J.L.L: review and editing of the manuscript.

Corresponding authors

Correspondence to Mario A. Hermsen or José Luis Llorente.

Ethics declarations

Conflict of Interest

None of the authors have personal or financial competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Codina-Martínez, H., Lorenzo-Guerra, S.L., Cabal, V.N. et al. Experimental Models of Sinonasal Tumors for Preclinical Testing of Candidate Targeted Therapies. Curr Otorhinolaryngol Rep 12, 1–10 (2024). https://doi.org/10.1007/s40136-023-00496-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40136-023-00496-9

Keywords

Navigation