Skip to main content
Log in

Comparative evaluation of chemically and green synthesized zinc oxide nanoparticles: their in vitro antioxidant, antimicrobial, cytotoxic and anticancer potential towards HepG2 cell line

  • Original Research
  • Published:
Journal of Nanostructure in Chemistry Aims and scope Submit manuscript

Abstract

The major goal of this study was to fabricate ZnO nanoparticles (NPs) via chemical and biological routes to evaluate and compare their physiochemical behavior (size and morphology) and biological potentials. The synthesized NPs were confirmed via various spectroscopy and imagining techniques such as XRD, FT-IR, HPLC and SEM. The characterized NPs were then assessed for various in vitro biological applications. Furthermore, apoptotic potential was investigated using HepG2 cell lines by evaluating various signature markers of apoptosis including mitochondrial membrane potential, reactive oxygen/nitrogen (ROS/RNS) production, peroxidases and pro-apoptotic caspase 3 activation. Crystalline, hexagonal structured NPs with an average crystalline size distribution of 32 nm and 23 nm was obtained. Both green-mediated zinc oxide nanoparticles (G-ZnO NPs) and chemically derived NPs (C-ZnO NPs) exhibited high antioxidant, moderate enzyme inhibition, antibacterial and cytotoxicity potential. However, G-ZnO NPs exhibited excellent DPPH (80.1% ± 1.3%), TPC (97 ± 1.22 µgAAE/mg), TRP (94.5 ± 1.48 µgAAE/mg), lipase inhibition (82%), urease inhibition (81.3%), and α-amylase inhibition (18.9%) activity as compared to C-ZnO NPs. Both G-ZnO NPs and C-ZnO NPs showed good antimicrobial potential, however, effect of G-ZnO NPs was more potent than counter C-ZnO NPs. Results from apoptotic assays revealed that G-ZnO NPs showed excellent apoptotic potential in contrast to C-ZnO NPs. Overall results suggested that green route-mediated ZnO NPs exhibits excellent biological potential and could be used for future biomedical applications especially in antimicrobial and cancer therapeutics. To the best of our knowledge, this is the first ever study on Boerhavia diffusa linn-mediated biosynthesis of ZnO nanoparticles and evaluation of their biological activities.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ali, M.A., Rehman, I., Iqbal, A., Din, S., Rao, A.Q., Latif, A., et al.: Nanotechnology, a new frontier in agriculture. Adv. Life Sci. 1(3), 129–138 (2014)

    Google Scholar 

  2. Rahman, K., Khan, S.U., Fahad, S., Chang, M.X., Abbas, A., Khan, W.U., et al.: Nano-biotechnology: a new approach to treat and prevent malaria. Int. J. Nanomed. 14, 1401–1410 (2019)

    Article  CAS  Google Scholar 

  3. Sahu, T., Ratre, Y.K., Chauhan, S., Bhaskar, L.V.K.S., Nair, M.P., Verma, H.K.: Nanotechnology based drug delivery system: current strategies and emerging therapeutic potential for medical science. J. Drug Deliv. Sci. Technol. 63, 102487 (2021)

    Article  CAS  Google Scholar 

  4. Jun, Y.-w, Seo, J.-w, Cheon, J.: Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences. Acc. Chem. Res. 41(2), 179–189 (2008)

    Article  CAS  PubMed  Google Scholar 

  5. Bystrzejewska-Piotrowska, G., Golimowski, J., Urban, P.L.: Nanoparticles: their potential toxicity, waste and environmental management. Waste Manag. 29(9), 2587–2595 (2009)

    Article  CAS  PubMed  Google Scholar 

  6. Khezri, K., Saeedi, M., Dizaj, S.M.: Application of nanoparticles in percutaneous delivery of active ingredients in cosmetic preparations. Biomed. Pharmacother. 106, 1499–1505 (2018)

    Article  CAS  PubMed  Google Scholar 

  7. Demir, N.: Nanotechnology in cosmetics: opportunities and challenges. NanoEra 1(1), 19–23 (2021)

    Google Scholar 

  8. Iravani, S.: Green synthesis of metal nanoparticles using plants. Green Chem. 13(10), 2638–2650 (2011)

    Article  CAS  Google Scholar 

  9. Tamilvanan, A., Balamurugan, K., Mohanraj, T., Selvakumar, P., Madhankumar, B.: Parameter optimization of copper nanoparticle synthesis by electrodeposition process using RSM and CS. Mater. Today Proc. 45, 751–756 (2021)

    Article  CAS  Google Scholar 

  10. Amer, M.W., Awwad, A.M.: Green synthesis of copper nanoparticles by Citrus limon fruits extract, characterization and antibacterial activity. Chem Int. 7(1), 1–8 (2021)

    CAS  Google Scholar 

  11. Kim, J.-Y., Kim, M., Kim, H., Joo, J., Choi, J.-H.: Electrical and optical studies of organic light emitting devices using SWCNTs-polymer nanocomposites. Opt. Mater. 21(1–3), 147–151 (2003)

    Article  CAS  Google Scholar 

  12. Thakkar, K.N., Mhatre, S.S., Parikh, R.Y.: Biological synthesis of metallic nanoparticles. Nanomed. Nanotechnol. Biol. Med. 6(2), 257–262 (2010)

    Article  CAS  Google Scholar 

  13. Panigrahi, S., Kundu, S., Ghosh, S., Nath, S., Pal, T.: General method of synthesis for metal nanoparticles. J. Nanopart. Res. 6(4), 411–414 (2004)

    Article  CAS  Google Scholar 

  14. Shamaila, S., Sajjad, A.K.L., Farooqi, S.A., Jabeen, N., Majeed, S., Farooq, I.: Advancements in nanoparticle fabrication by hazard free eco-friendly green routes. Appl. Mater. Today. 5, 150–199 (2016)

    Article  Google Scholar 

  15. Kapoor, R.T., Salvadori, M.R., Rafatullah, M., Siddiqui, M.R., Khan, M.A., Alshareef, S.A.: Exploration of microbial factories for synthesis of nanoparticles—a sustainable approach for bioremediation of environmental contaminants. Front. Microbiol. 12, 1404 (2021)

    Article  Google Scholar 

  16. El-Saadony, M.T., Alkhatib, F.M., Alzahrani, S.O., Shafi, M.E., Abdel-Hamid, S.E., Taha, T.F., et al.: Impact of mycogenic zinc nanoparticles on performance, behavior, immune response, and microbial load in Oreochromis niloticus. Saudi J. Biol. Sci. 32, 101948 (2021)

    Google Scholar 

  17. Lengke, M.F., Fleet, M.E., Southam, G.: Biosynthesis of silver nanoparticles by filamentous cyanobacteria from a silver (I) nitrate complex. Langmuir 23(5), 2694–2699 (2007)

    Article  CAS  PubMed  Google Scholar 

  18. Govindaraju, K., Shan, J., Levesque, K., Hussain, S.N., Powell, W.S., Eidelman, D.H.: Nitration of respiratory epithelial cells by myeloperoxidase depends on extracellular nitrite. Nitric Oxide 18(3), 184–194 (2008)

    Article  CAS  PubMed  Google Scholar 

  19. Hatamie, A., Khan, A., Golabi, M., Turner, A.P., Beni, V., Mak, W.C., et al.: Zinc oxide nanostructure-modified textile and its application to biosensing, photocatalysis, and as antibacterial material. Langmuir 31(39), 10913–10921 (2015)

    Article  CAS  PubMed  Google Scholar 

  20. Hanif, M., Lee, I., Akter, J., Islam, M., Zahid, A.A., Sapkota, K.P., et al.: Enhanced photocatalytic and antibacterial performance of ZnO nanoparticles prepared by an efficient thermolysis method. Catalysts 9(7), 608 (2019)

    Article  Google Scholar 

  21. Singh, A., Gautam, P.K., Verma, A., Singh, V., Shivapriya, P.M., Shivalkar, S., et al.: Green synthesis of metallic nanoparticles as effective alternatives to treat antibiotics resistant bacterial infections: a review. Biotechnol. Rep. 25, e00427 (2020)

    Article  Google Scholar 

  22. Bhuyan, T., Mishra, K., Khanuja, M., Prasad, R., Varma, A.: Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Mater. Sci. Semicond. Process. 32, 55–61 (2015)

    Article  CAS  Google Scholar 

  23. Abbasi, B.H., Shah, M., Hashmi, S.S., Nazir, M., Naz, S., Ahmad, W., et al.: Green bio-assisted synthesis, characterization and biological evaluation of biocompatible ZnO NPs synthesized from different tissues of milk thistle (Silybum marianum). Nanomaterials 9(8), 1171 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Supraja, N., Prasad, T., Krishna, T.G., David, E.: Synthesis, characterization, and evaluation of the antimicrobial efficacy of Boswellia ovalifoliolata stem bark-extract-mediated zinc oxide nanoparticles. Appl. Nanosci. 6(4), 581–590 (2016)

    Article  CAS  Google Scholar 

  25. Rad, S.S., Sani, A.M., Mohseni, S.: Biosynthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from leaf extract of Mentha pulegium (L.). Microb. Pathog. 131, 239–245 (2019)

    Article  CAS  PubMed  Google Scholar 

  26. Rupa, E.J., Anandapadmanaban, G., Mathiyalagan, R., Yang, D.-C.: Synthesis of zinc oxide nanoparticles from immature fruits of Rubus coreanus and its catalytic activity for degradation of industrial dye. Optik 172, 1179–1186 (2018)

    Article  CAS  Google Scholar 

  27. Nava, O., Soto-Robles, C., Gómez-Gutiérrez, C., Vilchis-Nestor, A., Castro-Beltrán, A., Olivas, A., et al.: Fruit peel extract mediated green synthesis of zinc oxide nanoparticles. J. Mol. Struct. 1147, 1–6 (2017)

    Article  CAS  Google Scholar 

  28. Siripireddy, B., Mandal, B.K.: Facile green synthesis of zinc oxide nanoparticles by Eucalyptus globulus and their photocatalytic and antioxidant activity. Adv. Powder. Technol. 28(3), 785–797 (2017)

    Article  CAS  Google Scholar 

  29. Han, D.: Sol–gel autocombustion synthesis of zinc oxide foam decorated with holes and its use as acetic acid gas sensor at sub-ppm level. Ceram. Int. 46(3), 3304–3310 (2020)

    Article  CAS  Google Scholar 

  30. Jamdagni, P., Khatri, P., Rana, J.: Green synthesis of zinc oxide nanoparticles using flower extract of Nyctanthes arbor-tristis and their antifungal activity. J. King Saud Univ. Sci. 30(2), 168–175 (2018)

    Article  Google Scholar 

  31. Singh, J., Kumar, S., Alok, A., Upadhyay, S.K., Rawat, M., Tsang, D.C., et al.: The potential of green synthesized zinc oxide nanoparticles as nutrient source for plant growth. J. Clean. Prod. 214, 1061–1070 (2019)

    Article  CAS  Google Scholar 

  32. Vijayakumar, S., Mahadevan, S., Arulmozhi, P., Sriram, S., Praseetha, P.: Green synthesis of zinc oxide nanoparticles using Atalantia monophylla leaf extracts: characterization and antimicrobial analysis. Mater. Sci. Semicond. Process. 82, 39–45 (2018)

    Article  CAS  Google Scholar 

  33. Sorbiun, M., Mehr, E.S., Ramazani, A., Fardood, S.T.: Green synthesis of zinc oxide and copper oxide nanoparticles using aqueous extract of oak fruit hull (jaft) and comparing their photocatalytic degradation of basic violet 3. Int. J. Environ. Res. 12(1), 29–37 (2018)

    Article  CAS  Google Scholar 

  34. Abdullah, F., Bakar, N.A., Bakar, M.A.: Comparative study of chemically synthesized and low temperature bio-inspired Musa acuminata peel extract mediated zinc oxide nanoparticles for enhanced visible-photocatalytic degradation of organic contaminants in wastewater treatment. J. Hazard. Mater. 406, 124779 (2021)

    Article  CAS  PubMed  Google Scholar 

  35. Kumar, P.V., Pammi, S., Kollu, P., Satyanarayana, K., Shameem, U.: Green synthesis and characterization of silver nanoparticles using Boerhaavia diffusa plant extract and their anti bacterial activity. Ind. Crops Prod. 52, 562–566 (2014)

    Article  Google Scholar 

  36. Mishra, S., Aeri, V., Gaur, P.K., Jachak, S.M.: Phytochemical, therapeutic, and ethnopharmacological overview for a traditionally important herb: Boerhavia diffusa Linn. Biomed. Res. Int. 2014, 1-19 (2014). https://doi.org/10.1155/2014/808302

    Article  Google Scholar 

  37. Nazir, S., Zaka, M., Adil, M., Abbasi, B.H., Hano, C.: Synthesis, characterisation and bactericidal effect of ZnO nanoparticles via chemical and bio-assisted (Silybum marianum in vitro plantlets and callus extract) methods: a comparative study. IET Nanobiotechnol. 12(5), 604–608 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  38. McDougall, G.J., Kulkarni, N.N., Stewart, D.: Berry polyphenols inhibit pancreatic lipase activity in vitro. Food Chem. 115(1), 193–199 (2009)

    Article  CAS  Google Scholar 

  39. Mahernia, S., Bagherzadeh, K., Mojab, F., Amanlou, M.: Urease inhibitory activities of some commonly consumed herbal medicines. Iran. J. Pharm. Res. 14(3), 943 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Zahra, S.S., Ahmed, M., Qasim, M., Gul, B., Zia, M., Mirza, B., et al.: Polarity based characterization of biologically active extracts of Ajuga bracteosa Wall. ex Benth. and RP-HPLC analysis. BMC Complement. Altern. Med. 17(1), 1–16 (2017)

    Article  Google Scholar 

  41. Zaeem, A., Drouet, S., Anjum, S., Khurshid, R., Younas, M., Blondeau, J.P., et al.: Effects of biogenic zinc oxide nanoparticles on growth and oxidative stress response in flax seedlings vs. in vitro cultures: a comparative analysis. Biomolecules 10(6), 918 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ahmed, M., Fatima, H., Qasim, M., Gul, B.: Polarity directed optimization of phytochemical and in vitro biological potential of an indigenous folklore: Quercus dilatata Lindl. ex Royle. BMC Complement. Altern. Med. 17(1), 1–16 (2017)

    Article  Google Scholar 

  43. Nazir, M., Tungmunnithum, D., Bose, S., Drouet, S., Garros, L., Giglioli-Guivarc’h, N., et al.: Differential production of phenylpropanoid metabolites in callus cultures of Ocimum basilicum L. with distinct in vitro antioxidant activities and in vivo protective effects against UV stress. J. Agric. Food Chem. 67(7), 1847–1859 (2019)

    Article  CAS  PubMed  Google Scholar 

  44. Hano, C., Addi, M., Fliniaux, O., Bensaddek, L., Duverger, E., Mesnard, F., et al.: Molecular characterization of cell death induced by a compatible interaction between Fusarium oxysporum f. sp. linii and flax (Linum usitatissimum) cells. Plant Physiol. Biochem. 46(5–6), 590–600 (2008)

    Article  CAS  PubMed  Google Scholar 

  45. Kaliraj, L., Ahn, J.C., Rupa, E.J., Abid, S., Lu, J., Yang, D.C.: Synthesis of panos extract mediated ZnO nano-flowers as photocatalyst for industrial dye degradation by UV illumination. J. Photochem. Photobiol. B Biol. 199, 111588 (2019)

    Article  CAS  Google Scholar 

  46. Hasan, M., Altaf, M., Zafar, A., Hassan, S.G., Ali, Z., Mustafa, G., Munawar, T., et al.: Bioinspired synthesis of zinc oxide nano-flowers: a surface enhanced antibacterial and harvesting efficiency. Mater. Sci. Eng. C. 119, 111280 (2021)

    Article  CAS  Google Scholar 

  47. Jan, H., Shah, M., Usman, H., Khan, A., Muhammad, Z., Hano, C., et al.: Biogenic synthesis and characterization of antimicrobial and anti-parasitic zinc oxide (ZnO) nanoparticles using aqueous extracts of the Himalayan Columbine (Aquilegia pubiflora). Front. Mater. 7, 249 (2020)

    Article  Google Scholar 

  48. Huang, J., Li, Q., Sun, D., Lu, Y., Su, Y., Yang, X., et al.: Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18(10), 105104 (2007)

    Article  Google Scholar 

  49. Henry, J., Mohanraj, K., Kannan, S., Barathan, S., Sivakumar, G.: Structural and optical properties of SnS nanoparticles and electron-beam-evaporated SnS thin films. J. Exp. Nanosci. 10(2), 78–85 (2015)

    Article  CAS  Google Scholar 

  50. Wiley, B., Sun, Y., Mayers, B., Xia, Y.: Shape-controlled synthesis of metal nanostructures: the case of silver. Chem. Eur. J. 11(2), 454–463 (2005)

    Article  CAS  PubMed  Google Scholar 

  51. Naseer, M., Aslam, U., Khalid, B., Chen, B.: Green route to synthesize zinc oxide nanoparticles using leaf extracts of Cassia fistula and Melia azadarach and their antibacterial potential. Sci. Rep. 10(1), 1–10 (2020)

    Article  Google Scholar 

  52. Rashad, M., Tekin, H., Zakaly, H.M., Pyshkina, M., Issa, S.A., Susoy, G.: Physical and nuclear shielding properties of newly synthesized magnesium oxide and zinc oxide nanoparticles. Nucl. Eng. Technol. 52(9), 2078–2084 (2020)

    Article  CAS  Google Scholar 

  53. Huang, Y., Sun, Y., Wang, W.-W., Zhang, L.: Boeravinone B a natural rotenoid exerts anticancer activity via inducing internalization and degradation of inactivated EGFR and ErbB2 in human colon cancer cells. Am. J. Transl. Res. 10(12), 4183 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Shah, M., Nawaz, S., Jan, H., Uddin, N., Ali, A., Anjum, S., et al.: Synthesis of bio-mediated silver nanoparticles from Silybum marianum and their biological and clinical activities. Mater. Sci. Eng. C. 112, 110889 (2020)

    Article  CAS  Google Scholar 

  55. Singh, B.N., Rawat, A.K.S., Khan, W., Naqvi, A.H., Singh, B.R.: Biosynthesis of stable antioxidant ZnO nanoparticles by Pseudomonas aeruginosa rhamnolipids. PLoS ONE 9(9), e106937 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  56. Das, D., Nath, B.C., Phukon, P., Dolui, S.K.: Synthesis of ZnO nanoparticles and evaluation of antioxidant and cytotoxic activity. Colloids. Surf. B Biointerfaces 111, 556–560 (2013)

    Article  CAS  PubMed  Google Scholar 

  57. Abinaya, C., Mayandi, J., Osborne, J., Frost, M., Ekstrum, C., Pearce, J.M.: Inhibition of growth of S. epidermidis by hydrothermally synthesized ZnO nanoplates. Mater. Res. Express. 4(7), 075401 (2017)

    Article  Google Scholar 

  58. Mukherjee, M.: Human digestive and metabolic lipases—a brief review. J. Mol. Catal. B Enzym. 22(5–6), 369–376 (2003)

    Article  CAS  Google Scholar 

  59. Kusirisin, W., Srichairatanakool, S., Lerttrakarnnon, P., Lailerd, N., Suttajit, M., Jaikang, C., et al.: Antioxidative activity, polyphenolic content and anti-glycation effect of some Thai medicinal plants traditionally used in diabetic patients. Med. Chem. 5(2), 139–147 (2009)

    Article  CAS  PubMed  Google Scholar 

  60. Kumar, M., Sikri, N., Chahal, S., Sharma, J., Sharma, B., Yadav, P., Bhardwaj, M., et al.: Urease inhibitory kinetic studies of various extracts and pure compounds from Cinnamomum genus. Molecules 26(13), 3803 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Nisar, M., Khan, S.A., Qayum, M., Khan, A., Farooq, U., Jaafar, H.Z., et al.: Robust synthesis of ciprofloxacin-capped metallic nanoparticles and their urease inhibitory assay. Molecules 21(4), 411 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  62. Mechchate, H., Es-Safi, I., Louba, A., Alqahtani, A.S., Nasr, F.A., Noman, O.M., Farooq, M., et al.: In vitro alpha-amylase and alpha-glucosidase inhibitory activity and in vivo antidiabetic activity of Withania frutescens L. foliar extract. Molecules 26(2), 293 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Singh, T.A., Sharma, A., Tejwan, N., Ghosh, N., Das, J., Sil, P.C.: A state of the art review on the synthesis, antibacterial, antioxidant, antidiabetic, and tissue regeneration activities of zinc oxide nanoparticles. Adv. Colloid. Interface Sci. 295, 102495 (2021)

    Article  CAS  PubMed  Google Scholar 

  64. Umrani, R.D., Paknikar, K.M.: Zinc oxide nanoparticles show antidiabetic activity in streptozotocin-induced Type 1 and 2 diabetic rats. Nanomedicine 9(1), 89–104 (2014)

    Article  CAS  PubMed  Google Scholar 

  65. Hayat, A., Haider, W., Raza, Y., Marty, J.L.: Colorimetric cholesterol sensor based on peroxidase like activity of zinc oxide nanoparticles incorporated carbon nanotubes. Talanta 143, 157–161 (2015)

    Article  CAS  PubMed  Google Scholar 

  66. Gu, B., Xu, C., Zhu, G., Liu, S., Chen, L., Wang, M., et al.: Layer by layer immobilized horseradish peroxidase on zinc oxide nanorods for biosensing. J. Phys. Chem. B. 113(18), 6553–6557 (2009)

    Article  CAS  PubMed  Google Scholar 

  67. Aula, S., Lakkireddy, S., Swamy, A., Kapley, A., Jamil, K., Tata, N.R., et al.: Biological interactions in vitro of zinc oxide nanoparticles of different characteristics. Mater. Res. Express. 1(3), 035041 (2014)

    Article  CAS  Google Scholar 

  68. Ali, S.S., Morsy, R., El-Zawawy, N.A., Fareed, M.F., Bedaiwy, M.Y.: Synthesized zinc peroxide nanoparticles (ZnO2-NPs): a novel antimicrobial, anti-elastase, anti-keratinase, and anti-inflammatory approach toward polymicrobial burn wounds. Int. J. Nanomed. 12, 6059 (2017)

    Article  CAS  Google Scholar 

  69. Jahan, I., Erci, F., Isildak, I.: Rapid green synthesis of non-cytotoxic silver nanoparticles using aqueous extracts of ‘Golden Delicious’ apple pulp and cumin seeds with antibacterial and antioxidant activity. SN Appl. Sci. 3(1), 1–14 (2021)

    Article  Google Scholar 

  70. Khalil, A.T., Ovais, M., Ullah, I., Ali, M., Shinwari, Z.K., Khamlich, S., et al.: Sageretia thea (Osbeck.) mediated synthesis of zinc oxide nanoparticles and its biological applications. Nanomedicine 12(15), 1767–1789 (2017)

    Article  CAS  PubMed  Google Scholar 

  71. Manke, A., Wang, L., Rojanasakul, Y.: Mechanisms of nanoparticle-induced oxidative stress and toxicity. Biomed. Res. Int. 2013, 1–15 (2013). https://doi.org/10.1155/2013/942916

    Article  CAS  Google Scholar 

  72. Bexiga, M.G., Varela, J.A., Wang, F., Fenaroli, F., Salvati, A., Lynch, I., et al.: Cationic nanoparticles induce caspase 3-, 7-and 9-mediated cytotoxicity in a human astrocytoma cell line. Nanotoxicology 5(4), 557–567 (2011)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

HA conceptualize, prepared, and compile the manuscript. Resources were provided by BHA, NGG and MZ. JSA helped in conceptualization the experiment and assisted in biological assays. SD, JP and CL done all the cell viability assay while BM and JI assisted during the whole experiment. AA and MN help in final editing of the article and supervision of research was done by BHA. CH, AA, SD and HB performed activities, CH and NGG reviewed the paper.

Corresponding author

Correspondence to Bilal Haider Abbasi.

Ethics declarations

Ethical approval

The current study was ethically approved by Quaid-i-azam University, Islamabad, Bioethical committee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashraf, H., Meer, B., Iqbal, J. et al. Comparative evaluation of chemically and green synthesized zinc oxide nanoparticles: their in vitro antioxidant, antimicrobial, cytotoxic and anticancer potential towards HepG2 cell line. J Nanostruct Chem 13, 243–261 (2023). https://doi.org/10.1007/s40097-021-00460-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40097-021-00460-3

Keywords

Navigation