Skip to main content

Advertisement

Log in

Future of Musculoskeletal Ultrasound

  • Musculoskeletal Ultrasound (D Fessell, Section Editor)
  • Published:
Current Radiology Reports Aims and scope Submit manuscript

Abstract

In this article, we review the recent updates in musculoskeletal ultrasound (MSK US). The progressive development in ultrasound scanners including both hard- and softwares has already been reflected in its ability to diagnose different MSK diseases efficiently. We discuss here the recent applications of conventional US techniques as peripheral nerve imaging and image-guided therapies. The role of color Doppler US and contrast-enhanced US is also discussed with its impact especially in soft tissue tumors and small joint arthropathies. Sonoelastography as a new and promising technique is discussed in detail in this review. It may provide better and more robust diagnosis for many MSK diseases and may replace some of the relatively old routine techniques applied nowadays. In the end, 3D imaging and image fusion are discussed with their impact in image guidance of therapy as well as their teaching applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Zweymuller VK, Kratochwil A. Ultrasound diagnosis of bone and soft tissue tumours. Wien Klin Wochenschr. 1975;87(12):397–8.

    CAS  PubMed  Google Scholar 

  2. Kramer FL, Kurtz AB, Rubin C, Goldberg BB. Ultrasound appearance of myositis ossificans. Skeletal Radiol. 1979;4(1):19–20.

    Article  CAS  PubMed  Google Scholar 

  3. Wicks JD, Silver TM, Bree RL. Gray scale features of hematomas: an ultrasonic spectrum. AJR Am J Roentgenol. 1978;131(6):977–80.

    Article  CAS  PubMed  Google Scholar 

  4. Kumari S, Fulco JD, Karayalcin G, Lipton R. Gray scale ultrasound: evaluation of iliopsoas hematomas in hemophiliacs. AJR Am J Roentgenol. 1979;133(1):103–5.

    Article  CAS  PubMed  Google Scholar 

  5. Doust BD, Doust VL. Ultrasonic diagnosis of abdominal abscess. Am J Dig Dis. 1976;21(7):569–76.

    Article  CAS  PubMed  Google Scholar 

  6. Heckmatt JZ, Leeman S, Dubowitz V. Ultrasound imaging in the diagnosis of muscle disease. J Pediatr. 1982;101(5):656–60.

    Article  CAS  PubMed  Google Scholar 

  7. Fornage BD. Peripheral nerves of the extremities: imaging with US. Radiology. 1988;167(1):179–82.

    Article  CAS  PubMed  Google Scholar 

  8. Peer Sigfried. General considerations and technical concepts. In: Peer Siegfried, Bodner Gerd, editors. High-resolution sonography of the peripheral nervous system. Heidelberg: Springer; 2003. p. 1–11.

    Chapter  Google Scholar 

  9. Lin DC, Nazarian LN, O’Kane PL, McShane JM, Parker L, Merritt CR. Advantages of real-time spatial compound sonography of the musculoskeletal system versus conventional sonography. AJR Am J Roentgenol. 2002;179(6):1629–31.

    Article  PubMed  Google Scholar 

  10. • Kang S, Kwon HK, Kim KH, Yun HS. Ultrasonography of median nerve and electrophysiologic severity in carpal tunnel syndrome. Ann Rehabil Med. 2012;36(1):72–9. A study investigated the correlation of the ultrasound wrist-to-forearm median nerve ratio (WFR) and cross sectional area of median nerve at the wrist (CSA-W) to electrophysiologic severity in patients with carpal tunnel syndrome (CTS). Both parameters were highly correlated with severity grade of CTS and WFR was superior to CSA-W regarding diagnosis and CTS severity grading.

  11. Klauser AS, Halpern EJ, De Zordo T, et al. Carpal tunnel syndrome assessment with US: value of additional cross-sectional area measurements of the median nerve in patients versus healthy volunteers. Radiology. 2009;250(1):171–7.

    Article  PubMed  Google Scholar 

  12. Klauser AS, Halpern EJ, Faschingbauer R, et al. Bifid median nerve in carpal tunnel syndrome: assessment with US cross-sectional area measurement. Radiology. 2011;259(3):808–15.

    Article  PubMed  Google Scholar 

  13. Tagliafico A, Cadoni A, Fisci E, et al. Nerves of the hand beyond the carpal tunnel. Semin Musculoskelet Radiol. 2012;16(2):129–36.

    Article  PubMed  Google Scholar 

  14. De Zordo T, Mur E, Bellmann-Weiler R, et al. US guided injections in arthritis. Eur J Radiol. 2009;71(2):197–203.

    Article  PubMed  Google Scholar 

  15. Klauser A, De Zordo T, Feuchtner G, et al. Feasibility of ultrasound-guided sacroiliac joint injection considering sonoanatomic landmarks at two different levels in cadavers and patients. Arthritis Rheum. 2008;59(11):1618–24.

    Article  PubMed  Google Scholar 

  16. Tagliafico A, Russo G, Boccalini S, et al. Ultrasound-guided interventional procedures around the shoulder. Radiol Med. 2014;119(5):318–26.

    Article  PubMed  Google Scholar 

  17. • Ustun N, Tok F, Yagz AE, et al. Ultrasound-guided vs. blind steroid injections in carpal tunnel syndrome: A single-blind randomized prospective study. Am J Phys Med Rehabil. 2013;92(11):999–1004. A prospective randomized single blind study compared ultrasound (US) guided versus blind steroid injection in patients with carpal tunnel syndrome (CTS). Both techniques were effective in symptom reduction, however US guided injection was better than blind injection regarding earlier onset and longer duration of symptom improvement.

  18. Narouze SN, Provenzano DA. Sonographically guided cervical facet nerve and joint injections: why sonography? J Ultrasound Med. 2013;32(11):1885–96.

    Article  PubMed  Google Scholar 

  19. Hau M, Kneitz C, Tony HP, Keberle M, Jahns R, Jenett M. High resolution ultrasound detects a decrease in pannus vascularisation of small finger joints in patients with rheumatoid arthritis receiving treatment with soluble tumour necrosis factor alpha receptor (etanercept). Ann Rheum Dis. 2002;61(1):55–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Walther M, Harms H, Krenn V, Radke S, Kirschner S, Gohlke F. Synovial tissue of the hip at power Doppler US: correlation between vascularity and power Doppler US signal. Radiology. 2002;225(1):225–31.

    Article  PubMed  Google Scholar 

  21. Naredo E, Moller I, Cruz A, Carmona L, Garrido J. Power Doppler ultrasonographic monitoring of response to anti-tumor necrosis factor therapy in patients with rheumatoid arthritis. Arthritis Rheum. 2008;58(8):2248–56.

    Article  PubMed  Google Scholar 

  22. Reiter M, Ulreich N, Dirisamer A, Tscholakoff D, Bucek RA. Colour and power Doppler sonography in symptomatic Achilles tendon disease. Int J Sports Med. 2004;25(4):301–5.

    Article  CAS  PubMed  Google Scholar 

  23. Zanetti M, Metzdorf A, Kundert HP, et al. Achilles tendons: clinical relevance of neovascularization diagnosed with power Doppler US. Radiology. 2003;227(2):556–60.

    Article  PubMed  Google Scholar 

  24. McQueen FM, Stewart N, Crabbe J, et al. Magnetic resonance imaging of the wrist in early rheumatoid arthritis reveals progression of erosions despite clinical improvement. Ann Rheum Dis. 1999;58(3):156–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Bajaj S, Lopez-Ben R, Oster R, Alarcon GS. Ultrasound detects rapid progression of erosive disease in early rheumatoid arthritis: a prospective longitudinal study. Skeletal Radiol. 2007;36(2):123–8.

    Article  PubMed  Google Scholar 

  26. Ostergaard M, Hansen M, Stoltenberg M, et al. Magnetic resonance imaging-determined synovial membrane volume as a marker of disease activity and a predictor of progressive joint destruction in the wrists of patients with rheumatoid arthritis. Arthritis Rheum. 1999;42(5):918–29.

    Article  CAS  PubMed  Google Scholar 

  27. FitzGerald O, Bresnihan B. Synovial membrane cellularity and vascularity. Ann Rheum Dis. 1995;54(6):511–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Conaghan PG, O’Connor P, McGonagle D, et al. Elucidation of the relationship between synovitis and bone damage: a randomized magnetic resonance imaging study of individual joints in patients with early rheumatoid arthritis. Arthritis Rheum. 2003;48(1):64–71.

    Article  PubMed  Google Scholar 

  29. Nell VP, Machold KP, Eberl G, Stamm TA, Uffmann M, Smolen JS. Benefit of very early referral and very early therapy with disease-modifying anti-rheumatic drugs in patients with early rheumatoid arthritis. Rheumatol (Oxford). 2004;43(7):906–14.

    Article  CAS  Google Scholar 

  30. Hermann KG, Backhaus M, Schneider U, et al. Rheumatoid arthritis of the shoulder joint: comparison of conventional radiography, ultrasound, and dynamic contrast-enhanced magnetic resonance imaging. Arthritis Rheum. 2003;48(12):3338–49.

    Article  PubMed  Google Scholar 

  31. Klauser A, Frauscher F, Schirmer M, et al. The value of contrast-enhanced color Doppler ultrasound in the detection of vascularization of finger joints in patients with rheumatoid arthritis. Arthritis Rheum. 2002;46(3):647–53.

    Article  PubMed  Google Scholar 

  32. Klauser A, Demharter J, De MA, et al. Contrast enhanced gray-scale sonography in assessment of joint vascularity in rheumatoid arthritis: results from the IACUS study group. Eur Radiol. 2005;15(12):2404–10.

    Article  PubMed  Google Scholar 

  33. Schueller-Weidekamm C, Krestan C, Schueller G, Kapral T, Aletaha D, Kainberger F. Power Doppler sonography and pulse-inversion harmonic imaging in evaluation of rheumatoid arthritis synovitis. AJR Am J Roentgenol. 2007;188(2):504–8.

    Article  PubMed  Google Scholar 

  34. Klauser A, Halpern EJ, Frauscher F, et al. Inflammatory low back pain: high negative predictive value of contrast-enhanced color Doppler ultrasound in the detection of inflamed sacroiliac joints. Arthritis Rheum. 2005;53(3):440–4.

    Article  PubMed  Google Scholar 

  35. Arnett FC, Edworthy SM, Bloch DA, et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum. 1988;31(3):315–24.

    Article  CAS  PubMed  Google Scholar 

  36. Ostergaard M, Ejbjerg B, Szkudlarek M. Imaging in early rheumatoid arthritis: roles of magnetic resonance imaging, ultrasonography, conventional radiography and computed tomography. Best Pract Res Clin Rheumatol. 2005;19(1):91–116.

    Article  PubMed  Google Scholar 

  37. Song IH, Althoff CE, Hermann KG, et al. Contrast-enhanced ultrasound in monitoring the efficacy of a bradykinin receptor 2 antagonist in painful knee osteoarthritis compared with MRI. Ann Rheum Dis. 2009;68(1):75–83.

    Article  CAS  PubMed  Google Scholar 

  38. Ophir J, Cespedes I, Ponnekanti H, Yazdi Y, Li X. Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging. 1991;13(2):111–34.

    Article  CAS  PubMed  Google Scholar 

  39. Pesavento A, Perrey C, Krueger M, Ermert H. A time-efficient and accurate strain estimation concept for ultrasonic elastography using iterative phase zero estimation. IEEE Trans Ultrason Ferroelectr Freq Control. 1999;46(5):1057–67.

    Article  CAS  PubMed  Google Scholar 

  40. Adamietz BR, Meier-Meitinger M, Fasching P, et al. New diagnostic criteria in real-time elastography for the assessment of breast lesions. Ultraschall Med. 2011;32(1):67–73.

    Article  CAS  PubMed  Google Scholar 

  41. Sporea I, Sirli RL, Deleanu A, et al. What did we learn from the first 3459 cases of liver stiffness measurement by transient elastography (FibroScan(R))? Ultraschall Med. 2011;32(1):40–5.

    Article  CAS  PubMed  Google Scholar 

  42. Brock M, von BC, Sommerer F, et al. Comparison of real-time elastography with grey-scale ultrasonography for detection of organ-confined prostate cancer and extra capsular extension: a prospective analysis using whole mount sections after radical prostatectomy. BJU Int. 2011;108(8 Pt 2):E217–22.

    Article  PubMed  Google Scholar 

  43. Ying L, Hou Y, Zheng HM, Lin X, Xie ZL, Hu YP. Real-time elastography for the differentiation of benign and malignant superficial lymph nodes: a meta-analysis. Eur J Radiol. 2012;81(10):2576–84.

    Article  PubMed  Google Scholar 

  44. Miyanaga N, Akaza H, Yamakawa M, et al. Tissue elasticity imaging for diagnosis of prostate cancer: a preliminary report. Int J Urol. 2006;13(12):1514–8.

    Article  PubMed  Google Scholar 

  45. Janssen J, Schlorer E, Greiner L. EUS elastography of the pancreas: feasibility and pattern description of the normal pancreas, chronic pancreatitis, and focal pancreatic lesions. Gastrointest Endosc. 2007;65(7):971–8.

    Article  PubMed  Google Scholar 

  46. Kim K, Johnson LA, Jia C, et al. Noninvasive ultrasound elasticity imaging (UEI) of Crohn’s disease: animal model. Ultrasound Med Biol. 2008;34(6):902–12.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Rubaltelli L, Corradin S, Dorigo A, et al. Differential diagnosis of benign and malignant thyroid nodules at elastosonography. Ultraschall Med. 2009;30(2):175–9.

    Article  CAS  PubMed  Google Scholar 

  48. Merino S, Arrazola J, Cardenas A, et al. Utility and interobserver agreement of ultrasound elastography in the detection of malignant thyroid nodules in clinical care. Am J Neuroradiol. 2011;32(11):2142–8.

    Article  CAS  PubMed  Google Scholar 

  49. Frey H. Realtime elastography. A new ultrasound procedure for the reconstruction of tissue elasticity. Radiologe. 2003;43(10):850–5.

    Article  CAS  PubMed  Google Scholar 

  50. De Zordo T, Chhem R, Smekal V, et al. Real-time sonoelastography: findings in patients with symptomatic achilles tendons and comparison to healthy volunteers. Ultraschall Med. 2010;31(4):394–400.

    Article  PubMed  Google Scholar 

  51. Arda K, Ciledag N, Aktas E, Aribas BK, Kose K. Quantitative assessment of normal soft-tissue elasticity using shear-wave ultrasound elastography. AJR Am J Roentgenol. 2011;197(3):532–6.

    Article  PubMed  Google Scholar 

  52. Aubry S, Risson JR, Barbier-Brion B, Tatu L, Vidal C, Kastler B. Transient elastography of calcaneal tendon: preliminary results and future prospects. J Radiol. 2011;92(5):421–7.

    Article  CAS  PubMed  Google Scholar 

  53. • Klauser AS, Miyamoto H, Tamegger M, et al. Achilles tendon assessed with sonoelastography: histologic agreement. Radiology. 2013;267(3):837–42. A study conducted on cadavers to compare and determine the level of agreement between B-mode ultrasound (US) and sonoelastography (SEL) of the Achilles tendon compared with histologic findings. They found that all histologically proven normal tendons were found normal by both B-mode US and SEL. SEL depicted degeneration (grade 2 and 3) of tendon thirds in 100%, but B-mode US could depict degeneration (grade 2 and 3) in only 86% of tendon thirds. Only moderate agreement was found between both B-mode US and SEL. They concluded that SEL may be more sensitive than B-mode US in predicting signs of histologic degeneration.

  54. Tan S, Kudas S, Ozcan AS, et al. Real-time sonoelastography of the Achilles tendon: pattern description in healthy subjects and patients with surgically repaired complete ruptures. Skeletal Radiol. 2012;41(9):1067–72.

    Article  PubMed  Google Scholar 

  55. De Zordo T, Lill SR, Fink C, et al. Real-time sonoelastography of lateral epicondylitis: comparison of findings between patients and healthy volunteers. AJR Am J Roentgenol. 2009;193(1):180–5.

    Article  PubMed  Google Scholar 

  56. Silvestri E, Garlaschi G, Bartolini B, et al. Sonoelastography can help in the localization of soft tissue damage in polymyalgia rheumatica (PMR). Clin Exp Rheumatol. 2007;25(5):796.

    CAS  PubMed  Google Scholar 

  57. Rist HJ, Mauch M. Quantified TDI elastography of the patellar tendon in athletes. Sportverletz Sportschaden. 2012;26(1):27–32.

    Article  PubMed  Google Scholar 

  58. Konofagou E, Spalazzi J, Lu H. elastographic imaging of the strain distribution at the anterior cruciate ligament and ACL-bone insertions. Conf Proc IEEE Eng Med Biol Soc. 2005;1:972–5.

    CAS  PubMed  Google Scholar 

  59. Spalazzi JP, Gallina J, Fung-Kee-Fung SD, Konofagou EE, Lu HH. Elastographic imaging of strain distribution in the anterior cruciate ligament and at the ligament-bone insertions. J Orthop Res. 2006;24(10):2001–10.

    Article  PubMed  Google Scholar 

  60. Miyamoto H, Miura T, Isayama H, Masuzaki R, Koike K, Ohe T. Stiffness of the first annular pulley in normal and trigger fingers. J Hand Surg Am. 2011;36(9):1486–91.

    Article  PubMed  Google Scholar 

  61. Niitsu M, Michizaki A, Endo A, Takei H, Yanagisawa O. Muscle hardness measurement by using ultrasound elastography: a feasibility study. Acta Radiol. 2011;52(1):99–105.

    Article  PubMed  Google Scholar 

  62. Shinohara M, Sabra K, Gennisson JL, Fink M, Tanter M. Real-time visualization of muscle stiffness distribution with ultrasound shear wave imaging during muscle contraction. Muscle Nerve. 2010;42(3):438–41.

    Article  PubMed  Google Scholar 

  63. Ariji Y, Katsumata A, Hiraiwa Y, et al. Use of sonographic elastography of the masseter muscles for optimizing massage pressure: a preliminary study. J Oral Rehabil. 2009;36(9):627–35.

    Article  CAS  PubMed  Google Scholar 

  64. Detorakis ET, Drakonaki EE, Tsilimbaris MK, Pallikaris IG, Giarmenitis S. Real-time ultrasound elastographic imaging of ocular and periocular tissues: a feasibility study. Ophthalmic Surg Lasers Imaging. 2010;41(1):135–41.

    Article  PubMed  Google Scholar 

  65. Yanagisawa O, Niitsu M, Kurihara T, Fukubayashi T. Evaluation of human muscle hardness after dynamic exercise with ultrasound real-time tissue elastography: a feasibility study. Clin Radiol. 2011;66(9):815–9.

    Article  CAS  PubMed  Google Scholar 

  66. Bouillard K, Nordez A, Hug F. Estimation of individual muscle force using elastography. PLoS ONE. 2011;6(12):e29261.

    Article  CAS  PubMed  Google Scholar 

  67. Nordez A, Gennisson JL, Casari P, Catheline S, Cornu C. Characterization of muscle belly elastic properties during passive stretching using transient elastography. J Biomech. 2008;41(10):2305–11.

    Article  CAS  PubMed  Google Scholar 

  68. Sikdar S, Shah JP, Gebreab T, et al. Novel applications of ultrasound technology to visualize and characterize myofascial trigger points and surrounding soft tissue. Arch Phys Med Rehabil. 2009;90(11):1829–38.

    Article  PubMed Central  PubMed  Google Scholar 

  69. Botar-Jid C, Damian L, Dudea SM, Vasilescu D, Rednic S, Badea R. The contribution of ultrasonography and sonoelastography in assessment of myositis. Med Ultrason. 2010;12(2):120–6.

    PubMed  Google Scholar 

  70. Drakonaki EE, Allen GM. Magnetic resonance imaging, ultrasound and real-time ultrasound elastography of the thigh muscles in congenital muscle dystrophy. Skeletal Radiol. 2010;39(4):391–6.

    Article  PubMed  Google Scholar 

  71. Vasilescu D, Vasilescu D, Dudea S, Botar-Jid C, Sfrangeu S, Cosma D. Sonoelastography contribution in cerebral palsy spasticity treatment assessment, preliminary report: a systematic review of the literature apropos of seven patients. Med Ultrason. 2010;12(4):306–10.

    PubMed  Google Scholar 

  72. Cardinal E, Chhem RK, Beauregard CG, Aubin B, Pelletier M. Plantar fasciitis: sonographic evaluation. Radiology. 1996;201(1):257–9.

    Article  CAS  PubMed  Google Scholar 

  73. Gibbon W, Long G. Plantar fasciitis: US evaluation. Radiology. 1997;203(1):290.

    Article  CAS  PubMed  Google Scholar 

  74. Klauser AS, De Zordo T, Feuchtner GM, et al. Fusion of real-time US with CT images to guide sacroiliac joint injection in vitro and in vivo. Radiology. 2010;256(2):547–53.

    Article  PubMed  Google Scholar 

  75. Taylor LS, Porter BC, Rubens DJ, Parker KJ. Three-dimensional sonoelastography: principles and practices. Phys Med Biol. 2000;45(6):1477–94.

    Article  CAS  PubMed  Google Scholar 

  76. Egorov V, Ayrapetyan S, Sarvazyan AP. Prostate mechanical imaging: 3-D image composition and feature calculations. IEEE Trans Med Imaging. 2006;25(10):1329–40.

    Article  PubMed Central  PubMed  Google Scholar 

  77. Kennedy BF, Liang X, Adie SG, et al. In vivo three-dimensional optical coherence elastography. Opt Express. 2011;19(7):6623–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Kang CH, Kim SS, Kim JH, et al. Supraspinatus tendon tears: comparison of 3D US and MR arthrography with surgical correlation. Skeletal Radiol. 2009;38(11):1063–9.

    Article  PubMed  Google Scholar 

  79. Ju JH, Kang KY, Kim IJ, Yoon JU, Kim HY, Park SH. Three-dimensional ultrasonographic application for analyzing synovial hypertrophy of the knee in patients with osteoarthritis. J Ultrasound Med. 2008;27(5):729–36.

    PubMed  Google Scholar 

  80. Serafin-Krol M, Krol R, Ziolkowski M, et al. Potential value of three-dimensional ultrasonography in diagnosing muscle injuries in comparison to two-dimensional examination–preliminary results. Ortop Traumatol Rehabil. 2008;10(2):137–45.

    PubMed  Google Scholar 

  81. Albrecht K, Grob K, Lange U, Muller-Ladner U, Strunk J. Reliability of different Doppler ultrasound quantification methods and devices in the assessment of therapeutic response in arthritis. Rheumatol (Oxford). 2008;47(10):1521–6.

    Article  CAS  Google Scholar 

  82. Strunk J, Strube K, Rumbaur C, Lange U, Muller-Ladner U. Interobserver agreement in two- and three-dimensional power Doppler sonographic assessment of synovial vascularity during anti-inflammatory treatment in patients with rheumatoid arthritis. Ultraschall Med. 2007;28(4):409–15.

    Article  CAS  PubMed  Google Scholar 

  83. Albrecht H, Stroszczynski C, Felix R, Hunerbein M. Real time 3D (4D) ultrasound-guided percutaneous biopsy of solid tumours. Ultraschall Med. 2006;27(4):324–8.

    Article  CAS  PubMed  Google Scholar 

  84. Sayed A, Layne G, Abraham J, Mukdadi O. Nonlinear characterization of breast cancer using multi-compression 3D ultrasound elastography in vivo. Ultrasonics. 2013;53(5):979–91.

    Article  PubMed Central  PubMed  Google Scholar 

  85. Pereira PL, Gunaydin I, Trubenbach J, et al. Interventional MR imaging for injection of sacroiliac joints in patients with sacroiliitis. AJR Am J Roentgenol. 2000;175(1):265–6.

    Article  CAS  PubMed  Google Scholar 

  86. Grunert P, Darabi K, Espinosa J, Filippi R. Computer-aided navigation in neurosurgery. Neurosurg Rev. 2003;26(2):73–99.

    Article  CAS  PubMed  Google Scholar 

  87. Ma CM, Paskalev K. In-room CT techniques for image-guided radiation therapy. Med Dosim. 2006;31(1):30–9.

    Article  PubMed  Google Scholar 

  88. Rosenberg JM, Quint TJ, de Rosayro AM. Computerized tomographic localization of clinically-guided sacroiliac joint injections. Clin J Pain. 2000;16(1):18–21.

    Article  CAS  PubMed  Google Scholar 

  89. • Vollman A, Hulen R, Dulchavsky S, et al. Educational benefits of fusing magnetic resonance imaging with sonograms. J Clin Ultrasound. 2014;42(5):257–63. A study investigated the impact of US/MRI fusion images on the ability of medical students and radiology residents to identify MSK sonogram anatomy. They found that fused US/MRI images enhanced the ability of the radiology residents to identify MSK US anatomy accurately compared with sonogram alone, however the medical students did not show improvement.

  90. Galiano K, Obwegeser AA, Bale R, et al. Ultrasound-guided and CT-navigation-assisted periradicular and facet joint injections in the lumbar and cervical spine: a new teaching tool to recognize the sonoanatomic pattern. Reg Anesth Pain Med. 2007;32(3):254–7.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed M. H. Abd ellah.

Additional information

This article is part of the Topical Collection on Musculoskeletal Ultrasound.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abd ellah, M.M.H., Bamidele, J.O., Debbage, P. et al. Future of Musculoskeletal Ultrasound. Curr Radiol Rep 3, 21 (2015). https://doi.org/10.1007/s40134-015-0101-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40134-015-0101-4

Keywords

Navigation