Doshi A, Chataway J. Multiple sclerosis, a treatable disease. Clin Med (Lond). 2017;17:530–6. https://doi.org/10.7861/clinmedicine.17-6-530.
Article
Google Scholar
Giovannoni G, Tomic D, Bright JR, et al. “No evident disease activity”: the use of combined assessments in the management of patients with multiple sclerosis. Mult Scler. 2017;23:1179–87. https://doi.org/10.1177/1352458517703193.
Article
PubMed
PubMed Central
Google Scholar
Vukusic S, Marignier R. Multiple sclerosis and pregnancy in the ‘treatment era’. Nat Rev Neurol. 2015;11:280–9. https://doi.org/10.1038/nrneurol.2015.53.
Article
PubMed
Google Scholar
Shekelle PG, Woolf SH, Eccles M, et al. Developing clinical guidelines. West J Med. 1999;170:348–51.
CAS
PubMed
PubMed Central
Google Scholar
Portaccio E, Ghezzi A, Hakiki B, et al. Postpartum relapses increase the risk of disability progression in multiple sclerosis: the role of disease modifying drugs. J Neurol Neurosurg Psychiatry. 2014;85:845–50. https://doi.org/10.1136/jnnp-2013-306054.
Article
PubMed
Google Scholar
Hughes SE, Spelman T, Gray OM, et al. Predictors and dynamics of postpartum relapses in women with multiple sclerosis. Mult Scler. 2014;20:739–46. https://doi.org/10.1177/1352458513507816.
Article
PubMed
Google Scholar
Amato MP, Bertolotto A, Brunelli R, et al. Management of pregnancy-related issues in multiple sclerosis patients: the need for an interdisciplinary approach. Neurol Sci. 2017;38:1849–58. https://doi.org/10.1007/s10072-017-3081-8.
Article
PubMed
Google Scholar
Langer-Gould A, Huang S, Van Den Eeden SK, et al. Vitamin D, pregnancy, breastfeeding and postpartum multiple sclerosis relapses. Arch Neurol. 2011;68:310–3. https://doi.org/10.1001/archneurol.2010.291.
Article
PubMed
Google Scholar
Runia TF, Neuteboom RF, de Groot CJ, et al. The influence of vitamin D on postpartum relapse and quality of life in pregnant multiple sclerosis patients. Eur J Neurol. 2015;22:479–84. https://doi.org/10.1111/ene.12594.
CAS
Article
PubMed
Google Scholar
Roth DE, Leung M, Mesfin E, et al. Vitamin D supplementation during pregnancy: state of the evidence from a systematic review of randomised trials. BMJ. 2017;359:j5237. https://doi.org/10.1136/bmj.j5237.
Article
PubMed
PubMed Central
Google Scholar
Leader S, Perales PJ. Provision of primary-preventive health care services by obstetrician-gynecologists. Obstet Gynecol. 1995;85:391–5.
CAS
Article
PubMed
Google Scholar
Swamy GK, Heine RP. Vaccinations for pregnant women. Obstet Gynecol. 2015;125:212–26. https://doi.org/10.1097/AOG.0000000000000581.
CAS
Article
PubMed
PubMed Central
Google Scholar
Frederiksen JL, Topsøe Mailand M. Vaccines and multiple sclerosis. Acta Neurol Scand. 2017;136:49–51. https://doi.org/10.1111/ane.12837.
Article
PubMed
Google Scholar
Pellegrino P, Carnovale C, Perrone V, et al. Efficacy of vaccination against influenza in patients with multiple sclerosis: the role of concomitant therapies. Vaccine. 2014;32:4730–5. https://doi.org/10.1016/j.vaccine.2014.06.068.
Article
PubMed
Google Scholar
Keller-Stanislawski B, Englund JA, Kang G, et al. Safety of immunization during pregnancy: a review of the evidence of selected inactivated and live attenuated vaccines. Vaccine. 2014;32:7057–64. https://doi.org/10.1016/j.vaccine.2014.09.052.
CAS
Article
PubMed
Google Scholar
Wiley K, Regan A, McIntyre P. Immunization and pregnancy—who, what, when and why? Aust Prescr. 2017;40:122–4. https://doi.org/10.18773/austprescr.2017.046.
Article
PubMed
PubMed Central
Google Scholar
Al-Shammri S, Rawoot P, Azizieh F, et al. Th1/Th2 cytokine patterns and clinical profiles during and after pregnancy in women with multiple sclerosis. J Neurol Sci. 2004;222:21–7.
CAS
Article
PubMed
Google Scholar
Kidd P. Th1/Th2 balance: the hypothesis, its limitations, and implications for health and disease. Altern Med Rev. 2003;8:223–46.
PubMed
Google Scholar
Gold SM, Voskuhl RR. Estrogen treatment in multiple sclerosis. J Neurol Sci. 2009;286:99–103. https://doi.org/10.1016/j.jns.2009.05.028.
CAS
Article
PubMed
PubMed Central
Google Scholar
Alroughani R, Alowayesh MS, Ahmed SF, et al. Relapse occurrence in women with multiple sclerosis during pregnancy in the new treatment era. Neurology. 2018;90:e840–6. https://doi.org/10.1212/WNL.0000000000005065.
Article
PubMed
Google Scholar
Miller DH, Fazekas F, Montalban X, et al. Pregnancy, sex and hormonal factors in multiple sclerosis. Mult Scler. 2014;20:527–36. https://doi.org/10.1177/1352458513519840.
CAS
Article
PubMed
PubMed Central
Google Scholar
Smets I, Van Deun L, Bohyn C, et al. Corticosteroids in the management of acute multiple sclerosis exacerbations. Acta Neurol Belg. 2017;117:623–33. https://doi.org/10.1007/s13760-017-0772-0.
CAS
Article
PubMed
Google Scholar
Xiao WL, Liu XY, Liu YS, et al. The relationship between maternal corticosteroid use and orofacial clefts—a meta-analysis. Reprod Toxicol. 2017;69:99–105. https://doi.org/10.1016/j.reprotox.2017.02.006.
CAS
Article
PubMed
Google Scholar
Vackova Z, Vagnerova K, Libra A, et al. Dexamethasone and betamethasone administration during pregnancy affects expression and function of 11 beta-hydroxysteroid dehydrogenase type 2 in the rat placenta. Reprod Toxicol. 2009;28:46–51. https://doi.org/10.1016/j.reprotox.2009.02.006.
CAS
Article
PubMed
Google Scholar
Hellwig K, Beste C, Schimrigk S, et al. Immunomodulation and postpartum relapses in patients with multiple sclerosis. Ther Adv Neurol Disord. 2009;2:7–11. https://doi.org/10.1177/1756285608100416.
Article
PubMed
PubMed Central
Google Scholar
Finkelsztejn A, Fragoso YD, Ferreira ML, et al. The Brazilian database on pregnancy in multiple sclerosis. Clin Neurol Neurosurg. 2011;113:277–80. https://doi.org/10.1016/j.clineuro.2010.11.016.
CAS
Article
PubMed
Google Scholar
Fares J, Nassar AH, Gebeily S, et al. Pregnancy outcomes in Lebanese women with multiple sclerosis (the LeMS study): a prospective multicentre study. BMJ Open. 2016;6:e011210. https://doi.org/10.1136/bmjopen-2016-011210.
Article
PubMed
PubMed Central
Google Scholar
Jesus-Ribeiro J, Correia I, Martins AI, et al. Pregnancy in multiple sclerosis: a Portuguese cohort study. Mult Scler Relat Disord. 2017;17:63–8. https://doi.org/10.1016/j.msard.2017.07.002.
Article
PubMed
Google Scholar
Fragoso YD, Boggild M, Macias-Islas MA, et al. The effects of long-term exposure to disease-modifying drugs during pregnancy in multiple sclerosis. Clin Neurol Neurosurg. 2013;115:154–9. https://doi.org/10.1016/j.clineuro.2012.04.024.
Article
PubMed
Google Scholar
Langer-Gould A, Huang SM, Gupta R, et al. Exclusive breastfeeding and the risk of postpartum relapses in women with multiple sclerosis. Arch Neurol. 2009;66:958–63. https://doi.org/10.1001/archneurol.2009.132.
Article
PubMed
Google Scholar
Portaccio E, Ghezzi A, Hakiki B, et al. Breastfeeding is not related to postpartum relapses in multiple sclerosis. Neurology. 2011;77:145–50. https://doi.org/10.1212/WNL.0b013e318224afc9.
CAS
Article
PubMed
Google Scholar
Pakpoor J, Disanto G, Lacey MV, et al. Breastfeeding and multiple sclerosis relapses: a meta-analysis. J Neurol. 2012;259:2246–8. https://doi.org/10.1007/s00415-012-6553-z.
Article
PubMed
Google Scholar
Holla-Bhar R, Iellamo A, Gupta A, Smith JP, Dadhich JP. Investing in breastfeeding—the world breastfeeding costing initiative. Int Breastfeed J. 2015;10:18. https://doi.org/10.1186/s13006-015-0032-y.
Article
Google Scholar
Rosa GR, O’Brien AT, Nogueira EA, et al. There is no benefit in the use of postnatal intravenous immunoglobulin for the prevention of relapses of multiple sclerosis. Arq Neuropsiquiatr. 2018;76:361–6. https://doi.org/10.1590/0004-282x20180041.
Article
PubMed
Google Scholar
de Seze J, Chapelotte M, Delalande S, et al. Intravenous corticosteroids in the postpartum period for reduction of acute exacerbations in multiple sclerosis. Mult Scler. 2004;10:596–7.
Article
PubMed
Google Scholar
Boz C, Terzi M, Zengin Karahan S, et al. Safety of IV pulse methylprednisolone therapy during breastfeeding in patients with multiple sclerosis. Mult Scler. 2017. https://doi.org/10.1177/1352458517717806.
Article
PubMed
Google Scholar
Cooper SD, Felkins K, Baker TE, et al. Transfer of methylprednisolone into breast milk in a mother with multiple sclerosis. J Hum Lact. 2015;31:237–9. https://doi.org/10.1177/0890334415570970.
Article
PubMed
Google Scholar
Hellwig K. Pregnancy in multiple sclerosis. Eur Neurol. 2014;72:39–42. https://doi.org/10.1159/000367640.
Article
PubMed
Google Scholar
Masera S, Cavalla P, Prosperini L, et al. Parity is associated with a longer time to reach irreversible disability milestones in women with multiple sclerosis. Mult Scler. 2015;21:1291–7. https://doi.org/10.1177/1352458514561907.
CAS
Article
PubMed
Google Scholar
McCombe PA, Callaway LK. Multiparity in women with multiple sclerosis causes less long-term disability: no. Mult Scler. 2014;20:1435–6. https://doi.org/10.1177/1352458514541979.
CAS
Article
PubMed
Google Scholar
Dahl J, Myhr KM, Daltveit AK, et al. Pregnancy, delivery, and birth outcome in women with multiple sclerosis. Neurology. 2005;65:1961–3.
CAS
Article
PubMed
Google Scholar
Chen YH, Lin HL, Lin HC. Does multiple sclerosis increase risk of adverse pregnancy outcomes? A population-based study. Mult Scler. 2009;15:606–12. https://doi.org/10.1177/1352458508101937.
CAS
Article
PubMed
Google Scholar
Mueller BA, Zhang J, Critchlow CW. Birth outcomes and need for hospitalization after delivery among women with multiple sclerosis. Am J Obstet Gynecol. 2002;186:446–52.
Article
PubMed
Google Scholar
Ferrero S, Pretta S, Ragni N. Multiple sclerosis: management issues during pregnancy. Eur J Obstet Gynecol Reprod Biol. 2004;115:3–9.
Article
PubMed
Google Scholar
Lu E, Wang BW, Guimond C, et al. Disease-modifying drugs for multiple sclerosis in pregnancy: a systematic review. Neurology. 2012;79:1130–5. https://doi.org/10.1212/WNL.0b013e3182698c64.
CAS
Article
PubMed
PubMed Central
Google Scholar
Bornemann-Cimenti H, Sivro N, Toft F, et al. Neuraxial anesthesia in patients with multiple sclerosis—a systematic review. Rev Bras Anestesiol. 2017;67:404–10. https://doi.org/10.1016/j.bjan.2016.09.015.
Article
PubMed
Google Scholar
Pastò L, Portaccio E, Ghezzi A, et al. Epidural analgesia and cesarean delivery in multiple sclerosis post-partum relapses: the Italian cohort study. BMC Neurol. 2012;12:165. https://doi.org/10.1186/1471-2377-12-165.
Article
PubMed
PubMed Central
Google Scholar
Furu K, Kieler H, Haglund B, et al. Selective serotonin reuptake inhibitors and venlafaxine in early pregnancy and risk of birth defects: population based cohort study and sibling design. BMJ. 2015;17(350):h1798. https://doi.org/10.1136/bmj.h1798.
Article
Google Scholar
Huybrechts KF, Palmsten K, Mogun H, et al. National trends in antidepressant medication treatment among publicly insured pregnant women. Gen Hosp Psychiatry. 2013;35(3):265–71. https://doi.org/10.1016/j.genhosppsych.2012.12.010.
Article
PubMed
PubMed Central
Google Scholar
Yonkers KA, Forray A, Smith MV. Maternal antidepressant use and pregnancy outcomes. JAMA. 2017;318(7):665–6. https://doi.org/10.1001/jama.2017.9182.
Article
PubMed
Google Scholar
Berard A, Zhao JP, Sheehy O. Antidepressant use during pregnancy and the risk of major congenital malformations in a cohort of depressed pregnant women: an updated analysis of the Quebec Pregnancy Cohort. BMJ Open. 2017;7(1):e013372. https://doi.org/10.1136/bmjopen-2016-013372.
Article
PubMed
PubMed Central
Google Scholar
Ross LE, Grigoriadis S, Mamisashvili L, et al. Selected pregnancy and delivery outcomes after exposure to antidepressant medication: a systematic review and meta-analysis. JAMA Psychiatry. 2013;70(4):436–43. https://doi.org/10.1001/jamapsychiatry.2013.684.
Article
PubMed
Google Scholar
Huybrechts KF, Bateman BT, Palmsten K, et al. Antidepressant use late in pregnancy and risk of persistent pulmonary hypertension of the newborn. JAMA. 2015;313(21):2142–51. https://doi.org/10.1001/jama.2015.5605.
CAS
Article
PubMed
PubMed Central
Google Scholar
Udechuku A, Nguyen T, Hill R, et al. Antidepressants in pregnancy: a systematic review. Aust N Z J Psychiatry. 2010;44(11):978–96. https://doi.org/10.3109/00048674.2010.507543.
Article
PubMed
Google Scholar
Grzeskowiak LE, Leggett C, Costi L, et al. Impact of serotonin reuptake inhibitor use on breast milk supply in mothers of preterm infants: a retrospective cohort study. Br J Clin Pharmacol. 2018;84(6):1373–9. https://doi.org/10.1111/bcp.13575.
CAS
Article
PubMed
Google Scholar
Orsolini L, Bellantuono C. Serotonin reuptake inhibitors and breastfeeding: a systematic review. Hum Psychopharmacol. 2015;30:4–20. https://doi.org/10.1002/hup.2451.
CAS
Article
PubMed
Google Scholar
Generali JA, Cada DJ. Amantadine: multiple sclerosis-related fatigue. Hosp Pharm. 2014;49:710–2. https://doi.org/10.1310/hpj4908-710.
CAS
Article
PubMed
PubMed Central
Google Scholar
Pucci E, Branãs P, D’Amico R, et al. Amantadine for fatigue in multiple sclerosis. Cochrane Database Syst Rev. 2007;(1):CD002818. https://doi.org/10.1002/14651858.CD002818.
Kranick SM, Mowry EM, Colcher A, et al. Movement disorders and pregnancy: a review of the literature. Mov Disord. 2010;25:665–71. https://doi.org/10.1002/mds.23071.
Article
PubMed
Google Scholar
Seier M, Hiller A. Parkinson’s disease and pregnancy: an updated review. Parkinsonism Relat Disord. 2017;40:11–7. https://doi.org/10.1016/j.parkreldis.2017.05.007.
Article
PubMed
Google Scholar
Pandit PB, Chitayat D, Jefferies AL, et al. Tibial hemimelia and tetralogy of Fallot associated with first trimester exposure to amantadine. Reprod Toxicol. 1994;8:89–92.
CAS
Article
PubMed
Google Scholar
Shangyan H, Kuiqing L, Yumin X, et al. Meta-analysis of the efficacy of modafinil versus placebo in the treatment of multiple sclerosis fatigue. Mult Scler Relat Disord. 2018;19:85–9. https://doi.org/10.1016/j.msard.2017.10.011.
Article
PubMed
Google Scholar
Ford-Johnson L, DeLuca J, Zhang J, et al. Cognitive effects of modafinil in patients with multiple sclerosis: a clinical trial. Rehabil Psychol. 2016;61:82–91. https://doi.org/10.1037/a0039919.
CAS
Article
PubMed
Google Scholar
Maillart E, Gout O, Lubetzki C, et al. Favorable outcome of a pregnancy after fampridine exposition during the first month. J Neurol Sci. 2016;370:158. https://doi.org/10.1016/j.jns.2016.09.033.
Article
PubMed
Google Scholar
Tandon SS, Hoskins I, Azhar S. Intrathecal baclofen pump—a viable therapeutic option in pregnancy. Obstet Med. 2010;3:119–20. https://doi.org/10.1258/om.2010.100016.
Article
PubMed
PubMed Central
Google Scholar
Baclofen and pregnancy: birth defects and withdrawal symptoms. Prescrire Int. 2015;24:214.
Safarinejad MR. Evaluation of endocrine profile, hypothalamic–pituitary–testis axis and semen quality in multiple sclerosis. J Neuroendocrinol. 2008;20:1368–75.
CAS
Article
PubMed
Google Scholar
Pakpoor J, Goldacre R, Schmierer K, et al. Testicular hypofunction and multiple sclerosis risk: a record-linkage study. Ann Neurol. 2014;76:625–8.
Article
PubMed
Google Scholar
Glazer CH, Tottenborg SS, Giwereman A, et al. Male fator infertility and risk of multiple sclerosis: a register-based cohort study. Mult Scler. 2017. https://doi.org/10.1177/1352458517734069.
Article
PubMed
Google Scholar
Bove R, Musallam A, Healy BC, et al. Low testosterone is associated with disability in men with multiple sclerosis. Mult Scler. 2014;20:1584–92. https://doi.org/10.1177/1352458514527864.
CAS
Article
PubMed
PubMed Central
Google Scholar
Brubaker WD, Li S, Baker LC, et al. Increased risk of autoimmune disorders in infertile men: analysis of US claims data. Andrology. 2018;6:94–8.
CAS
Article
PubMed
Google Scholar
Prévinaire JG, Lecourt G, Soler JM, et al. Sexual disorders in men with multiple sclerosis: evaluation and management. Ann Phys Rehabil Med. 2014;57:329–36. https://doi.org/10.1016/j.rehab.2014.05.002.
Article
PubMed
Google Scholar
Fode M, Krogh-Jespersen S, Brackett NI, et al. Male sexual dysfunction and infertility associated with neurological disorders. Asian J Androl. 2012;14:61–8.
Article
PubMed
Google Scholar
Marck CH, Jelinek PL, Weiland TJ, et al. Sexual function in multiple sclerosis and associations with demographic, disease and lifestyle characteristics: an international cross-sectional study. BMC Neurol. 2016;16:210.
Article
PubMed
PubMed Central
Google Scholar
Balsamo R, Arcaniolo D, Stizzo M, et al. Increased risk of erectile dysfunction in men with multiple sclerosis: an Italian cross-sectional study. Cent Eur J Urol. 2017;70:289–95. https://doi.org/10.1155/2017/9820245.
Article
Google Scholar
Hellwig K, Haghikia A, Gold R. Parenthood and immunomodulation in patients with multiple sclerosis. J Neurol. 2010;257:580–3. https://doi.org/10.1007/s00415-009-5376-z.
CAS
Article
PubMed
Google Scholar
Pecori C, Giannini M, Portaccio E, et al. Paternal therapy with disease modifying drugs in multiple sclerosis and pregnancy outcomes: a prospective observational multicentric study. BMC Neurol. 2014;14:114. https://doi.org/10.1186/1471-2377-14-114.
Article
PubMed
PubMed Central
Google Scholar
Lu E, Zhu F, Zhao Y, et al. Birth outcomes in newborns fathered by men with multiple sclerosis exposed to disease-modifying drugs. CNS Drugs. 2014;28:475–82. https://doi.org/10.1007/s40263-014-0154-6.
CAS
Article
PubMed
Google Scholar
Trofimenko V, Hotaling JM. Fertility treatment in spinal cord injury and other neurologic disease. Transl Androl Urol. 2016;5:102–16. https://doi.org/10.3978/j.issn.2223-4683.2015.12.10.
Article
PubMed
PubMed Central
Google Scholar
Hellwig K, Correale J. Artificial reproductive techniques in multiple sclerosis. Clin Immunol. 2013;149:219–24. https://doi.org/10.1016/j.clim.2013.02.001.
CAS
Article
PubMed
Google Scholar
Al-Inany HG, Youssef MA, Ayeleke RO, et al. Gonadotrophin-releasing hormone antagonists for assisted reproductive technology. Cochrane Database Syst Rev. 2016;4:CD001750. https://doi.org/10.1002/14651858.cd001750.pub4.
Article
PubMed
Google Scholar
Niino M, Hirotani M, Fukazawa T, et al. Estrogens as potential therapeutic agents in multiple sclerosis. Cent Nerv Syst Agents Med Chem. 2009;9:87–94.
CAS
Article
PubMed
Google Scholar
Vaughn C, Bushra A, Kolb C, et al. An update on the use of disease-modifying therapy in pregnant patients with multiple sclerosis. CNS Drugs. 2018;32:161–78. https://doi.org/10.1007/s40263-018-0496-6.
Article
PubMed
Google Scholar
Krueger WS, Anthony MS, Saltus CW, et al. Evaluating the safety of medication exposures during pregnancy: a case study of study designs and data sources in multiple sclerosis. Drugs Real World Outcomes. 2017;4:139–49. https://doi.org/10.1007/s40801-017-0114-9.
Article
PubMed
PubMed Central
Google Scholar
Fragoso YD. Is it correct for a woman with multiple sclerosis to forgo medication because she may become pregnant? Arq Neuropsiquiatr. 2013;71:826–7. https://doi.org/10.1590/0004-282X20130134.
Article
PubMed
Google Scholar
Meinl I, Havla J, Hohlfeld R, et al. Recurrence of disease activity during pregnancy after cessation of fingolimod in multiple sclerosis. Mult Scler. 2017. https://doi.org/10.1177/1352458517731913.
Article
PubMed
Google Scholar
Novi G, Ghezzi A, Pizzorno M, et al. Dramatic rebounds of MS during pregnancy following fingolimod withdrawal. Neurol Neuroimmunol Neuroinflamm. 2017;4:e377. https://doi.org/10.1212/NXI.0000000000000377.
Article
PubMed
PubMed Central
Google Scholar
De Giglio L, Gasperini C, Tortorella C, et al. Natalizumab discontinuation and disease restart in pregnancy: a case series. Acta Neurol Scand. 2015;131:336–40. https://doi.org/10.1111/ane.12364.
CAS
Article
PubMed
Google Scholar
Martinelli V, Colombo B, Dalla Costa G, et al. Recurrent disease-activity rebound in a patient with multiple sclerosis after natalizumab discontinuations for pregnancy planning. Mult Scler. 2016;22:1506–8.
Article
PubMed
Google Scholar
Verhaeghe A, Deryck OM, Vanopdenbosch LJ. Pseudotumoral rebound of multiple sclerosis in a pregnant patient after stopping natalizumab. Mult Scler Relat Disord. 2014;3:279–81. https://doi.org/10.1016/j.msard.2013.10.001.
Article
PubMed
Google Scholar
Sempere AP, Berenguer-Ruiz L, Feliu-Rey E. Rebound of disease activity during pregnancy after withdrawal of fingolimod. Eur J Neurol. 2013;20:e109–10. https://doi.org/10.1111/ene.12195.
CAS
Article
PubMed
Google Scholar
Saposnik G, Montalban X. Therapeutic inertia in the new landscape of multiple sclerosis care. Front Neurol. 2018;9:174. https://doi.org/10.3389/fneur.2018.00174.
Article
PubMed
PubMed Central
Google Scholar
Markowitz C. Development of interferon-beta as a therapy for multiple sclerosis. Expert Opin Emerg Drugs. 2004;9:363–74.
CAS
Article
PubMed
Google Scholar
Markowitz CE. Interferon-beta: mechanism of action and dosing issues. Neurology. 2007;68:S8–11.
CAS
Article
PubMed
Google Scholar
Waysbort A, Giroux M, Mansat V, et al. Experimental study of transplacental passage of alpha interferon by two assay techniques. Antimicrob Agents Chemother. 1993;37:1232–7.
CAS
Article
PubMed
PubMed Central
Google Scholar
Madsen C. The innovative development in interferon beta treatments of relapsing-remitting multiple sclerosis. Brain Behav. 2017;7:e00696. https://doi.org/10.1002/brb3.696.
Article
PubMed
PubMed Central
Google Scholar
Kang JS, Deluca PP, Lee KC. Emerging PEGylated drugs. Expert Opin Emerg Drugs. 2009;14:363–80. https://doi.org/10.1517/14728210902907847.
CAS
Article
PubMed
Google Scholar
Hu X, Olivier K, Polack E, et al. In vivo pharmacology and toxicology evaluation of polyethylene glycol-conjugated interferon beta-1a. J Pharmacol Exp Ther. 2011;338:984–96. https://doi.org/10.1124/jpet.111.180661.
CAS
Article
PubMed
Google Scholar
Sandberg-Wollheim M, Frank D, Goodwin TM, et al. Pregnancy outcomes during treatment with interferon beta-1a in patients with multiple sclerosis. Neurology. 2005;65:802–6.
CAS
Article
PubMed
Google Scholar
Boskovic R, Wide R, Wolpin J, et al. The reproductive effects of beta interferon therapy in pregnancy: a longitudinal cohort. Neurology. 2005;65:807–11.
CAS
Article
PubMed
Google Scholar
Patti F, Cavallaro T, Lo Fermo S, et al. Is in utero early-exposure to interferon beta a risk factor for pregnancy outcomes in multiple sclerosis? J Neurol. 2008;255:1250–3. https://doi.org/10.1007/s00415-008-0909-4.
CAS
Article
PubMed
Google Scholar
Sandberg-Wollheim M, Alteri E, Moraga MS, et al. Pregnancy outcomes in multiple sclerosis following subcutaneous interferon beta-1a therapy. Mult Scler. 2011;17:423–30. https://doi.org/10.1177/1352458510394610.
CAS
Article
PubMed
Google Scholar
Amato MP, Portaccio E, Ghezzi A, et al. Pregnancy and fetal outcomes after interferon-β exposure in multiple sclerosis. Neurology. 2010;75:1794–802. https://doi.org/10.1212/WNL.0b013e3181fd62bb.
CAS
Article
PubMed
Google Scholar
Coyle PK, Sinclair SM, Scheuerle AE, et al. Final results from the Betaseron (interferon β-1b) Pregnancy Registry: a prospective observational study of birth defects and pregnancy-related adverse events. BMJ Open. 2014;4:e004536. https://doi.org/10.1136/bmjopen-2013-004536.
CAS
Article
PubMed
PubMed Central
Google Scholar
Thiel S, Langer-Gould A, Rockhoff M, et al. Interferon-beta exposure during first trimester is safe in women with multiple sclerosis—a prospective cohort study from the German Multiple Sclerosis and Pregnancy Registry. Mult Scler. 2016;22:801–9. https://doi.org/10.1177/1352458516634872.
CAS
Article
PubMed
Google Scholar
Weber-Schoendorfer C, Schaefer C. Multiple sclerosis, immunomodulators, and pregnancy outcome: a prospective observational study. Mult Scler. 2009;15:1037–42. https://doi.org/10.1177/1352458509106543.
CAS
Article
PubMed
Google Scholar
Organization WH. International statistical classification of diseases and related health problems, tenth revision. 2nd ed. Geneva: World Health Organization; 2004.
Google Scholar
Hale TW, Siddiqui AA, Baker TE. Transfer of interferon β-1a into human breastmilk. Breastfeed Med. 2012;7:123–5. https://doi.org/10.1089/bfm.2011.0044.
Article
PubMed
Google Scholar
Polman C, Barkhof F, Kappos L, et al. Oral interferon beta-1a in relapsing-remitting multiple sclerosis: a double-blind randomized study. Mult Scler. 2003;9:342–8.
CAS
Article
PubMed
Google Scholar
Messina S, Patti F. The pharmacokinetics of glatiramer acetate for multiple sclerosis treatment. Expert Opin Drug Metab Toxicol. 2013;9:1349–59. https://doi.org/10.1517/17425255.2013.811489.
CAS
Article
PubMed
Google Scholar
Comi G, Moiola L. Glatiramer acetate. Neurologia. 2002;17:244–58.
CAS
PubMed
Google Scholar
Fragoso YD. Glatiramer acetate to treat multiple sclerosis during pregnancy and lactation: a safety evaluation. Expert Opin Drug Saf. 2014;13:1743–8. https://doi.org/10.1517/14740338.2014.955849.
CAS
Article
PubMed
Google Scholar
Sandberg-Wollheim M, Neudorfer O, Grinspan A, et al. Pregnancy outcomes from the branded glatiramer acetate pregnancy database. Int J MS Care. 2018;20:9–14. https://doi.org/10.7224/1537-2073.2016-079.
Article
PubMed
PubMed Central
Google Scholar
Miller AE. Multiple sclerosis disease-modifying therapy and pregnancy. Mult Scler. 2016;22:715–6. https://doi.org/10.1177/1352458516642316.
Article
PubMed
Google Scholar
Ziemssen T, Neuhaus O, Hohlfeld R. Risk-benefit assessment of glatiramer acetate in multiple sclerosis. Drug Saf. 2001;24:979–90.
CAS
Article
PubMed
Google Scholar
Chun J, Hartung HP. Mechanism of action of oral fingolimod (FTY720) in multiple sclerosis. Clin Neuropharmacol. 2010;33:91–101. https://doi.org/10.1097/WNF.0b013e3181cbf825.
CAS
Article
PubMed
PubMed Central
Google Scholar
Buraga I, Popovici RE. Multiple sclerosis and pregnancy: current considerations. Sci World J. 2014;2014:513160. https://doi.org/10.1155/2014/513160.
Article
Google Scholar
Orlowski RZ. Successful pregnancy after cladribine therapy for hairy cell leukemia. Leuk Lymphoma. 2004;45:187–8.
Article
PubMed
Google Scholar
Cronin M, Schellschmidt I, Dinger J. Rate of pregnancy after using drospirenone and other progestin-containing oral contraceptives. Obstet Gynecol. 2009;114:616–22. https://doi.org/10.1097/AOG.0b013e3181b46f54.
Article
PubMed
Google Scholar
Brown BA, Kantesaria PP, McDevitt LM. Fingolimod: a novel immunosuppressant for multiple sclerosis. Ann Pharmacother. 2007;41(10):1660–8.
CAS
Article
PubMed
Google Scholar
Faissner S, Gold R. Efficacy and safety of the newer multiple sclerosis drugs approved since 2010. CNS Drugs. 2018;32:269–87. https://doi.org/10.1007/s40263-018-0488-6.
CAS
Article
PubMed
Google Scholar
Lu E, Wang BW, Alwan S, et al. A review of safety-related pregnancy data surrounding the oral disease-modifying drugs for multiple sclerosis. CNS Drugs. 2014;28:89–94. https://doi.org/10.1007/s40263-013-0131-5.
CAS
Article
PubMed
Google Scholar
Karlsson G, Francis G, Koren G, et al. Pregnancy outcomes in the clinical development program of fingolimod in multiple sclerosis. Neurology. 2014;82:674–80. https://doi.org/10.1212/WNL.0000000000000137.
Article
PubMed
PubMed Central
Google Scholar
Jones B. Multiple sclerosis: study reinforces need for contraception in women taking fingolimod. Nat Rev Neurol. 2014;10:125. https://doi.org/10.1038/nrneurol.2014.22.
Article
PubMed
Google Scholar
Alroughani R, Altintas A, Al Jumah M, et al. MS pregnancy and the use of disease-modifying therapies in patients with multiple sclerosis: benefits versus risks. Mult Scler Int. 2016;2016:1034912. https://doi.org/10.1155/2016/1034912.
CAS
Article
PubMed
PubMed Central
Google Scholar
Yoshii F, Moriya Y, Ohnuki T, et al. Neurological safety of fingolimod: an updated review. Clin Exp Neuroimmunol. 2017;8:233–43. https://doi.org/10.1111/cen3.12397.
Article
PubMed
PubMed Central
Google Scholar
Linker RA, Haghikia A. Dimethyl fumarate in multiple sclerosis: latest developments, evidence and place in therapy. Ther Adv Chronic Dis. 2016;7:198–207. https://doi.org/10.1177/2040622316653307.
CAS
Article
PubMed
PubMed Central
Google Scholar
Altmeyer PJ, Matthes U, Pawlak F, et al. Antipsoriatic effect of fumaric acid derivatives. Results of a multicenter double-blind study in 100 patients. J Am Acad Dermatol. 1994;30:977–81.
CAS
Article
PubMed
Google Scholar
Mills EA, Ogrodnik MA, Plave A, Mao-Draayer Y. Emerging understanding of the mechanism of action for dimethyl fumarate in the treatment of multiple sclerosis. Front Neurol. 2018;23:5. https://doi.org/10.3389/fneur.2018.00005.
Article
Google Scholar
Blewett MM, Xie J, Zaro BW, et al. Chemical proteomic map of dimethyl fumarate-sensitive cysteines in primary human T cells. Sci Signal. 2016;9:rs10. https://doi.org/10.1126/scisignal.aaf7694.
CAS
Article
PubMed
PubMed Central
Google Scholar
Gillard GO, Collette B, Anderson J, et al. DMF, but not other fumarates, inhibits NF-kappaB activity in vitro in an Nrf2-independent manner. J Neuroimmunol. 2015;283:74–85. https://doi.org/10.1016/j.jneuroim.2015.04.006.
CAS
Article
PubMed
Google Scholar
Gold R, Phillips JT, Havrdova E, et al. Delayed-release dimethyl fumarate and pregnancy: preclinical studies and pregnancy outcomes from clinical trials and postmarketing experience. Neurol Ther. 2015;4:93–104. https://doi.org/10.1007/s40120-015-0033-1.
Article
PubMed
PubMed Central
Google Scholar
Sheikh SI, Nestorov I, Russell H, et al. Tolerability and pharmacokinetics of delayed-release dimethyl fumarate administered with and without aspirin in healthy volunteers. Clin Ther. 2013;35(1582–1594):e9. https://doi.org/10.1016/j.clinthera.2013.08.009.
CAS
Article
Google Scholar
Fragoso YD, Brooks JB. Leflunomide and teriflunomide: altering the metabolism of pyrimidines for the treatment of autoimmune diseases. Expert Rev Clin Pharmacol. 2015;8:315–20. https://doi.org/10.1586/17512433.2015.119343.
CAS
Article
PubMed
Google Scholar
Cree BA. Update on reproductive safety of current and emerging disease-modifying therapies for multiple sclerosis. Mult Scler. 2013;19:835–43. https://doi.org/10.1177/1352458512471880.
CAS
Article
PubMed
Google Scholar
Fukushima R, Kanamori S, Hirashiba M, et al. Teratogenicity study of the dihydroorotate-dehydrogenase inhibitor and protein tyrosine kinase inhibitor leflunomide in mice. Reprod Toxicol. 2007;24:310–6.
CAS
Article
PubMed
Google Scholar
Fukushima R, Kanamori S, Hirashiba M, et al. Critical periods for the teratogenicity of immune-suppressant leflunomide in mice. Congenit Anom (Kyoto). 2009;49:20–6. https://doi.org/10.1111/j.1741-4520.2008.00217.x.
Article
Google Scholar
Kieseier BC, Benamor M. Pregnancy outcomes following maternal and paternal exposure to teriflunomide during treatment for relapsing-remitting multiple sclerosis. Neurol Ther. 2014;3(2):133–8.
Article
PubMed
PubMed Central
Google Scholar
Bérard A, Zhao JP, Shui I, et al. Leflunomide use during pregnancy and the risk of adverse pregnancy outcomes. Ann Rheum Dis. 2018;77:500–9. https://doi.org/10.1136/annrheumdis-2017-212078.
CAS
Article
PubMed
Google Scholar
Weber-Schoendorfer C, Beck E, Tissen-Diabaté T, et al. Leflunomide—a human teratogen? A still not answered question. An evaluation of the German Embryotox pharmacovigilance database. Reprod Toxicol. 2017;71:101–7. https://doi.org/10.1016/j.reprotox.2017.04.007.
CAS
Article
PubMed
Google Scholar
Robertson D, Dixon C, Aungst A, et al. Tolerability and efficacy of colestipol hydrochloride for accelerated elimination of teriflunomide. Expert Rev Clin Pharmacol. 2017;10:1403–7. https://doi.org/10.1080/17512433.2017.1395280.
CAS
Article
PubMed
Google Scholar
Freedman MS. Teriflunomide in relapsing multiple sclerosis: therapeutic utility. Ther Adv Chronic Dis. 2013;4:192–205. https://doi.org/10.1177/2040622313492810.
CAS
Article
PubMed
PubMed Central
Google Scholar
Leist TP, Weissert R. Cladribine: mode of action and implications for treatment of multiple sclerosis. Clin Neuropharmacol. 2011;34:28–35. https://doi.org/10.1097/WNF.0b013e318204cd90.
CAS
Article
PubMed
Google Scholar
Leist TP, Vermersch P. The potential role for cladribine in the treatment of multiple sclerosis: clinical experience and development of an oral tablet formulation. Curr Med Res Opin. 2007;23:2667–76. https://doi.org/10.1185/030079907X233142.
CAS
Article
PubMed
Google Scholar
Savic RM, Novakovic AM, Ekblom M, et al. Population pharmacokinetics of cladribine in patients with multiple sclerosis. Clin Pharmacokinet. 2017;56:1245–53. https://doi.org/10.1007/s40262-017-0516-6.
CAS
Article
PubMed
PubMed Central
Google Scholar
Mitosek-Szewczyk K, Stelmasiak Z, Bartosik-Psujek H, et al. Impact of cladribine on soluble adhesion molecules in multiple sclerosis. Acta Neurol Scand. 2010;122:409–13. https://doi.org/10.1111/j.1600-0404.2010.01330.x.
CAS
Article
PubMed
Google Scholar
Hartung H, Aktas O, Kieseier B, et al. Development of oral cladribine for the treatment of multiple sclerosis. J Neurol. 2010;257:163–70.
CAS
Article
PubMed
Google Scholar
Baker D, Herrod SS, Alvarez-Gonzalez C, et al. Both cladribine and alemtuzumab may effect MS via B-cell depletion. Neurol Neuroimmunol Neuroinflamm. 2017;4:e360. https://doi.org/10.1212/NXI.0000000000000360.
Article
PubMed
PubMed Central
Google Scholar
Azim HA Jr, Azim H, Peccatori FA. Treatment of cancer during pregnancy with monoclonal antibodies: a real challenge. Expert Rev Clin Immunol. 2010;6:821–6. https://doi.org/10.1586/eci.10.77.
Article
PubMed
Google Scholar
Saji F, Samejima Y, Kamiura S, et al. Dynamics of immunoglobulins at the feto-maternal interface. Rev Reprod. 1999;4:81–9.
CAS
Article
PubMed
Google Scholar
Pentsuk N, van der Laan JW. An interspecies comparison of placental antibody transfer: new insights into developmental toxicity testing of monoclonal antibodies. Birth Defects Res B Dev Reprod Toxicol. 2009;86:328–44. https://doi.org/10.1002/bdrb.20201.
CAS
Article
PubMed
Google Scholar
DeSesso JM, Williams AL, Ahuja A, et al. The placenta, transfer of immunoglobulins, and safety assessment of biopharmaceuticals in pregnancy. Crit Rev Toxicol. 2012;42:185–210. https://doi.org/10.3109/10408444.2011.653487.
CAS
Article
PubMed
Google Scholar
Hao L, Fang-Hong S, Shi-Ying H, et al. A review on clinical pharmacokinetics, pharmacodynamics, and pharmacogenomics of natalizumab: a humanized anti-alpha4 integrin monoclonal antibody. Curr Drug Metab. 2018. https://doi.org/10.2174/1389200219666180427165841 (E-pub).
Article
PubMed
Google Scholar
Rudick RA, Sandrock A. Natalizumab: alpha 4-integrin antagonist selective adhesion molecule inhibitors for MS. Expert Rev Neurother. 2004;4:571–80.
CAS
Article
PubMed
Google Scholar
Johnson KP. Natalizumab (Tysabri) treatment for relapsing multiple sclerosis. Neurologist. 2007;13:182–7.
Article
PubMed
Google Scholar
Zhovtis Ryerson L, Frohman TC, Foley J, et al. Extended interval dosing of natalizumab in multiple sclerosis. J Neurol Neurosurg Psychiatry. 2016;87:885–9. https://doi.org/10.1136/jnnp-2015-312940.
CAS
Article
PubMed
Google Scholar
Friend S, Richman S, Bloomgren G, et al. Evaluation of pregnancy outcomes from the Tysabri® (natalizumab) pregnancy exposure registry: a global, observational, follow-up study. BMC Neurol. 2016;16:150. https://doi.org/10.1186/s12883-016-0674-4.
Article
PubMed
PubMed Central
Google Scholar
Hellwig K, Haghikia A, Gold R. Pregnancy and natalizumab: results of an observational study in 35 accidental pregnancies during natalizumab treatment. Mult Scler J. 2011;17:958–63.
Article
Google Scholar
Ebrahimi N, Hebstritt S, Gold R, et al. Pregnancy and fetal outcomes following natalizumab exposure in pregnancy. A prospective, controlled observational study. Mult Scler J. 2015;21:198–205.
CAS
Article
Google Scholar
Portaccio E, Annovazzi P, Ghezzi A, et al. Pregnancy decision-making in women with multiple sclerosis treated with natalizumab. I: fetal risks. Neurology. 2018. https://doi.org/10.1212/WNL.0000000000005067.
Article
PubMed
Google Scholar
Portaccio E, Annovazzi P, Ghezzi A, et al. Pregnancy decision-making in women with multiple sclerosis treated with natalizumab. II: maternal risks. Neurology. 2018. https://doi.org/10.1212/WNL.0000000000005068.
Article
PubMed
Google Scholar
Haghikia A, Langer-Gould A, Rellensmann G, et al. Natalizumab use during the third trimester of pregnancy. JAMA Neurol. 2014;71:891–5.
Article
PubMed
Google Scholar
Guilloton L, Pegat A, Defrance J, et al. Neonatal pancytopenia in a child, born after maternal exposure to natalizumab throughout pregnancy. J Gynecol Obstet Hum Reprod. 2017;46:301–2. https://doi.org/10.1016/j.jogoh.2017.02.008.
CAS
Article
PubMed
Google Scholar
Schneider H, Weber CE, Hellwig K, et al. Natalizumab treatment during pregnancy—effects on the neonatal immune system. Acta Neurol Scand. 2013;127:e1–4. https://doi.org/10.1111/ane.12004.
CAS
Article
PubMed
Google Scholar
Kleerekooper I, Leurs CE, Dekker I, et al. Disease activity following pregnancy-related discontinuation of natalizumab in MS. Neurol Neuroimmunol Neuroinflamm. 2018;5:e424. https://doi.org/10.1212/NXI.0000000000000424.
Article
PubMed
Google Scholar
Kleinschmidt-DeMasters BK, Miravalle A, Schowinsky J, et al. Update on PML and PML-IRIS occurring in multiple sclerosis patients treated with natalizumab. J Neuropathol Exp Neurol. 2012;71:604–17. https://doi.org/10.1097/NEN.0b013e31825caf2c.
CAS
Article
PubMed
Google Scholar
Proschmann U, Thomas K, Thiel S, et al. Natalizumab during pregnancy and lactation. Mult Scler J. 2017. https://doi.org/10.1177/1352458517728813.
Article
Google Scholar
Baker TE, Cooper SD, Kessler L, et al. Transfer of natalizumab into breast milk in a mother with multiple sclerosis. J Hum Lact. 2015;31:233–6.
Article
PubMed
Google Scholar
Hale G, Bright S, Chumbley G, et al. Removal of T cells from bone marrow for transplantation: a monoclonal antilymphocyte antibody that fixes human complement. Blood. 1983;62:873–82.
CAS
PubMed
Google Scholar
Hale G, Swirsky D, Waldmann H, et al. Reactivity of rat monoclonal antibody CAMPATH-1 with human leukaemia cells and its possible application for autologous bone marrow transplantation. Br J Haematol. 1985;60:41–8.
CAS
Article
PubMed
Google Scholar
Domagała A, Kurpisz M. CD52 antigen—a review. Med Sci Monit. 2001;7:325–31.
PubMed
Google Scholar
Brown JW, Coles AJ. Alemtuzumab: evidence for its potential in relapsing-remitting multiple sclerosis. Drug Des Devel Ther. 2013;7:131–8. https://doi.org/10.2147/DDDT.S32687.
CAS
Article
PubMed
PubMed Central
Google Scholar
Moreau T, Coles A, Wing M, et al. CAMPATH-IH in multiple sclerosis. Mult Scler. 1996;1:357–65.
CAS
Article
PubMed
Google Scholar
Oh J, Achiron A, Chambers C, et al. Pregnancy outcomes in patients with RRMS who received alemtuzumab in the clinical development program. Neurology. 2016;86(S24):008.
Google Scholar
Mould DR, Baumann A, Kuhlmann J, et al. Population pharmacokinetics–pharmacodynamics of alemtuzumab (Campath) in patients with chronic lymphocytic leukaemia and its link to treatment response. Br J Clin Pharmacol. 2007;64:278–91.
CAS
Article
PubMed
PubMed Central
Google Scholar
Costelloe L, Jones J, Coles A. Secondary autoimmune diseases following alemtuzumab therapy for multiple sclerosis. Expert Rev Neurother. 2012;12:335–41. https://doi.org/10.1586/ern.12.5.
CAS
Article
PubMed
Google Scholar
Mahzari M, Arnaout A, Freedman MS. Alemtuzumab induced thyroid disease in multiple sclerosis: a review and approach to management. Can J Neurol Sci. 2015;42:284–91. https://doi.org/10.1017/cjn.2015.48.
Article
PubMed
Google Scholar
He D, Guo R, Zhang F, et al. Rituximab for relapsing-remitting multiple sclerosis. Cochrane Database Syst Rev. 2013;12:CD009130. https://doi.org/10.1002/14651858.cd009130.pub3.
Article
Google Scholar
Hauser SL, Waubant E, Arnold DL, et al. B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N Engl J Med. 2008;358:676–88. https://doi.org/10.1056/NEJMoa0706383.
CAS
Article
Google Scholar
Frau J, Coghe G, Lorefice L, et al. New horizons for multiple sclerosis therapeutics: milestones in the development of ocrelizumab. Neuropsychiatr Dis Treat. 2018;14:1093–9. https://doi.org/10.2147/NDT.S147874.
Article
PubMed
PubMed Central
Google Scholar
Vukusic S. An update on pregnancy outcomes following ocrelizumab treatment in patients with multiple sclerosis and other autoimmune diseases. Poster session presented at: ECTRIMS, 2017 Oct 25–28, Paris.
Chakravarty EF, Murray ER, Kelman A, et al. Pregnancy outcomes after maternal exposure to rituximab. Blood. 2011;117:1499–506. https://doi.org/10.1182/blood-2010-07-295444.
CAS
Article
PubMed
Google Scholar
Das G, Damotte V, Gelfand JM, et al. Rituximab before and during pregnancy: a systematic review, and a case series in MS and NMOSD. Neurol Neuroimmunol Neuroinflamm. 2018;5:e453. https://doi.org/10.1212/NXI.0000000000000453.
Article
PubMed
PubMed Central
Google Scholar
Golay J, Semenzato G, Rambaldi A, et al. Lessons for the clinic from rituximab pharmacokinetics and pharmacodynamics. MAbs. 2013;5:826–37. https://doi.org/10.4161/mabs.26008.
Article
PubMed
PubMed Central
Google Scholar
Stahnke AM, Holt KM. Ocrelizumab: a new B-cell therapy for relapsing remitting and primary progressive multiple sclerosis. Ann Pharmacother. 2018;52:473–83. https://doi.org/10.1177/1060028017747635.
CAS
Article
PubMed
Google Scholar
Mandal PK, Dolai TK, Bagchi B, et al. B cell suppression in newborn following treatment of pregnant diffuse large B-cell lymphoma patient with rituximab containing regimen. Indian J Pediatr. 2014;81(10):1092–4. https://doi.org/10.1007/s12098-013-1336-9.
Article
PubMed
Google Scholar
Vaidyanathan A, McKeever K, Anand B, et al. Developmental immunotoxicology assessment of rituximab in cynomolgus monkeys. Toxicol Sci. 2011;119:116–25. https://doi.org/10.1093/toxsci/kfq316.
CAS
Article
PubMed
Google Scholar