Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, et al. Parkinson disease. Nat Rev Dis Primers. 2017;3:17013.
Article
Google Scholar
Braak H, Del Tredici K, Rub U, De Vos RA, Jansen Steur EN, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging. 2003;24(2):197–211.
Article
Google Scholar
Klingelhoefer L, Reichmann H. Pathogenesis of Parkinson disease—the gut-brain axis and environmental factorS. NAT REV NEUROL. 2015;11(11):625–36.
CAS
Article
Google Scholar
Walsh DM, Selkoe DJ. A critical appraisal of the pathogenic protein spread hypothesis of neurodegeneration. Nat Rev Neurosci. 2016;17(4):251–60.
CAS
Article
Google Scholar
Tönges L, Metzdorf J, Zella S. Parkinson's disease and neuroinflammation—Cellular pathology, mechanisms and therapeuticoptions. Fortschr Neurol Psychiatr. 2018;86(S 01):S10–20. https://doi.org/10.1055/s-0044-101608.
Article
PubMed
Google Scholar
Chitnis T, Weiner HL. CNS inflammation and neurodegeneration. J Clin Invest. 2017;127(10):3577–87.
Article
Google Scholar
Bendor JT, Logan TP, Edwards RH. The function of alpha-synuclein. Neuron. 2013;79(6):1044–66.
CAS
Article
Google Scholar
Braak H, del Tredici K. Neuropathological staging of brain pathology in sporadic Parkinson’s disease: separating the wheat from the chaff. J Parkinsons Dis. 2017;7(S1):S71–85.
Article
Google Scholar
Barbour R, Kling K, Anderson JP, Banducci K, Cole T, Diep L, et al. Red blood cells are the major source of alpha-synuclein in blood. Neurodegener Dis. 2008;5(2):55–9.
CAS
Article
Google Scholar
Doppler K, Jentschke HM, Schulmeyer L, Vadasz D, Janzen A, Luster M, et al. Dermal phospho-alpha-synuclein deposits confirm rem sleep behaviour disorder as prodromal Parkinson’s disease. Acta Neuropathol. 2017;133(4):535–45.
CAS
Article
Google Scholar
Dauer W, Przedborski S. Parkinson’s disease: mechanisms and models. Neuron. 2003;39(6):889–909.
CAS
Article
Google Scholar
Baba M, Nakajo S, Tu PH, Tomita T, Nakaya K, Lee VM, et al. Aggregation of alpha-synuclein in lewy bodies of sporadic Parkinson’s disease and dementia with lewy bodies. Am J Pathol. 1998;152(4):879–84.
CAS
PubMed
PubMed Central
Google Scholar
Trinh J, Farrer M. Advances in the genetics of Parkinson disease. Nat Rev Neurol. 2013;9(8):445–54.
CAS
Article
Google Scholar
Burré J, Sharma M, Tsetsenis T, Buchman V, Etherton MR, Südhof TC. Alpha-synuclein promotes snare-complex assembly in vivo and in vitro. Science. 2010;329(5999):1663–7.
Article
Google Scholar
Wong YC, Krainc D. Alpha-synuclein toxicity in neurodegeneration: mechanism and therapeutic strategies. Nat Med. 2017;23(2):1–13.
CAS
Article
Google Scholar
Bridi JC, Hirth F. Mechanisms, of alpha-synuclein induced synaptopathy in Parkinson’s disease. Front Neurosci. 2018;12:80.
Article
Google Scholar
Sudhof TC. A molecular machine for neurotransmitter release: synaptotagmin and beyond. Nat Med. 2013;19(10):1227–31.
Article
Google Scholar
Lashuel HA, Overk CR, Oueslati A, Masliah E. The, many faces, of alpha-synuclein: from structure and toxicity to therapeutic target. Nat Rev Neurosci. 2013;14(1):38–48.
CAS
Article
Google Scholar
Sudhof TC. The presynaptic active zone. Neuron. 2012;75(1):11–25.
CAS
Article
Google Scholar
Bergstrom AL, Kallunki P, Fog K. Development, of passive immunotherapies for synucleinopathies. Mov Disord. 2016;31(2):203–13.
Article
Google Scholar
Burre J, Sharma M, Sudhof TC. Definition of a molecular pathway mediating alpha-synuclein neurotoxicity. J Neurosci. 2015;35(13):5221–32.
CAS
Article
Google Scholar
Marques O, Outeiro TF. Alpha-synuclein: from secretion to dysfunction and death. Cell Death Dis. 2012;3:E350.
CAS
Article
Google Scholar
Volpicelli-Daley LA, Luk KC, Patel TP, Tanik SA, Riddle DM, Stieber A, et al. Exogenous alpha-synuclein fibrils induce lewy body pathology leading to synaptic dysfunction and neuron death. Neuron. 2011;72(1):57–71.
CAS
Article
Google Scholar
Volpicelli-Daley LA, Luk KC, Lee VM. Addition, of exogenous alpha-synuclein preformed fibrils to primary neuronal cultures to seed recruitment of endogenous alpha-synuclein to lewy body and lewy neurite-like aggregates. Nat Protoc. 2014;9(9):2135–46.
CAS
Article
Google Scholar
Brahic M, Bousset L, Bieri G, Melki R, Gitler AD. Axonal transport and secretion of fibrillar forms of alpha-synuclein, ABETA42 peptide and httexon 1. Acta Neuropathol. 2016;131(4):539–48.
CAS
Article
Google Scholar
Mao X, Ou MT, Karuppagounder SS, Kam TI, Yin X, Xiong Y, et al. Pathological alpha-synuclein transmission initiated by binding lymphocyte-activation gene 3. Science. 2016;353(6307):aah3374.
CAS
Article
Google Scholar
Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O’Keeffe S, et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci. 2014;34(36):11929–47.
CAS
Article
Google Scholar
Diogenes MJ, Dias RB, Rombo DM, Vicente Miranda H, Maiolino F, Guerreiro P, et al. Extracellular alpha-synuclein oligomers modulate synaptic transmission and impair LTP via NMDA-receptor activation. J Neurosci. 2012;32(34):11750–62.
CAS
Article
Google Scholar
Peelaerts W, Bousset L, van der Perren A, Moskalyuk A, Pulizzi R, Giugliano M, et al. Alpha-synuclein strains cause distinct synucleinopathies after local and systemic administration. Nature. 2015;522(7556):340–4.
CAS
Article
Google Scholar
Luk KC, Kehm V, Carroll J, Zhang B, O’Brien P, Trojanowski JQ, et al. Pathological alpha-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science. 2012;338(6109):949–53.
CAS
Article
Google Scholar
Tonges L, Szego EM, Hause P, Saal KA, Tatenhorst L, Koch JC, et al. Alpha-synuclein mutations impair axonal regeneration in models of Parkinson’s disease. Front Aging Neurosci. 2014;6:239.
PubMed
PubMed Central
Google Scholar
Herculano-Houzel S. The human brain in numbers: a linearly scaled-up primate brain. Front Hum Neurosci. 2009;3:31.
Article
Google Scholar
Sofroniew MV, Vinters HV. Astrocytes: biology and pathology. Acta Neuropathol. 2010;119(1):7–35.
Article
Google Scholar
Rostami J, Holmqvist S, Lindstrom V, Sigvardson J, Westermark GT, Ingelsson M, et al. Human astrocytes transfer aggregated alpha-synuclein via tunneling nanotubes. J Neurosci. 2017;37(49):11835–53.
CAS
Article
Google Scholar
Dexter DT, Jenner P. Parkinson disease: from pathology to molecular disease mechanisms. Free Radic Biol Med. 2013;62:132–44.
CAS
Article
Google Scholar
Gustafsson G, Lindstrom V, Rostami J, Nordstrom E, Lannfelt L, Bergstrom J, et al. Alpha-synuclein oligomer-selective antibodies reduce intracellular accumulation and mitochondrial impairment in alpha-synuclein exposed astrocytes. J Neuroinflammation. 2017;14(1):241.
Article
Google Scholar
Soulet D, Rivest S. Microglia. Curr Biol. 2008;18(12):R506–8.
CAS
Article
Google Scholar
Wolf SA, Boddeke HW, Kettenmann H. Microglia in physiology and diseaSE. Annu Rev Physiol. 2017;79:619–43.
CAS
Article
Google Scholar
Hoffmann A, Ettle B, Bruno A, Kulinich A, Hoffmann AC, Von Wittgenstein J, et al. Alpha-synuclein activates BV2 microglia dependent on its aggregation state. Biochem Biophys Res Commun. 2016;479(4):881–6.
CAS
Article
Google Scholar
Kim C, Ho DH, Suk JE, You S, Michael S, Kang J, et al. Neuron-released oligomeric alpha-synuclein is an endogenous agonist of TLR2 for paracrine activation of microglia. Nat Commun. 2013;4:1562.
Article
Google Scholar
Hoenen C, Gustin A, Birck C, Kirchmeyer M, Beaume N, Felten P, et al. Alpha-synuclein proteins promote pro-inflammatory cascades in microglia: stronger effects of the A53T mutant. PLoS One. 2016;11(9):E0162717.
Article
Google Scholar
Bergström AL, Kallunki P, Fog K. Development, of passive immunotherapies for synucleinopathies. Mov Disord. 2016;31(2):203–13.
Article
Google Scholar
Bruck D, Wenning GK, Stefanova N, Fellner L. Glia and alpha-synuclein in neurodegeneration: a complex interaction. Neurobiol Dis. 2016;85:262–74.
Article
Google Scholar
Games D, Valera E, Spencer B, Rockenstein E, Mante M, Adame A, et al. Reducing C-TERMINAL-truncated alpha-synuclein by immunotherapy attenuates neurodegeneration and propagation in Parkinson’s disease-like models. J Neurosci. 2014;34(28):9441–54.
Article
Google Scholar
Mandler M, Valera E, Rockenstein E, Mante M, Weninger H, Patrick C, et al. Active immunization against alpha-synuclein ameliorates the degenerative pathology and prevents demyelination in a model of multiple system atrophy. Mol Neurodegener. 2015;10:10.
Article
Google Scholar
Sardi SP, Cedarbaum JM, Brundin P. Targeted therapies for Parkinson’s disease: from genetics to the clinic. Mov Disord. 2018;33(5):684–96.
Article
Google Scholar
Rockenstein E, Mallory M, Hashimoto M, Song D, Shults CW, Lang I, et al. Differential neuropathological alterations in transgenic mice expressing alpha-synuclein from the platelet-derived growth factor and Thy-1 promoters. J Neurosci Res. 2002;68(5):568–78.
CAS
Article
Google Scholar
Masliah E, Rockenstein E, Adame A, Alford M, Crews L, Hashimoto M, et al. Effects of alpha-synuclein immunization in a mouse model of Parkinson’s disease. Neuron. 2005;46(6):857–68.
CAS
Article
Google Scholar
Lobello K, Ryan JM, Liu E, Rippon G, Black R. Targeting Beta amyloid: a clinical review of immunotherapeutic approaches in Alzheimer's disease. Int J Alzheimers Dis. 2012;2012:628070. https://doi.org/10.1155/2012/628070.
CAS
Article
PubMed
PubMed Central
Google Scholar
Ghochikyan A, Petrushina I, Davtyan H, Hovakimyan A, Saing T, Davtyan A, et al. Immunogenicity of epitope vaccines targeting differenT B cell antigenic determinants of human α-synuclein: feasibility study. Neurosci Lett. 2014;560:86–91.
CAS
Article
Google Scholar
Mandler M, Valera E, Rockenstein E, Weninger H, Patrick C, Adame A, et al. Next-generation active immunization approach for synucleinopathies: implications for parkinson’s disease clinical trials. Acta Neuropathol. 2014;127(6):861–79.
CAS
Article
Google Scholar
Villadiego J, Labrador-Garrido A, Franco JM, Leal-Lasarte M, De Genst EJ, Dobson CM, et al. Immunization with Α-Synuclein/Grp94 reshapes peripheral immunity and suppresses microgliosis in a chronic Parkinsonism model. GLIA. 2018;66(1):191–205.
Article
Google Scholar
Kingwell K. Zeroing in on neurodegenerative Α-synuclein. Nat Rev Drug Discov. 2017;16(6):371–3.
CAS
Article
Google Scholar
Valera E, Masliah E. Immunotherapy for neurodegenerative diseases: focus on Α-synucleinopathies. Pharmacol Ther. 2013;138(3):311–22.
CAS
Article
Google Scholar
Affiris announces encouraging long-term data from a series of first-in-human studies using Affitope® PD01A targeting oligomeric alpha-synuclein in early Parkinson’s disease Patients [Press Release]. 2018.
Affiris announces top line results of first-in-human clinical study using AFFITOPE®PD03A, Confirming immunogenicity and safety profile In Parkinson’s disease patients [Press Release]. 2017. http://www.affiris.com/news/affiris-announces-top-line-results-of-first-in-human-clinical-study-using-affitope/.
Masliah E, Rockenstein E, Mante M, Crews L, Spencer B, Adame A, et al. Passive immunization reduces behavioral and neuropathological deficits in an alpha-synuclein transgenic model of lewy body disease. PLoS One. 2011;6(4):E19338.
CAS
Article
Google Scholar
Mishizen-Eberz AJ, Norris EH, Giasson BI, Hodara R, Ischiropoulos H, Lee VM, et al. Cleavage of alpha-synuclein by calpain: potential role in degradation of fibrillized and nitrated species of alpha-synuclein. Biochemistry. 2005;44(21):7818–29.
CAS
Article
Google Scholar
Tofaris GK, Garcia Reitböck P, Humby T, Lambourne SL, O’Connell M, Ghetti B, et al. Pathological changes in dopaminergic nerve cells of the substantia nigra and olfactory bulb in mice transgenic for truncated human alpha-synuclein(1-120): implications for lewy body disorders. J Neurosci. 2006;26(15):3942–50.
CAS
Article
Google Scholar
Bae EJ, Lee HJ, Rockenstein E, Ho DH, Park EB, Yang NY, et al. Antibody-aided clearance of extracellular Α-synuclein prevents cell-to-cell aggregate transmission. J Neurosci. 2012;32(39):13454–69.
CAS
Article
Google Scholar
Fleming SM, Salcedo J, Fernagut PO, Rockenstein E, Masliah E, Levine MS, et al. Early and progressive sensorimotor anomalies in mice overexpressing wild-type human alpha-synuclein. J Neurosci. 2004;24(42):9434–40.
CAS
Article
Google Scholar
Shahaduzzaman M, Nash K, Hudson C, Sharif M, Grimmig B, Lin X, et al. anti-human Α-synuclein N-terminal peptide antibody protects against dopaminergic cell death and ameliorates behavioral deficits in an aav-α-synuclein rat model of Parkinson’s Disease. PLoS One. 2015;10(2):E0116841.
Article
Google Scholar
Tran HT, Chung CH, Iba M, Zhang B, Trojanowski JQ, Luk KC, et al. Α-synuclein immunotherapy blocks uptake and templated propagation of misfolded α-synuclein and neurodegeneration. Cell Rep. 2014;7(6):2054–65.
CAS
Article
Google Scholar
Kahle PJ, Neumann M, Ozmen L, Muller V, Jacobsen H, Schindzielorz A, et al. Subcellular localization of wild-type and Parkinson’s disease-associated mutant alpha-synuclein in human and transgenic mouse brain. J Neurosci. 2000;20(17):6365–73.
CAS
Article
Google Scholar
Lindström V, Fagerqvist T, Nordström E, Eriksson F, Lord A, Tucker S, et al. Immunotherapy targeting α-synuclein protofibrils reduced pathology iN (THY-1)-H[A30P] α-synuclein mice. Neurobiol Dis. 2014;69:134–43.
Article
Google Scholar
Gustafsson G, Eriksson F, Möller C, Da Fonseca TL, Outeiro TF, LannfelT L, et al. Cellular uptake of α-synuclein oligomer-selective antibodies is enhanced by the extracellular presence of α-synuclein and mediated via Fcγ ReceptorS. Cell Mol Neurobiol. 2017;37(1):121–31.
CAS
Article
Google Scholar
El-Agnaf O, Overk C, Rockenstein E, Mante M, Florio J, Adame A, et al. Differential effects of immunotherapy with antibodies targeting α-synuclein oligomers and fibrils in a transgenic model of synucleinopathy. Neurobiol Dis. 2017;104:85–96.
CAS
Article
Google Scholar
Schenk DB, Koller M, Ness DK, Griffith SG, Grundman M, Zago W, et al. First-in-human assessment of PRX002, an anti-alpha-synuclein monoclonal antibody, in healthy volunteers. Mov Disord. 2017;32(2):211–8.
CAS
Article
Google Scholar
Jankovic J, Goodman I, Safirstein B, Marmon TK, Schenk DB, Koller M et al. Safety and tolerability of multiple ascending doses of PRX002/RG7935, an anti-α-synuclein monoclonal antibody, in patients with parkinson disease: a randomized clinical trial. JAMA Neurol. 2018;75(10):1206–14. https://doi.org/10.1001/jamaneurol.2018.1487.
Article
PubMed
PubMed Central
Google Scholar
Weihofen A, Patel H, Huy C, Liu C, Combaluzier I, Mueller-Steiner S, et al. Binding and functional characterization of human-derived anti-alpha-synuclein antibody BIIB054. Neurodeg Dis. 2017;17 (SUPPL 1)(8):59.
Google Scholar
Brys M, Hung S, Fanning L, Penner N, Yang M, Welch M, et al. Randomized, double- blind, placebo-controlled, single ascending dose study of antialpha-synuclein antibody biib054 in patients with Parkinson disease. Neurology. 2018;90(15 15 SUPPLEMENT):S26.001.
Google Scholar
Bioarctic enters into collaboration with abbvie for parkinson disease research [Press Release]. 2018. https://www.bioarctic.se/en/section/media/press-releases/
Wisniewski T, Goni F. Immunotherapeutic approaches for Alzheimer’s disease. Neuron. 2015;85(6):1162–76.
CAS
Article
Google Scholar
Zepp F. Principles of vaccination. Methods Mol Biol. 2016;1403:57–84.
Article
Google Scholar
Guy B. The perfect mix: recent progress in adjuvant research. Nat Rev Microbiol. 2007;5(7):505–17.
CAS
Article
Google Scholar
Tabira T. Immunization therapy for alzheimer disease: a comprehensive review of active immunization strategies. Tohoku J Exp Med. 2010;220(2):95–106.
CAS
Article
Google Scholar
Penninkilampi R, Brothers HM, Eslick GD. Safety and efficacy of anti-amyloid-beta immunotherapy in Alzheimer’s disease: a systematic review and meta-analysis. J Neuroimmune Pharmacol. 2017;12(1):194–203.
Article
Google Scholar
Brys I, Halje P, Scheffer-Teixeira R, Varney M, Newman-Tancredi A, Petersson P. Neurophysiological effects in cortico-basal ganglia-thalamic circuits of antidyskinetic treatment with 5-HT1A receptor biased agonists. Exp Neurol. 2018;302:155–68. https://doi.org/10.1016/j.expneurol.2018.01.010.
CAS
Article
PubMed
Google Scholar