Skip to main content
Log in

Efficacy and Safety of the Newer Multiple Sclerosis Drugs Approved Since 2010

  • Review Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

A Correction to this article was published on 24 May 2018

This article has been updated

Abstract

Multiple sclerosis treatment faces tremendous changes as a result of the approval of new medications. The new medications have differing safety considerations and risks after long-term treatment, which are important for treating physicians to optimize and individualize multiple sclerosis care. Since the approval of the first multiple sclerosis capsule, fingolimod, the armamentarium of multiple sclerosis therapy has grown with the orally available medications dimethyl fumarate and teriflunomide. Fingolimod is mainly associated with cardiac side effects, dimethyl fumarate with bowel symptoms. Several reports about progressive multifocal leukoencephalopathy as a result of dimethyl fumarate or fingolimod therapy raised the awareness of fatal opportunistic infections. Alemtuzumab, a CD52-depleting antibody, is highly effective in reducing relapses but leads to secondary immunity with mainly thyroid disorders in about 30% of patients. Development of secondary B-cell-mediated disease might also be a risk of this antibody. The follow-up drug of the B-cell-depleting antibody rituximab, ocrelizumab, is mainly associated with infusion-related reactions; long-term data are scarce. The medication daclizumab high yield process, acting via the activation of CD56bright natural killer cells, can induce the elevation of liver function enzymes, but also fulminant liver failure has been reported. Therefore, daclizumab has been retracted from the market. Long-term data on the purine nucleoside cladribine in MS therapy, recently authorized in the European Union, have been acquired during the long-term follow-up of the cladribine studies. The small molecule laquinimod is currently under development. We review data of clinical trials and their extensions regarding long-term efficacy and side effects, which might be associated with long-term treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 24 May 2018

    An error was subsequently identified in the article, and the following correction should be noted.

References

  1. Kutzelnigg A, Lassmann H. Pathology of multiple sclerosis and related inflammatory demyelinating diseases. Handb Clin Neurol. 2014;122:15–58.

    Article  PubMed  Google Scholar 

  2. Cotsapas C, Hafler DA. Immune-mediated disease genetics: the shared basis of pathogenesis. Trends Immunol. 2013;34(1):22–6.

    Article  PubMed  CAS  Google Scholar 

  3. Sawcer S, Ban M, Maranian M, Yeo TW, Compston A, Kirby A, et al. A high-density screen for linkage in multiple sclerosis. Am J Hum Genet. 2005;77(3):454–67.

    Article  PubMed  Google Scholar 

  4. Ransohoff RM, Hafler DA, Lucchinetti CF. Multiple sclerosis: a quiet revolution. Nat Rev Neurol. 2015;11(3):134–42.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hunter SF, Bowen JD, Reder AT. The direct effects of fingolimod in the central nervous system: implications for relapsing multiple sclerosis. CNS Drugs. 2016;30(2):135–47.

    Article  PubMed  CAS  Google Scholar 

  6. Noda H, Takeuchi H, Mizuno T, Suzumura A. Fingolimod phosphate promotes the neuroprotective effects of microglia. J Neuroimmunol. 2013;256(1–2):13–8.

    Article  PubMed  CAS  Google Scholar 

  7. Slowik A, Schmidt T, Beyer C, Amor S, Clarner T, Kipp M. The sphingosine 1-phosphate receptor agonist FTY720 is neuroprotective after cuprizone-induced CNS demyelination. Br J Pharmacol. 2015;172(1):80–92.

    Article  PubMed  CAS  Google Scholar 

  8. Kappos L, Radue EW, O’Connor P, Polman C, Hohlfeld R, Calabresi P, et al. A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N Engl J Med. 2010;362(5):387–401.

    Article  PubMed  CAS  Google Scholar 

  9. Cohen JA, Barkhof F, Comi G, Hartung HP, Khatri BO, Montalban X, et al. Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N Engl J Med. 2010;362(5):402–15.

    Article  PubMed  CAS  Google Scholar 

  10. Kappos L, O’Connor P, Radue EW, Polman C, Hohlfeld R, Selmaj K, et al. Long-term effects of fingolimod in multiple sclerosis: the randomized FREEDOMS extension trial. Neurology. 2015;84(15):1582–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Montalban X, Comi G, Antel J, O’Connor P, de Vera A, Cremer M, et al. Long-term results from a phase 2 extension study of fingolimod at high and approved dose in relapsing multiple sclerosis. J Neurol. 2015;262(12):2627–34.

    Article  PubMed  Google Scholar 

  12. Cohen JA, Khatri B, Barkhof F, Comi G, Hartung HP, Montalban X, et al. Long-term (up to 4.5 years) treatment with fingolimod in multiple sclerosis: results from the extension of the randomised TRANSFORMS study. J Neurol Neurosurg Psychiatry. 2016;87(5):468–75.

    Article  PubMed  Google Scholar 

  13. Saida T, Itoyama Y, Kikuchi S, Hao Q, Kurosawa T, Ueda K, et al. Long-term efficacy and safety of fingolimod in Japanese patients with relapsing multiple sclerosis: 3-year results of the phase 2 extension study. BMC Neurol. 2017;17(1):17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Rojas JI, Patrucco L, Miguez J, Cristiano E. Real-world safety and patient profile of fingolimod in relapsing-remitting multiple sclerosis: a prospective analysis in Buenos Aires, Argentina. Clin Neuropharmacol. 2017;40(6):251–4.

    Article  PubMed  CAS  Google Scholar 

  15. Izquierdo G, Damas F, Paramo MD, Ruiz-Pena JL, Navarro G. The real-world effectiveness and safety of fingolimod in relapsing-remitting multiple sclerosis patients: an observational study. PloS One. 2017;12(4):e0176174.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Berger JR. Classifying PML risk with disease modifying therapies. Mult Scler Relat Disord. 2017;12:59–63.

    Article  PubMed  Google Scholar 

  17. Plavina T, Subramanyam M, Bloomgren G, Richman S, Pace A, Lee S, et al. Anti-JC virus antibody levels in serum or plasma further define risk of natalizumab-associated progressive multifocal leukoencephalopathy. Ann Neurol. 2014;76(6):802–12.

    Article  PubMed  CAS  Google Scholar 

  18. Ho PR, Koendgen H, Campbell N, Haddock B, Richman S, Chang I. Risk of natalizumab-associated progressive multifocal leukoencephalopathy in patients with multiple sclerosis: a retrospective analysis of data from four clinical studies. Lancet Neurol. 2017;16(11):925–33.

    Article  PubMed  CAS  Google Scholar 

  19. Ziemssen T, Kern R, Cornelissen C. The PANGAEA study design: a prospective, multicenter, non-interventional, long-term study on fingolimod for the treatment of multiple sclerosis in daily practice. BMC Neurol. 2015;15:93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Selmaj K, Li DK, Hartung HP, Hemmer B, Kappos L, Freedman MS, et al. Siponimod for patients with relapsing-remitting multiple sclerosis (BOLD): an adaptive, dose-ranging, randomised, phase 2 study. Lancet Neurol. 2013;12(8):756–67.

    Article  PubMed  CAS  Google Scholar 

  21. Kappos L, Li DK, Stuve O, Hartung HP, Freedman MS, Hemmer B, et al. Safety and efficacy of siponimod (BAF312) in patients with relapsing-remitting multiple sclerosis: dose-blinded, randomized extension of the Phase 2 BOLD Study. JAMA Neurol. 2016;73(9):1089–98.

    Article  PubMed  Google Scholar 

  22. Linker RA, Lee DH, Ryan S, van Dam AM, Conrad R, Bista P, et al. Fumaric acid esters exert neuroprotective effects in neuroinflammation via activation of the Nrf2 antioxidant pathway. Brain. 2011;134(Pt 3):678–92.

    Article  PubMed  Google Scholar 

  23. Gross CC, Schulte-Mecklenbeck A, Klinsing S, Posevitz-Fejfar A, Wiendl H, Klotz L. Dimethyl fumarate treatment alters circulating T helper cell subsets in multiple sclerosis. Neurol Neuroimmunol Neuroinflamm. 2016;3(1):e183.

    Article  PubMed  Google Scholar 

  24. Li R, Rezk A, Ghadiri M, Luessi F, Zipp F, Li H, et al. Dimethyl fumarate treatment mediates an anti-inflammatory shift in B cell subsets of patients with multiple sclerosis. J Immunol. 2017;198(2):691–8.

    Article  PubMed  CAS  Google Scholar 

  25. Parodi B, Rossi S, Morando S, Cordano C, Bragoni A, Motta C, et al. Fumarates modulate microglia activation through a novel HCAR2 signaling pathway and rescue synaptic dysregulation in inflamed CNS. Acta Neuropathol. 2015;130(2):279–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Schimrigk S, Brune N, Hellwig K, Lukas C, Bellenberg B, Rieks M, et al. Oral fumaric acid esters for the treatment of active multiple sclerosis: an open-label, baseline-controlled pilot study. Eur J Neurol. 2006;13(6):604–10.

    Article  PubMed  CAS  Google Scholar 

  27. Gold R, Kappos L, Arnold DL, Bar-Or A, Giovannoni G, Selmaj K, et al. Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis. N Engl J Med. 2012;367(12):1098–107.

    Article  PubMed  CAS  Google Scholar 

  28. Fox RJ, Miller DH, Phillips JT, Hutchinson M, Havrdova E, Kita M, et al. Placebo-controlled phase 3 study of oral BG-12 or glatiramer in multiple sclerosis. N Engl J Med. 2012;367(12):1087–97.

    Article  PubMed  CAS  Google Scholar 

  29. Gold R, Arnold DL, Bar-Or A, Hutchinson M, Kappos L, Havrdova E, et al. Long-term effects of delayed-release dimethyl fumarate in multiple sclerosis: interim analysis of ENDORSE, a randomized extension study. Mult Scler. 2017;23(2):253–65.

    Article  PubMed  CAS  Google Scholar 

  30. Marrie RA, Reider N, Cohen J, Stuve O, Trojano M, Sorensen PS, et al. A systematic review of the incidence and prevalence of cancer in multiple sclerosis. Mult Scler. 2015;21(3):294–304.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Rosenkranz T, Novas M, Terborg C. PML in a patient with lymphocytopenia treated with dimethyl fumarate. N Engl J Med. 2015;372(15):1476–8.

    Article  PubMed  Google Scholar 

  32. Alroughani R, Ahmed SF, Behbehani R, Al-Hashel J. Effectiveness and safety of dimethyl fumarate treatment in relapsing multiple sclerosis patients: real-world evidence. Neurol Ther. 2017;6(2):189–96.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Miclea A, Leussink VI, Hartung HP, Gold R, Hoepner R. Safety and efficacy of dimethyl fumarate in multiple sclerosis: a multi-center observational study. J Neurol. 2016;263(8):1626–32.

    Article  PubMed  CAS  Google Scholar 

  34. Fox RJ, Chan A, Gold R, Phillips JT, Selmaj K, Chang I, et al. Characterizing absolute lymphocyte count profiles in dimethyl fumarate-treated patients with MS: patient management considerations. Neurol Clin Pract. 2016;6(3):220–9.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ermis U, Weis J, Schulz JB. PML in a patient treated with fumaric acid. N Engl J Med. 2013;368(17):1657–8.

    Article  PubMed  CAS  Google Scholar 

  36. van Oosten BW, Killestein J, Barkhof F, Polman CH, Wattjes MP. PML in a patient treated with dimethyl fumarate from a compounding pharmacy. N Engl J Med. 2013;368(17):1658–9.

    Article  PubMed  CAS  Google Scholar 

  37. Stoppe M, Thoma E, Liebert UG, Major EO, Hoffmann KT, Classen J, et al. Cerebellar manifestation of PML under fumarate and after efalizumab treatment of psoriasis. J Neurol. 2014;261(5):1021–4.

    Article  PubMed  Google Scholar 

  38. Nieuwkamp DJ, Murk JL, van Oosten BW, Cremers CH, Killestein J, Viveen MC, et al. PML in a patient without severe lymphocytopenia receiving dimethyl fumarate. N Engl J Med. 2015;372(15):1474–6.

    Article  PubMed  CAS  Google Scholar 

  39. Hoepner R, Faissner S, Klasing A, Schneider R, Metz I, Bellenberg B, et al. Progressive multifocal leukoencephalopathy during fumarate monotherapy of psoriasis. Neurol Neuroimmunol Neuroinflamm. 2015;2(3):e85.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Li L, Liu J, Delohery T, Zhang D, Arendt C, Jones C. The effects of teriflunomide on lymphocyte subpopulations in human peripheral blood mononuclear cells in vitro. J Neuroimmunol. 2013;265(1–2):82–90.

    Article  PubMed  CAS  Google Scholar 

  41. Ringheim GE, Lee L, Laws-Ricker L, Delohery T, Liu L, Zhang D, et al. Teriflunomide attenuates immunopathological changes in the dark agouti rat model of experimental autoimmune encephalomyelitis. Front Neurol. 2013;4:169.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wostradowski T, Prajeeth CK, Gudi V, Kronenberg J, Witte S, Brieskorn M, et al. In vitro evaluation of physiologically relevant concentrations of teriflunomide on activation and proliferation of primary rodent microglia. J Neuroinflamm. 2016;13(1):250.

    Article  CAS  Google Scholar 

  43. O’Connor P, Wolinsky JS, Confavreux C, Comi G, Kappos L, Olsson TP, et al. Randomized trial of oral teriflunomide for relapsing multiple sclerosis. N Engl J Med. 2011;365(14):1293–303.

    Article  PubMed  Google Scholar 

  44. Radue EW, Sprenger T, Gaetano L, Mueller-Lenke N, Cavalier S, Thangavelu K, et al. Teriflunomide slows BVL in relapsing MS: a reanalysis of the TEMSO MRI data set using SIENA. Neurol Neuroimmunol Neuroinflamm. 2017;4(5):e390.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Freedman MS, Wolinsky JS, Wamil B, Confavreux C, Comi G, Kappos L, et al. Teriflunomide added to interferon-beta in relapsing multiple sclerosis: a randomized phase II trial. Neurology. 2012;78(23):1877–85.

    Article  PubMed  CAS  Google Scholar 

  46. Confavreux C, Li DK, Freedman MS, Truffinet P, Benzerdjeb H, Wang D, et al. Long-term follow-up of a phase 2 study of oral teriflunomide in relapsing multiple sclerosis: safety and efficacy results up to 8.5 years. Mult Scler. 2012;18(9):1278–89.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. O’Connor P, Comi G, Freedman MS, Miller AE, Kappos L, Bouchard JP, et al. Long-term safety and efficacy of teriflunomide: nine-year follow-up of the randomized TEMSO study. Neurology. 2016;86(10):920–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Elkjaer ML, Molnar T, Illes Z. Teriflunomide for multiple sclerosis in real-world setting. Acta Neurol Scand. 2017;136(5):447–53.

    Article  PubMed  CAS  Google Scholar 

  49. Comi G, Freedman MS, Kappos L, Olsson TP, Miller AE, Wolinsky JS, et al. Pooled safety and tolerability data from four placebo-controlled teriflunomide studies and extensions. Mult Scler Relat Disord. 2016;5:97–104.

    Article  PubMed  Google Scholar 

  50. Kieseier BC, Benamor M. Pregnancy outcomes following maternal and paternal exposure to teriflunomide during treatment for relapsing-remitting multiple sclerosis. Neurol Ther. 2014;3(2):133–8.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Garcia-Enguidanos A, Calle ME, Valero J, Luna S, Dominguez-Rojas V. Risk factors in miscarriage: a review. Eur J Obstet Gynecol Reprod Biol. 2002;102(2):111–9.

    Article  PubMed  CAS  Google Scholar 

  52. Bar-Or A, Wiendl H, Miller B, Benamor M, Truffinet P, Church M, et al. Randomized study of teriflunomide effects on immune responses to neoantigen and recall antigens. Neurol Neuroimmunol Neuroinflamm. 2015;2(2):e70.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Bar-Or A, Freedman MS, Kremenchutzky M, Menguy-Vacheron F, Bauer D, Jodl S, et al. Teriflunomide effect on immune response to influenza vaccine in patients with multiple sclerosis. Neurology. 2013;81(6):552–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Beutler E. Cladribine (2-chlorodeoxyadenosine). Lancet. 1992;340(8825):952–6.

    Article  PubMed  CAS  Google Scholar 

  55. Singh V, Voss EV, Benardais K, Stangel M. Effects of 2-chlorodeoxyadenosine (cladribine) on primary rat microglia. J Neuroimmune Pharmacol. 2012;7(4):939–50.

    Article  PubMed  Google Scholar 

  56. Mitosek-Szewczyk K, Tabarkiewicz J, Wilczynska B, Lobejko K, Berbecki J, Nastaj M, et al. Impact of cladribine therapy on changes in circulating dendritic cell subsets, T cells and B cells in patients with multiple sclerosis. J Neurol Sci. 2013;332(1–2):35–40.

    Article  PubMed  CAS  Google Scholar 

  57. Pakpoor J, Disanto G, Altmann DR, Pavitt S, Turner BP, Marta M, et al. No evidence for higher risk of cancer in patients with multiple sclerosis taking cladribine. Neurol Neuroimmunol Neuroinflamm. 2015;2(6):e158.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Giovannoni G, Comi G, Cook S, Rammohan K, Rieckmann P, Soelberg Sorensen P, et al. A placebo-controlled trial of oral cladribine for relapsing multiple sclerosis. N Engl J Med. 2010;362(5):416–26.

    Article  PubMed  CAS  Google Scholar 

  59. Cook S, Vermersch P, Comi G, Giovannoni G, Rammohan K, Rieckmann P, et al. Safety and tolerability of cladribine tablets in multiple sclerosis: the CLARITY (CLAdRIbine Tablets treating multiple sclerosis orallY) study. Mult Scler. 2011;17(5):578–93.

    Article  PubMed  CAS  Google Scholar 

  60. De Stefano N, Giorgio A, Battaglini M, De Leucio A, Hicking C, Dangond F, et al. Reduced brain atrophy rates are associated with lower risk of disability progression in patients with relapsing multiple sclerosis treated with cladribine tablets. Mult Scler. 2017;1:1352458517690269. https://doi.org/10.1177/1352458517690269.

    Article  Google Scholar 

  61. Leist TP, Comi G, Cree BA, Coyle PK, Freedman MS, Hartung HP, et al. Effect of oral cladribine on time to conversion to clinically definite multiple sclerosis in patients with a first demyelinating event (ORACLE MS): a phase 3 randomised trial. Lancet Neurol. 2014;13(3):257–67.

    Article  PubMed  CAS  Google Scholar 

  62. Aletti M, Faivre A, Wybrecht D, Couturier C, Bounolleau P, Alla P. Progressive multifocal leukoencephalopathy after cladribine treatment for hairy cell leukemia. Neurology. 2011;76:A28.

    Google Scholar 

  63. Berghoff M, Schanzer A, Hildebrandt GC, Dassinger B, Klappstein G, Kaps M, et al. Development of progressive multifocal leukoencephalopathy in a patient with non-Hodgkin lymphoma 13 years after treatment with cladribine. Leuk Lymphoma. 2013;54(6):1340–2.

    Article  PubMed  Google Scholar 

  64. Alstadhaug KB, Fykse Halstensen R, Odeh F. Progressive multifocal leukoencephalopathy in a patient with systemic mastocytosis treated with cladribine. J Clin Virol. 2016;88:17–20.

    Article  PubMed  Google Scholar 

  65. Giovannoni G, Comi G, Cook S, Rammohan K, Rieckmann P, Soelberg-Sorensen P, et al. Durable efficacy of cladribine tablets in patients with multiple sclerosis: analysis of relapse rates and relapse-free patients in the CLARITY and CLARITY Extension studies. ECTRIMS Online Library. 2016;16:147011.

    Google Scholar 

  66. Giovannoni G, Montalban X, Hicking C, Dangond F. Benefits of cladribine tablets on the achievement of no evidence of disease activity (NEDA) status in patients with multiple sclerosis: analysis of pooled double-blind data from the CLARITY and ONWARD studies. ECTRIMS Online Library. 2016;15:146481.

    Google Scholar 

  67. Kramann N, Menken L, Hayardeny L, Hanisch UK, Bruck W. Laquinimod prevents cuprizone-induced demyelination independent of Toll-like receptor signaling. Neurol Neuroimmunol Neuroinflamm. 2016;3(3):e233.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Jolivel V, Luessi F, Masri J, Kraus SH, Hubo M, Poisa-Beiro L, et al. Modulation of dendritic cell properties by laquinimod as a mechanism for modulating multiple sclerosis. Brain. 2013;136(Pt 4):1048–66.

    Article  PubMed  Google Scholar 

  69. Runstrom A, Leanderson T, Ohlsson L, Axelsson B. Inhibition of the development of chronic experimental autoimmune encephalomyelitis by laquinimod (ABR-215062) in IFN-beta k.o. and wild type mice. J Neuroimmunol. 2006;173(1–2):69–78.

    Article  PubMed  CAS  Google Scholar 

  70. Kaye J, Piryatinsky V, Birnberg T, Hingaly T, Raymond E, Kashi R, et al. Laquinimod arrests experimental autoimmune encephalomyelitis by activating the aryl hydrocarbon receptor. Proc Natl Acad Sci USA. 2016;113(41):E6145–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Mishra MK, Wang J, Keough MB, Fan Y, Silva C, Sloka S, et al. Laquinimod reduces neuroaxonal injury through inhibiting microglial activation. Ann Clin Transl Neurol. 2014;1(6):409–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Ehrnhoefer DE, Caron NS, Deng Y, Qiu X, Tsang M, Hayden MR. Laquinimod decreases Bax expression and reduces caspase-6 activation in neurons. Exp Neurol. 2016;283(Pt A):121–8.

    Article  PubMed  CAS  Google Scholar 

  73. Garcia-Miralles M, Hong X, Tan LJ, Caron NS, Huang Y, To XV, et al. Laquinimod rescues striatal, cortical and white matter pathology and results in modest behavioural improvements in the YAC128 model of Huntington disease. Sci Rep. 2016;6:31652.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Comi G, Jeffery D, Kappos L, Montalban X, Boyko A, Rocca MA, et al. Placebo-controlled trial of oral laquinimod for multiple sclerosis. N Engl J Med. 2012;366(11):1000–9.

    Article  PubMed  CAS  Google Scholar 

  75. Vollmer TL, Sorensen PS, Selmaj K, Zipp F, Havrdova E, Cohen JA, et al. A randomized placebo-controlled phase III trial of oral laquinimod for multiple sclerosis. J Neurol. 2014;261(4):773–83.

    Article  PubMed  CAS  Google Scholar 

  76. Sorensen PS, Comi G, Vollmer TL, Montalban X, Kappos L, Dadon Y, et al. Laquinimod safety profile: pooled analyses from the ALLEGRO and BRAVO trials. Int J MS Care. 2017;19(1):16–24.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Hu X, Miller L, Richman S, Hitchman S, Glick G, Liu S, et al. A novel PEGylated interferon beta-1a for multiple sclerosis: safety, pharmacology, and biology. J Clin Pharmacol. 2012;52(6):798–808.

    Article  PubMed  CAS  Google Scholar 

  78. Calabresi PA, Kieseier BC, Arnold DL, Balcer LJ, Boyko A, Pelletier J, et al. Pegylated interferon beta-1a for relapsing-remitting multiple sclerosis (ADVANCE): a randomised, phase 3, double-blind study. Lancet Neurol. 2014;13(7):657–65.

    Article  PubMed  CAS  Google Scholar 

  79. Arnold DL, Calabresi PA, Kieseier BC, Liu S, You X, Fiore D, et al. Peginterferon beta-1a improves MRI measures and increases the proportion of patients with no evidence of disease activity in relapsing-remitting multiple sclerosis: 2-year results from the ADVANCE randomized controlled trial. BMC Neurol. 2017;17(1):29.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Arnold DL, You X, Castrillo-Viguera C. Peginterferon beta-1a reduces the evolution of MRI lesions to black holes in patients with RRMS: a post hoc analysis from the ADVANCE study. J Neurol. 2017;264(8):1728–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Malek TR. The biology of interleukin-2. Annu Rev Immunol. 2008;26:453–79.

    Article  PubMed  CAS  Google Scholar 

  82. Bielekova B. Daclizumab therapy for multiple sclerosis. Neurotherapeutics. 2013;10(1):55–67.

    Article  PubMed  CAS  Google Scholar 

  83. Bielekova B, Catalfamo M, Reichert-Scrivner S, Packer A, Cerna M, Waldmann TA, et al. Regulatory CD56(bright) natural killer cells mediate immunomodulatory effects of IL-2Ralpha-targeted therapy (daclizumab) in multiple sclerosis. Proc Natl Acad Sci USA. 2006;103(15):5941–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Martin JF, Perry JS, Jakhete NR, Wang X, Bielekova B. An IL-2 paradox: blocking CD25 on T cells induces IL-2-driven activation of CD56(bright) NK cells. J Immunol. 2010;185(2):1311–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Gold R, Giovannoni G, Selmaj K, Havrdova E, Montalban X, Radue EW, et al. Daclizumab high-yield process in relapsing-remitting multiple sclerosis (SELECT): a randomised, double-blind, placebo-controlled trial. Lancet. 2013;381(9884):2167–75.

    Article  PubMed  CAS  Google Scholar 

  86. Kappos L, Wiendl H, Selmaj K, Arnold DL, Havrdova E, Boyko A, et al. Daclizumab HYP versus interferon beta-1a in relapsing multiple sclerosis. N Engl J Med. 2015;373(15):1418–28.

    Article  PubMed  CAS  Google Scholar 

  87. Liu Y, Vollmer T, Havrdova E, Riester K, Lee A, Phillips G, et al. Impact of daclizumab versus interferon beta-1a on patient-reported outcomes in relapsing-remitting multiple sclerosis. Mult Scler Relat Disord. 2017;11:18–24.

    Article  PubMed  Google Scholar 

  88. Benedict RH, Cohan S, Lynch SG, Riester K, Wang P, Castro-Borrero W, et al. Improved cognitive outcomes in patients with relapsing-remitting multiple sclerosis treated with daclizumab beta: results from the DECIDE study. 2017. https://doi.org/10.1177/1352458517707345.

    Article  Google Scholar 

  89. Radue EW, Sprenger T, Vollmer T, Giovannoni G, Gold R, Havrdova E, et al. Daclizumab high-yield process reduced the evolution of new gadolinium-enhancing lesions to T1 black holes in patients with relapsing-remitting multiple sclerosis. Eur J Neurol. 2016;23(2):412–5.

    Article  PubMed  Google Scholar 

  90. Gold R, Radue EW, Giovannoni G, Selmaj K, Havrdova E, Stefoski D, et al. Safety and efficacy of daclizumab in relapsing-remitting multiple sclerosis: 3-year results from the SELECTED open-label extension study. BMC Neurol. 2016;16:117.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Gold R, Stefoski D, Selmaj K, Havrdova E, Hurst C, Holman J, et al. Pregnancy experience: nonclinical studies and pregnancy outcomes in the Daclizumab Clinical Study Program. Neurol Ther. 2016;5(2):169–82.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Mehta L, Umans K, Ozen G, Robinson RR, Elkins J. Immune response to seasonal influenza vaccine in patients with relapsing-remitting multiple sclerosis receiving long-term daclizumab beta: a prospective, open-label, single-arm study. Int J MS Care. 2017;19(3):141–7.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Cortese I, Ohayon J, Fenton K, Lee CC, Raffeld M, Cowen EW, et al. Cutaneous adverse events in multiple sclerosis patients treated with daclizumab. Neurology. 2016;86(9):847–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Giovannoni G, Kappos L, Gold R, Khatri BO, Selmaj K, Umans K, et al. Safety and tolerability profile of daclizumab in patients with relapsing-remitting multiple sclerosis: an integrated analysis of clinical studies. Mult Scler Relat Disord. 2016;9:36–46.

    Article  PubMed  Google Scholar 

  95. Ruck T, Bittner S, Wiendl H, Meuth SG. Alemtuzumab in multiple sclerosis: mechanism of action and beyond. Int J Mol Sci. 2015;16(7):16414–39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Coles AJ, Compston DA, Selmaj KW, Lake SL, Moran S, Margolin DH, et al. Alemtuzumab vs. interferon beta-1a in early multiple sclerosis. N Engl J Med. 2008;359(17):1786–801.

    Article  PubMed  Google Scholar 

  97. Coles AJ, Twyman CL, Arnold DL, Cohen JA, Confavreux C, Fox EJ, et al. Alemtuzumab for patients with relapsing multiple sclerosis after disease-modifying therapy: a randomised controlled phase 3 trial. Lancet. 2012;380(9856):1829–39.

    Article  PubMed  CAS  Google Scholar 

  98. Cohen JA, Coles AJ, Arnold DL, Confavreux C, Fox EJ, Hartung HP, et al. Alemtuzumab versus interferon beta 1a as first-line treatment for patients with relapsing-remitting multiple sclerosis: a randomised controlled phase 3 trial. Lancet. 2012;380(9856):1819–28.

    Article  PubMed  CAS  Google Scholar 

  99. Coles AJ, Fox E, Vladic A, Gazda SK, Brinar V, Selmaj KW, et al. Alemtuzumab more effective than interferon beta-1a at 5-year follow-up of CAMMS223 clinical trial. Neurology. 2012;78(14):1069–78.

    Article  PubMed  CAS  Google Scholar 

  100. Ranganathan U, Kaunzner U, Foster S, Vartanian T, Perumal JS. Immediate transient thrombocytopenia at the time of alemtuzumab infusion in multiple sclerosis. Mult Scler. 2017. https://doi.org/10.1177/1352458517699876.

    Article  PubMed  Google Scholar 

  101. Haghikia A, Dendrou CA, Schneider R, Gruter T, Postert T, Matzke M, et al. Severe B-cell-mediated CNS disease secondary to alemtuzumab therapy. Lancet Neurol. 2017;16(2):104–6.

    Article  PubMed  Google Scholar 

  102. Barton J, Hardy TA, Riminton S, Reddel SW, Barnett Y, Coles A, et al. Tumefactive demyelination following treatment for relapsing multiple sclerosis with alemtuzumab. Neurology. 2017;88(10):1004–6.

    Article  PubMed  Google Scholar 

  103. Thompson SA, Jones JL, Cox AL, Compston DA, Coles AJ. B-cell reconstitution and BAFF after alemtuzumab (Campath-1H) treatment of multiple sclerosis. J Clin Immunol. 2010;30(1):99–105.

    Article  PubMed  CAS  Google Scholar 

  104. von Kutzleben S, Pryce G, Giovannoni G, Baker D. Depletion of CD52-positive cells inhibits the development of central nervous system autoimmune disease, but deletes an immune-tolerance promoting CD8 T-cell population: implications for secondary autoimmunity of alemtuzumab in multiple sclerosis. Immunology. 2017;150(4):444–55.

    Article  CAS  Google Scholar 

  105. Baker D, Herrod SS, Alvarez-Gonzalez C, Giovannoni G, Schmierer K. Interpreting lymphocyte reconstitution data from the pivotal phase 3 trials of alemtuzumab. JAMA Neurol. 2017;74(8):961–9.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Willis M, Pearson O, Illes Z, Sejbaek T, Nielsen C, Duddy M, et al. An observational study of alemtuzumab following fingolimod for multiple sclerosis. Neurol Neuroimmunol Neuroinflamm. 2017;4(2):e320.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Yann K, Jackson F, Sharaf N, Mihalova T, Talbot P, Rog D, et al. Acute respiratory distress syndrome following alemtuzumab therapy for relapsing multiple sclerosis. Mult Scler Relat Disord. 2017;14:1–3.

    Article  PubMed  Google Scholar 

  108. Sheikh-Taha M, Corman LC. Pulmonary Nocardia beijingensis infection associated with the use of alemtuzumab in a patient with multiple sclerosis. Mult Scler. 2017;23(6):872–4.

    Article  PubMed  Google Scholar 

  109. Holmoy T, von der Lippe H, Leegaard TM. Listeria monocytogenes infection associated with alemtuzumab: a case for better preventive strategies. BMC Neurol. 2017;17(1):65.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Hauser SL, Waubant E, Arnold DL, Vollmer T, Antel J, Fox RJ, et al. B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N Engl J Med. 2008;358(7):676–88.

    Article  PubMed  CAS  Google Scholar 

  111. Salzer J, Svenningsson R, Alping P, Novakova L, Bjorck A, Fink K, et al. Rituximab in multiple sclerosis: a retrospective observational study on safety and efficacy. Neurology. 2016;87(20):2074–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Naismith RT, Piccio L, Lyons JA, Lauber J, Tutlam NT, Parks BJ, et al. Rituximab add-on therapy for breakthrough relapsing multiple sclerosis: a 52-week phase II trial. Neurology. 2010;74(23):1860–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Hawker K, O’Connor P, Freedman MS, Calabresi PA, Antel J, Simon J, et al. Rituximab in patients with primary progressive multiple sclerosis: results of a randomized double-blind placebo-controlled multicenter trial. Ann Neurol. 2009;66(4):460–71.

    Article  PubMed  CAS  Google Scholar 

  114. Topping J, Dobson R, Lapin S, Maslyanskiy A, Kropshofer H, Leppert D, et al. The effects of intrathecal rituximab on biomarkers in multiple sclerosis. Mult Scler Relat Disord. 2016;6:49–53.

    Article  PubMed  Google Scholar 

  115. Dunn N, Juto A, Ryner M, Manouchehrinia A, Piccoli L, Fink K, et al. Rituximab in multiple sclerosis: frequency and clinical relevance of anti-drug antibodies. Mult Scler. 2017. https://doi.org/10.1177/1352458517720044.

    Article  PubMed  Google Scholar 

  116. DiLillo DJ, Hamaguchi Y, Ueda Y, Yang K, Uchida J, Haas KM, et al. Maintenance of long-lived plasma cells and serological memory despite mature and memory B cell depletion during CD20 immunotherapy in mice. J Immunol. 2008;180(1):361–71.

    Article  PubMed  CAS  Google Scholar 

  117. Hauser SL, Bar-Or A, Comi G, Giovannoni G, Hartung HP, Hemmer B, et al. Ocrelizumab versus interferon beta-1a in relapsing multiple sclerosis. N Engl J Med. 2017;376(3):221–34.

    Article  PubMed  CAS  Google Scholar 

  118. Montalban X, Hauser SL, Kappos L, Arnold DL, Bar-Or A, Comi G, et al. Ocrelizumab versus placebo in primary progressive multiple sclerosis. N Engl J Med. 2017;376(3):209–20.

    Article  PubMed  CAS  Google Scholar 

  119. Sormani MP, Bruzzi P. Can we measure long-term treatment effects in multiple sclerosis? Nat Rev Neurol. 2015;11(3):176–82.

    Article  PubMed  Google Scholar 

  120. Munsell M, Frean M, Menzin J, Phillips AL. An evaluation of adherence in patients with multiple sclerosis newly initiating treatment with a self-injectable or an oral disease-modifying drug. Patient Prefer Adher. 2017;11:55–62.

    Article  Google Scholar 

  121. Calabresi PA, Radue EW, Goodin D, Jeffery D, Rammohan KW, Reder AT, et al. Safety and efficacy of fingolimod in patients with relapsing-remitting multiple sclerosis (FREEDOMS II): a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Neurol. 2014;13(6):545–56.

    Article  PubMed  CAS  Google Scholar 

  122. Confavreux C, O’Connor P, Comi G, Freedman MS, Miller AE, Olsson TP, et al. Oral teriflunomide for patients with relapsing multiple sclerosis (TOWER): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Neurol. 2014;13(3):247–56.

    Article  PubMed  CAS  Google Scholar 

  123. Berg J, Mahmoudjanlou Y, Duscha A, Massa MG, Thone J, Esser C, et al. The immunomodulatory effect of laquinimod in CNS autoimmunity is mediated by the aryl hydrocarbon receptor. J Neuroimmunol. 2016;298:9–15.

    Article  PubMed  CAS  Google Scholar 

  124. Filippi M, Rocca MA, Pagani E, De Stefano N, Jeffery D, Kappos L, et al. Placebo-controlled trial of oral laquinimod in multiple sclerosis: MRI evidence of an effect on brain tissue damage. J Neurol Neurosurg Psychiatry. 2014;85(8):851–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Gold.

Ethics declarations

Funding

The authors received no funding for the preparation of this article.

Conflict of interest

Simon Faissner received travel grants from Biogen Idec and Genzyme. Ralf Gold received speaker’s and board honoraria from Baxter, Bayer Schering, Biogen Idec, CLB Behring, Genzyme, Merck Serono, Novartis, Stendhal, Talecris, and TEVA. His department received grant support from Bayer Schering, BiogenIdec, Genzyme, Merck Serono, Novartis, and TEVA.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faissner, S., Gold, R. Efficacy and Safety of the Newer Multiple Sclerosis Drugs Approved Since 2010. CNS Drugs 32, 269–287 (2018). https://doi.org/10.1007/s40263-018-0488-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40263-018-0488-6

Navigation