Skip to main content
Log in

Ag-doped ZnO nanoparticles synthesized through green method using Artemisia turcomanica extract induce cytotoxicity and apoptotic activities against AGS cancer cells: an in vitro study

  • Original Research
  • Published:
Journal of Nanostructure in Chemistry Aims and scope Submit manuscript

Abstract

Artemisia turcomanica extract was utilized to green synthesize Ag, ZnO, and Ag-doped ZnO nanoparticles (NPs). The aim of this research was to assess the anticancer activity of these NPs against AGS gastric cancer cells. Ag-doped ZnO, undoped ZnO, and Ag NPs were synthesized and characterized by X-ray powder diffraction, UV–visible spectroscopy, Field Emission Scanning Electron Microscope, Fourier Transform Infrared Spectrometer, Transmission Electron Microscopy, and zeta potential. The anti-proliferative activity of the biogenic synthesized NPs was evaluated against AGS cancer cells. Apoptosis induction and cell cycle arrest were determined using flow cytometry. The expression levels of Caspase 3 (CASP3), Caspase 9 (CASP9), BCL2-associated X (BAX), and BCL2 apoptosis regulator (BCL2) genes were measured by qRT-PCR. The size of the ZnO, Ag, and Ag-doped ZnO NPs is estimated between 24 and 45, 17 and 31, and 11 and 49 nm, respectively. The zeta potential values of Ag, ZnO, and Ag-doped ZnO NPs were measured – 17.05 ± 0.36, – 17.60 ± 0.42, and – 16.20 ± 0.56 mV, respectively, which indicates the proper stability of NPs. The spherical synthesized NPs and plant extract showed a cytotoxic effect on AGS cancer cells. Inhibitory concentration (IC50) values of the extract, Ag, ZnO, and Ag-doped ZnO NPs were 234.65, 18.32, 9.15, and 5.31 μg/mL, respectively, which indicated great anticancer activity of Ag-doped ZnO NPs. Early apoptosis induced by treatment using extract, Ag, ZnO, and Ag-doped ZnO NPs were 3.26, 5.86, 15.40, and 11.3%, and 7.05, 15.5, 11.10, and 23.55% of the cells were engaged in late apoptosis, respectively. This indicated the ideal apoptotic effects of Ag-doped-ZnO NPs. The biosynthesized Ag-doped-ZnO NPs also could arrest the AGS cells in the sub-G1 phase of the cell cycle. The Ag-doped-ZnO NPs could significantly up-regulate the expression of pro-apoptotic (CASP3, CASP9, BAX) and down-regulate the expression of BCL2 genes compared to other treated groups (P < 0.001). These findings confirmed that the synthesized biogenic NPs are good candidates for cancer therapy in the biomedical field as an anticancer agent.

Graphical abstract

The biogenic synthesis of Ag-doped ZnO nanoparticles was performed using Artemisia turcomanica extract. For the synthesis of Ag-doped ZnO NPs, Zinc acetate was mixed with AgNO3. Then, A. turcomanica extract was added. The color change of the solution indicated the synthesis of Ag-doped ZnO NPs. After cellular uptake of Ag-doped ZnO nanoparticles into the cancer cells, ROS generation, mitochondrial damage, apoptosis induction, and cell cycle arrest in sub-G1 occurred.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Yaprak, G., Tataroglu, D., Dogan, B., Pekyurek, M.: Prognostic factors for survival in patients with gastric cancer: single-centre experience. North. Clin. Istanb. 7(2), 146 (2020)

    PubMed  Google Scholar 

  2. Ishaq, S., Nunn, L.: Helicobacter pylori and gastric cancer: a state of the art review. GHFBB 8(Suppl1), S6 (2015)

    Google Scholar 

  3. Machlowska, J., Baj, J., Sitarz, M., Maciejewski, R., Sitarz, R.: Gastric cancer: epidemiology, risk factors, classification, genomic characteristics and treatment strategies. Int. J. Mol. Sci. 21(11), 4012 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Marghalani, A.M., Salman, T.O.B., Faqeeh, F.J., Asiri, M.K., Kabel, A.M.: Gastric carcinoma: insights into risk factors, methods of diagnosis, possible lines of management, and the role of primary care. Fam. Med. Prim. Care Rev. 9(6), 2659 (2020)

    Article  Google Scholar 

  5. Rausei, S., Lianos, G.D.: Treatment of gastric cancer. Cancer 12(9), 2627 (2020)

    Article  CAS  Google Scholar 

  6. O’Reilly, M., Mellotte, G., Ryan, B., O’Connor, A.: Gastrointestinal side effects of cancer treatments. Ther. Adv. Chronic Dis. 11, 2040622320970354 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  7. Di Wu, M.S., Xue, H.Y., Wong, H.L.: Nanomedicine applications in the treatment of breast cancer: current state of the art. Int. J. Nanomedicine. 12, 5879 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jamkhande, P.G., Ghule, N.W., Bamer, A.H., Kalaskar, M.G.: Metal nanoparticles synthesis: an overview on methods of preparation, advantages and disadvantages, and applications. J. Drug Deliv Sci. Technol. 53, 101174 (2019)

    Article  CAS  Google Scholar 

  9. Pyrzynska, K., Sentkowska, A.: Biosynthesis of selenium nanoparticles using plant extracts. J. Nanostruct. Chem. 12(4), 467–480 (2022). https://doi.org/10.1007/s40097-021-00435-4

    Article  CAS  Google Scholar 

  10. Jin, Y., Li, B., Saravanakumar, K., Hu, X., Mariadoss, A.V.A., Wang, M.H.: Cytotoxic and antibacterial activities of starch encapsulated photo-catalyzed phytogenic silver nanoparticles from Paeonia lactiflora flowers. J. Nanostruct. Chem. 12(3), 375–387 (2022). https://doi.org/10.1007/s40097-021-00421-w

    Article  CAS  Google Scholar 

  11. Prabhu, P., Rao, M., Murugesan, G., Narasimhan, M.K., Varadavenkatesan, T., Vinayagam, R., Chi, N.T.L., Pugazhendhi, A., Selvaraj, R.: Synthesis, characterization and anticancer activity of the green-synthesized hematite nanoparticles. Environ. Res. 214, 113864 (2022)

    Article  CAS  PubMed  Google Scholar 

  12. Ghate, P., Prabhu, D., Murugesan, G., Goveas, L.C., Varadavenkatesan, T., Vinayagam, R., Chi, N.T.L., Pugazhendhi, A., Selvaraj, R.: Synthesis of hydroxyapatite nanoparticles using Acacia falcata leaf extract and study of their anti-cancerous activity against cancerous mammalian cell lines. Environ. Res. 214, 113917 (2022)

    Article  CAS  PubMed  Google Scholar 

  13. Vinayagam, R., Sharma, G., Murugesan, G., Pai, S., Gupta, D., Narasimhan, M.K., Kaviyarasu, K., Varadavenkatesan, T., Selvaraj, R.: Rapid photocatalytic degradation of 2, 4-dichlorophenoxy acetic acid by ZnO nanoparticles synthesized using the leaf extract of Muntingia calabura. J. Mol. Struct. 1263, 133127 (2022)

    Article  CAS  Google Scholar 

  14. Sharma, V.K., Yngard, R.A., Lin, Y.: Silver nanoparticles: green synthesis and their antimicrobial activities. Adv. Colloid Interface Sci. 145(1–2), 83–96 (2009)

    Article  CAS  PubMed  Google Scholar 

  15. Mohamad, N.A.N., Arham, N.A., Jai, J., Hadi, A.: Plant extract as reducing agent in synthesis of metallic nanoparticles: a review. Adv. Mater. Res. 832, 350–355 (2014)

    Article  Google Scholar 

  16. Hosny, M., Fawzy, M., El-Fakharany, E.M., Omer, A.M., Abd El-Monaem, E.M., Khalifa, R.E., Eltaweil, A.S.: Biogenic synthesis, characterization, antimicrobial, antioxidant, antidiabetic, and catalytic applications of platinum nanoparticles synthesized from Polygonum salicifolium leaves. J. Environ. Chem. Eng. 10(1), 106806 (2022)

    Article  CAS  Google Scholar 

  17. Makarov, V., Love, A., Sinitsyna, O., Makarova, S., Yaminsky, I., Taliansky, M., Kalinina, N.: “Green” nanotechnologies: synthesis of metal nanoparticles using plants. Acta Nat. 6(1), 35–44 (2014)

    Article  CAS  Google Scholar 

  18. Hosny, M., Fawzy, M., Eltaweil, A.S.: Green synthesis of bimetallic Ag/ZnO@ Biohar nanocomposite for photocatalytic degradation of tetracycline, antibacterial and antioxidant activities. Sci. Rep. 12(1), 1–17 (2022)

    Article  Google Scholar 

  19. Hu, X., Saravanakumar, K., Sathiyaseelan, A., Rajamanickam, V., Wang, M.-H.: Cytotoxicity of aptamer-conjugated chitosan encapsulated mycogenic gold nanoparticles in human lung cancer cells. J. Nanostruct. Chem. 12(4), 641–653 (2022). https://doi.org/10.1007/s40097-021-00437-2

    Article  CAS  Google Scholar 

  20. Bayda, S., Adeel, M., Tuccinardi, T., Cordani, M., Rizzolio, F.: The history of nanoscience and nanotechnology: from chemical–physical applications to nanomedicine. Molecules 25(1), 112 (2020)

    Article  CAS  Google Scholar 

  21. Anbu, P., Gopinath, S.C.B., Salimi, M.N., Letchumanan, I., Subramaniam, S.: Green synthesized strontium oxide nanoparticles by Elodea canadensis extract and their antibacterial activity. J. Nanostruct. Chem. 12(3), 365–373 (2022). https://doi.org/10.1007/s40097-021-00420-x

    Article  CAS  Google Scholar 

  22. Waszkowska, K., Chtouki, T., Krupka, O., Smokal, V., Figà, V., Sahraoui, B.: Effect of UV-irradiation and ZnO nanoparticles on nonlinear optical response of specific photochromic polymers. Nanomaterials 11, 492 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Singh, P., Kumar, R., Singh, R.K.: Progress on transition metal-doped ZnO nanoparticles and its application. Ind. Eng. Chem. Res. 58(37), 17130–17163 (2019)

    Article  CAS  Google Scholar 

  24. Jaramillo-Páez, C., Navío, J.A., Hidalgo, M., Macías, M.: ZnO and Pt-ZnO photocatalysts: characterization and photocatalytic activity assessing by means of three substrates. Catal. Today 313, 12–19 (2018)

    Article  Google Scholar 

  25. Saleem, M., Irshad, K., Ur Rehman, S., Javed, M.S., Hasan, M.A., Ali, H.M., Ali, A., Malik, M.Z., Islam, S.: Characteristics and photovoltaic applications of Au-doped ZnO–Sm nanoparticle films. J. Nanomater. 11(3), 702 (2021)

    Article  CAS  Google Scholar 

  26. Yuan, Z., Feng, Z., Kong, L., Zhan, J., Ma, X.: Simple synthesis of porous ZnO nanoplates hyper-doped with low concentration of Pt for efficient acetone sensing. J. Alloys Compd. 865, 158890 (2021)

    Article  CAS  Google Scholar 

  27. Dawadi, S., Katuwal, S., Gupta, A., Lamichhane, U., Thapa, R., Jaisi, S., Lamichhane, G., Bhattarai, D.P., Parajuli, N.: Current research on silver nanoparticles: synthesis, characterization, and applications. J. Nanomater. 2021, 1–23 (2021)

    Article  Google Scholar 

  28. Sun, Q., Li, J., Le, T.: Zinc oxide nanoparticle as a novel class of antifungal agents: current advances and future perspectives. J. Agric. Food Chem. 66(43), 11209–11220 (2018)

    Article  CAS  PubMed  Google Scholar 

  29. Vijayakumar, S., Mahadevan, S., Arulmozhi, P., Sriram, S., Praseetha, P.: Green synthesis of zinc oxide nanoparticles using Atalantia monophylla leaf extracts: characterization and antimicrobial analysis. Mater. Sci. Semicond 82, 39–45 (2018)

    Article  CAS  Google Scholar 

  30. Akpinar, I., Unal, M., Sar, T.: Potential antifungal effects of silver nanoparticles (AgNPs) of different sizes against phytopathogenic Fusarium oxysporum f. sp. radicis-lycopersici (FORL) strains. SN Appl. Sci. 3(4), 1–9 (2021)

    Article  Google Scholar 

  31. Irfan, M., Munir, H., Ismail, H.: Moringa oleifera gum based silver and zinc oxide nanoparticles: green synthesis, characterization and their antibacterial potential against MRSA. Biomater. Res. 25(1), 1–8 (2021)

    Article  Google Scholar 

  32. Gomes, H.I., Martins, C.S., Prior, J.A.: Silver nanoparticles as carriers of anticancer drugs for efficient target treatment of cancer cells. J. Nanomater. 11(4), 964 (2021)

    Article  CAS  Google Scholar 

  33. Preethi, D.R.A., Prabhu, S., Ravikumar, V., Philominal, A.: Anticancer activity of pure and silver doped copper oxide nanoparticles against A549 cell line. Mater. Today Commun. 33, 104462 (2022)

    Article  Google Scholar 

  34. Bora, K.S., Sharma, A.: The genus Artemisia: a comprehensive review. Pharm. Biol. 49(1), 101–109 (2011)

    Article  PubMed  Google Scholar 

  35. Taghizadeh Rabe, S.Z., Mahmoudi, M., Ahi, A., Emami, S.A.: Antiproliferative effects of extracts from Iranian Artemisia species on cancer cell lines. Pharm. Biol. 49(9), 962–969 (2011)

    Article  PubMed  Google Scholar 

  36. Hatami, T., Emami, S.A., Miraghaee, S.S., Mojarrab, M.: Total phenolic contents and antioxidant activities of different extracts and fractions from the aerial parts of Artemisia biennis Willd. Iran. J. Pharm. Res. 13(2), 551 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Naghavi, M.R., Alaeimoghadam, F., Ghafoori, H.: Artemisia species from Iran as valuable resources for medicinal uses. World Acad. Sci. Eng. Technol (WASET) 11, 1058–1064 (2014)

    Google Scholar 

  38. Mirjalili, A.: Bioactive compounds and their mechanism in anticancer plants listed in flora of Iran. J. Complement. Med. Res. 8(3), 2374–2413 (2018)

    Google Scholar 

  39. Rahimivand, M., Tafvizi, F., Noorbazargan, H.: Synthesis and characterization of alginate nanocarrier encapsulating Artemisia ciniformis extract and evaluation of the cytotoxicity and apoptosis induction in AGS cell line. Int. J. Biol. Macromol. 158, 338–357 (2020)

    Article  CAS  PubMed  Google Scholar 

  40. Moulavi, P., Noorbazargan, H., Dolatabadi, A., Foroohimanjili, F., Tavakoli, Z., Mirzazadeh, S., Hashemi, M., Ashrafi, F.: Antibiofilm effect of green engineered silver nanoparticles fabricated from Artemisia scoporia extract on the expression of icaA and icaR genes against multidrug-resistant Staphylococcus aureus. J. Basic Microbiol. 59(7), 701–712 (2019)

    Article  CAS  PubMed  Google Scholar 

  41. Mousavi, B., Tafvizi, F., Zaker Bostanabad, S.: Green synthesis of silver nanoparticles using Artemisia turcomanica leaf extract and the study of anti-cancer effect and apoptosis induction on gastric cancer cell line (AGS). Artif. Cells Nanomed. Biotechnol. 46(sup1), 499–510 (2018)

    Article  CAS  PubMed  Google Scholar 

  42. Mohammadi Shivyari, A., Tafvizi, F., Noorbazargan, H.: Anti-cancer effects of biosynthesized zinc oxide nanoparticles using Artemisia scoparia in Huh-7 liver cancer cells. Inorg. Nano-Met. Chem. 52(3), 375–386 (2021)

    Google Scholar 

  43. Karyaoui, M., Jemia, D.B., Gannouni, M., Assaker, I.B., Bardaoui, A., Amlouk, M., Chtourou, R.: Characterization of Ag-doped ZnO thin films by spray pyrolysis and its using in enhanced photoelectrochemical performances. Inorg. Chem. Commun. 119, 108114 (2020)

    Article  CAS  Google Scholar 

  44. Shiripoure Ganjinehketab, R., Tafvizi, F., Khodarahmi, P.: Biosynthesis and chemical characterization of silver nanoparticles using Satureja Rechingeri Jamzad and their apoptotic effects on AGS gastric cancer cells. J. Clust. Sci. 32(5), 1389–1399 (2021)

    Article  CAS  Google Scholar 

  45. Alamdari, S., SasaniGhamsari, M., Lee, C., Han, W., Park, H.-H., Tafreshi, M.J., Afarideh, H., Ara, M.H.M.: Preparation and characterization of zinc oxide nanoparticles using leaf extract of Sambucus ebulus. Appl. Sci. 10(10), 3620 (2020)

    Article  CAS  Google Scholar 

  46. Hameed, S., Khalil, A.T., Ali, M., Numan, M., Khamlich, S., Shinwari, Z.K., Maaza, M.: Greener synthesis of ZnO and Ag–ZnO nanoparticles using Silybum marianum for diverse biomedical applications. Nanomed. J. 14(6), 655–673 (2019)

    Article  CAS  Google Scholar 

  47. Erdogan, O., Abbak, M., Demirbolat, G.M., Birtekocak, F., Aksel, M., Pasa, S., Cevik, O.: Green synthesis of silver nanoparticles via Cynara scolymus leaf extracts: the characterization, anticancer potential with photodynamic therapy in MCF7 cells. PLoS ONE 14(6), e0216496 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hosny, M., Fawzy, M., Eltaweil, A.S.: Phytofabrication of bimetallic silver-copper/biochar nanocomposite for environmental and medical applications. J. Environ. Manage. 316, 115238 (2022)

    Article  CAS  PubMed  Google Scholar 

  49. Dappula, S.S., Kandrakonda, Y.R., Shaik, J.B., Mothukuru, S.L., Lebaka, V.R., Mannarapu, M., Amooru, G.D.: Biosynthesis of zinc oxide nanoparticles using aqueous extract of Andrographis alata: characterization, optimization and assessment of their antibacterial, antioxidant, antidiabetic and anti-Alzheimer’s properties. J. Mol. Struct. 1273, 134264 (2023)

    Article  CAS  Google Scholar 

  50. Khan, I., Bawazeer, S., Rauf, A., Qureshi, M.N., Muhammad, N., Al-Awthan, Y.S., Bahattab, O., Maalik, A., Rengasamy, K.R.R.: Synthesis, biological investigation and catalytic application using the alcoholic extract of black cumin (Bunium Persicum) seeds-based silver nanoparticles. J. Nanostruct. Chem. 12(1), 59–77 (2022). https://doi.org/10.1007/s40097-021-00402-z

    Article  CAS  Google Scholar 

  51. Ahmad, K.S., Jaffri, S.B.: Phytosynthetic Ag doped ZnO nanoparticles: semiconducting green remediators. Open Chem. J. 16(1), 556–570 (2018)

    Article  CAS  Google Scholar 

  52. Ahmad, K., Jaffri, S.: Phytosynthetic Ag doped ZnO nanoparticles: semiconducting green remediators. Open Chem. J. 16, 556–570 (2018)

    Article  CAS  Google Scholar 

  53. Shreema, K., Mathammal, R., Kalaiselvi, V., Vijayakumar, S., Selvakumar, K., Senthil, K.: Green synthesis of silver doped zinc oxide nanoparticles using fresh leaf extract Morinda citrifoliaand its antioxidant potential. Mater. Today: Proc. 47, 2126–2131 (2021)

    CAS  Google Scholar 

  54. Rajendran, R., Mani, A.: Photocatalytic, antibacterial and anticancer activity of silver-doped zinc oxide nanoparticles. J. Saudi Chem. Soc. 24(12), 1010–1024 (2020)

    Article  CAS  Google Scholar 

  55. Choi, B.-H., Kim, W., Wang, Q.C., Kim, D.-C., Tan, S.N., Yong, J.W.H., Kim, K.-T., Yoon, H.S.: Kinetin riboside preferentially induces apoptosis by modulating Bcl-2 family proteins and caspase-3 in cancer cells. Cancer Lett. 261(1), 37–45 (2008)

    Article  CAS  PubMed  Google Scholar 

  56. Eskandari, E., Eaves, C.J.: Paradoxical roles of caspase-3 in regulating cell survival, proliferation, and tumorigenesis. J. Cell. Biol. 221(6), e202201159 (2022)

    PubMed  PubMed Central  Google Scholar 

  57. Avrutsky, M.I., Troy, C.M.: Caspase-9: a multimodal therapeutic target with diverse cellular expression in human disease. Front. Pharmacol. 12, 1728 (2021)

    Article  Google Scholar 

  58. Westphal, D., Dewson, G., Czabotar, P.E., Kluck, R.M.: Molecular biology of Bax and Bak activation and action. Biochim. Biophys. 1813(4), 521–531 (2011)

    Article  CAS  Google Scholar 

  59. Sutradhar, K.B., Amin, M.: Nanotechnology in cancer drug delivery and selective targeting. Int. Sch. Res. Not. 2014, 1–12 (2014)

    Google Scholar 

  60. Adeel, M., Duzagac, F., Canzonieri, V., Rizzolio, F.: Self-therapeutic nanomaterials for cancer therapy: a review. ACS Appl. Nano Mater. 3(6), 4962–4971 (2020)

    Article  CAS  Google Scholar 

  61. Rashmezad, M.A., Asgary, E.A., Tafvizi, F., Shandiz, S.A.S., Mirzaie, A.: Comparative study on cytotoxicity effect of biological and commercial synthesized nanosilver on human gastric carcinoma and normal lung fibroblast cell lines. Tehran Univ. Med. J. 72(12), 799–807 (2015)

    Google Scholar 

  62. Salehi, S., Shandiz, S.A.S., Ghanbar, F., Darvish, M.R., Ardestani, M.S., Mirzaie, A., Jafari, M.: Phytosynthesis of silver nanoparticles using Artemisia marschalliana Sprengel aerial part extract and assessment of their antioxidant, anticancer, and antibacterial properties. Int. J. Nanomed. 11, 1835 (2016)

    CAS  Google Scholar 

  63. Aslany, S., Tafvizi, F., Naseh, V.: Characterization and evaluation of cytotoxic and apoptotic effects of green synthesis of silver nanoparticles using Artemisia Ciniformis on human gastric adenocarcinoma. Mater. Today Commun. 24, 101011 (2020)

    Article  CAS  Google Scholar 

  64. Pugazhenthi, E., Sankarganesh, P., Muthusamy, C., Rajasekaran, M., Lokesh, E., Khusro, A., Kavya, G.: Cleome rutidosperma leaf extract mediated biosynthesis of silver nanoparticles and anti-candidal, anti-biofilm, anti-cancer, and molecular docking analysis. Biomass Convers. Biorefin. 21, 1–13 (2023)

    Google Scholar 

  65. Rasmussen, J.W., Martinez, E., Louka, P., Wingett, D.G.: Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opin. Drug Deliv. 7(9), 1063–1077 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Agarwal, H., Kumar, S.V., Rajeshkumar, S.: A review on green synthesis of zinc oxide nanoparticles–an eco-friendly approach. Resour.-Effic. Technol. 3(4), 406–413 (2017)

    Google Scholar 

  67. Hassan, H.F.H., Mansour, A.M., Abo-Youssef, A.M.H., Elsadek, B.E., Messiha, B.A.S.: Zinc oxide nanoparticles as a novel anticancer approach; in vitro and in vivo evidence. Clin. Exp. Pharmacol. Physiol. 44(2), 235–243 (2017)

    Article  CAS  PubMed  Google Scholar 

  68. Rehman, H., Ali, W., Khan, N.Z., Aasim, M., Khan, T., Khan, A.A.: Delphinium uncinatum mediated biosynthesis of zinc oxide nanoparticles and in-vitro evaluation of their antioxidant, cytotoxic, antimicrobial, anti-diabetic, anti-inflammatory, and anti-aging activities. Saudi J. Biol. Sci. 30(1), 103485 (2023)

    Article  CAS  PubMed  Google Scholar 

  69. Ashraf, H., Meer, B., Iqbal, J., Ali, J.S., Andleeb, A., Butt, H., Zia, M., Mehmood, A., Nadeem, M., Drouet, S., Blondeau, J.-P., Giglioli-Guivarc’h, N., Liu, C., Hano, C., Abbasi, B.H.: Comparative evaluation of chemically and green synthesized zinc oxide nanoparticles: their in vitro antioxidant, antimicrobial, cytotoxic and anticancer potential towards HepG2 cell line. J. Nanostruct. Chem. (2022). https://doi.org/10.1007/s40097-021-00460-3

    Article  Google Scholar 

  70. Sirelkhatim, A., Mahmud, S., Seeni, A., Kaus, N.H.M., Ann, L.C., Bakhori, S.K.M., Hasan, H., Mohamad, D.: Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-micro Lett 7(3), 219–242 (2015)

    Article  CAS  Google Scholar 

  71. Akhtar, M.J., Ahamed, M., Kumar, S., Khan, M.M., Ahmad, J., Alrokayan, S.A.: Zinc oxide nanoparticles selectively induce apoptosis in human cancer cells through reactive oxygen species. Int. J. Nanomed. 7, 845 (2012)

    CAS  Google Scholar 

  72. Hussain, A., Oves, M., Alajmi, M.F., Hussain, I., Amir, S., Ahmed, J., Rehman, M.T., El-Seedi, H.R., Ali, I.: Biogenesis of ZnO nanoparticles using Pandanus odorifer leaf extract: anticancer and antimicrobial activities. RSC Adv. 9(27), 15357–15369 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Carofiglio, M., Barui, S., Cauda, V., Laurenti, M.: Doped zinc oxide nanoparticles: synthesis, characterization and potential use in nanomedicine. Appl. Sci. 10(15), 5194 (2020)

    Article  CAS  PubMed  Google Scholar 

  74. Kadhim, A.A., Abbas, N.R., Kadhum, H.H., Albukhaty, S., Jabir, M.S., Naji, A.M., Hamzah, S.S., Mohammed, M.K., Al-Karagoly, H.: Investigating the effects of biogenic zinc oxide nanoparticles produced using Papaver somniferum extract on oxidative stress, cytotoxicity, and the induction of apoptosis in the THP-1 cell line. Biol. Trace Elem. Res. (2023). https://doi.org/10.1007/s12011-023-03574-7

    Article  PubMed  Google Scholar 

  75. Bozgeyik, I., Ege, M., Temiz, E., Erdal, B., Koyuncu, I., Temiz, C., Bozgeyik, E., Elmastas, M.: Novel zinc oxide nanoparticles of Teucrium polium suppress the malignant progression of gastric cancer cells through modulating apoptotic signaling pathways and epithelial to mesenchymal transition. Gene 853, 147091 (2023)

    Article  CAS  PubMed  Google Scholar 

  76. Cunningham, B., Engstrom, A.E., Harper, B.J., Harper, S.L., Mackiewicz, M.R.: Silver nanoparticles stable to oxidation and silver ion release show size-dependent toxicity in vivo. J. Nanomater. 11(6), 1516 (2021)

    Article  CAS  Google Scholar 

  77. Yadav, E., Yadav, P.: Biofabricated zinc oxide nanoparticles impair cognitive function via modulating oxidative stress and acetylcholinesterase level in mice. Environ. Toxicol. 36(4), 572–585 (2021)

    Article  CAS  PubMed  Google Scholar 

  78. Bai, D.-P., Zhang, X.-F., Zhang, G.-L., Huang, Y.-F., Gurunathan, S.: Zinc oxide nanoparticles induce apoptosis and autophagy in human ovarian cancer cells. Int. J. Nanomed. 12, 6521 (2017)

    Article  CAS  Google Scholar 

  79. George, B.P.A., Kumar, N., Abrahamse, H., Ray, S.S.: Apoptotic efficacy of multifaceted biosynthesized silver nanoparticles on human adenocarcinoma cells. Sci. Rep. 8(1), 1–14 (2018)

    Google Scholar 

  80. Zhang, X.-F., Liu, Z.-G., Shen, W., Gurunathan, S.: Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int. J. Mol. Sci. 17(9), 1534 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  81. Yaqoob, A.A., Ahmad, H., Parveen, T., Ahmad, A., Oves, M., Ismail, I.M., Qari, H.A., Umar, K., Mohamad Ibrahim, M.N.: Recent advances in metal decorated nanomaterials and their various biological applications: a review. Front. Chem. 8, 341 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Khan, S.A., Noreen, F., Kanwal, S., Iqbal, A., Hussain, G.: Green synthesis of ZnO and Cu-doped ZnO nanoparticles from leaf extracts of Abutilon indicum, Clerodendrum infortunatum, Clerodendrum inerme and investigation of their biological and photocatalytic activities. Mater. Sci. Eng. C 82, 46–59 (2018)

    Article  CAS  Google Scholar 

  83. Ahamed, M., Khan, M.M., Akhtar, M.J., Alhadlaq, H.A., Alshamsan, A.: Ag-doping regulates the cytotoxicity of TiO2 nanoparticles via oxidative stress in human cancer cells. Sci. Rep. 7(1), 17662 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  84. Ahamed, M., Akhtar, M.J., Khan, M.M., Alaizeri, Z.M., Alhadlaq, H.: Facile synthesis of Zn-doped Bi2O3 nanoparticles and their selective cytotoxicity toward cancer cells. ACS Omega 6(27), 17353–17361 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Al Tamimi, S., Ashraf, S., Abdulrehman, T., Parray, A., Mansour, S.A., Haik, Y., Qadri, S.: Synthesis and analysis of silver–copper alloy nanoparticles of different ratios manifest anticancer activity in breast cancer cells. Cancer Nanotechnol 11(1), 1–16 (2020)

    Article  Google Scholar 

  86. Shochah, Q.R., Jabir, F.A.: Green synthesis of Au/ZnO nanoparticles for anticancer activity and oxidative stress against MCF-7 cell lines. Biomass Convers. Biorefin. (2023). https://doi.org/10.1007/s13399-022-03697-2

    Article  Google Scholar 

  87. Suresh, P., Doss, A., Praveen Pole, R., Devika, M.: Green synthesis, characterization and antioxidant activity of bimetallic (Ag-ZnO) nanoparticles using Capparis zeylanica leaf extract. Biomass Convers. Biorefin. (2023). https://doi.org/10.1007/s13399-023-03743-7

    Article  Google Scholar 

  88. Otto, T., Sicinski, P.: Cell cycle proteins as promising targets in cancer therapy. Nat. Rev. Cancer 17(2), 93–115 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Vidhya, E., Vijayakumar, S., Prathipkumar, S., Praseetha, P.: Green way biosynthesis: characterization, antimicrobial and anticancer activity of ZnO nanoparticles. Gene Rep. 20, 100688 (2020)

    Article  CAS  Google Scholar 

  90. Majeed, S., Saravanan, M., Danish, M., Zakariya, N.A., Ibrahim, M.N.M., Rizvi, E.H., NisaAndrabi, S., Barabadi, H., Mohanta, Y.K., Mostafavi, E.: Bioengineering of green-synthesized TAT peptide-functionalized silver nanoparticles for apoptotic cell-death mediated therapy of breast adenocarcinoma. Talanta 253, 124026 (2023)

    Article  CAS  Google Scholar 

  91. Alduraihem, N.S., Bhat, R.S., Al-Zahrani, S.A., Elnagar, D.M., Alobaid, H.M., Daghestani, M.H.: Anticancer and antimicrobial activity of silver nanoparticles synthesized from pods of Acacia nilotica. Processes 11(2), 301 (2023)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the laboratory of Islamic Azad University.

Author information

Authors and Affiliations

Authors

Contributions

FMR: Data curation, formal analysis, methodology, writing—original draft. FT: Methodology, project administration, data curation, supervision, writing—review & editing. HN: Assisted in performing the cell culture experiments. AI: review & editing of the manuscript. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Farzaneh Tafvizi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirzaee Rad, F., Tafvizi, F., Noorbazargan, H. et al. Ag-doped ZnO nanoparticles synthesized through green method using Artemisia turcomanica extract induce cytotoxicity and apoptotic activities against AGS cancer cells: an in vitro study. J Nanostruct Chem (2023). https://doi.org/10.1007/s40097-023-00528-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40097-023-00528-2

Keywords

Navigation