Skip to main content
Log in

Cellulose in situ formation of three primary nanoparticles for polymer scalable colors

  • Original Research
  • Published:
Journal of Nanostructure in Chemistry Aims and scope Submit manuscript

Abstract

Polymer coloration technology has been receiving increasing attention in different fields including electronic packaging, artificial skin and 3D printing. Herein, we report a new strategy utilizing three primary nanocomposites (cellulose@Fe3O4, cellulose@FeOOH and cellulose@PB) as unique coloring components for scalable colored polymer-based composites. Taking the epoxy resin as polymer matrix for example, the as-made polymer-based composites present different colors, including red/yellow/blue colors and many spectral colors achieved by mixing the three primary nanocomposites. The nanocomposites act not only as the primary nanopigments, but also as the connected bridge to tightly stick polymer matrix through strong chemical bonding, respectively. In addition, the colored polymer-based composites show excellent opacity and UV protection. Our work offers a facile coloration approach for arbitrary colors over the whole visible spectra by mixing three primary nanocomposites at different ratios in the polymer field. With bright, uniform, and ratio-dependent color, we showcase three typical polymers to demonstrate the versatility of coloring strategy.

Graphical abstract

We have developed a simple strategy to fabricate cellulose in situ deposited three primary nanocomposites. Taking the polymer matrix for example, arbitrary color can be created by mixing them into polymer at different ratios over the whole visible spectra by dispersing three primary nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rottger, M., Domenech, T., Van der Weegen, R., Nicolay, A.B.R., Leibler, L.: High-performance vitrimers from commodity thermoplastics through dioxaborolane metathesis. Science 356, 62–65 (2017)

    Article  PubMed  Google Scholar 

  2. Tran, P., Nguyen, Q.T., Lau, K.T.: Fire performance of polymer-based composites for maritime infrastructure. Compos. B Eng. 155, 31–48 (2018)

    Article  CAS  Google Scholar 

  3. Cai, L., Peng, Y., Xu, J., Zhou, C., Wu, P., Lin, D., Fan, S., Cui, Y.: Temperature regulation in colored infrared transparent polyethylene textiles. Joule. 3, 1478–1486 (2019)

    Article  CAS  Google Scholar 

  4. Meng, D.D., Zhang, C., Liang, Y., Qiu, W.Y., Kong, F.P., He, X., Chen, M., Liang, P., Zhang, Z.H.: Electrospun cobalt Prussian blue analogue-derived nanofibers for oxygen reduction reaction and lithium-ion batteries. J. Colloid Interface Sci. 599, 280–290 (2021)

    Article  CAS  PubMed  Google Scholar 

  5. Wu, H.L., Qiu, Z.H.: Fe3O4@N-porous carbon nano rice/rGO sheet as positive electrode material for a high performance supercapattery. J. Alloy. Compd. 879, 11 (2021)

    Article  Google Scholar 

  6. Zhou, Q.Q., Wu, W., Zhou, S.Q., Xing, T.L., Sun, G., Chen, G.Q.: Polydopamine-induced growth of mineralized gamma-FeOOH nanorods for construction of silk fabric with excellent superhydrophobicity, flame retardancy and UV resistance. Chem. Eng. J. 382, 12 (2020)

    Article  Google Scholar 

  7. Gilbert, B., Frandsen, C., Maxey, E.R., Sherman, D.M.: Band-gap measurements of bulk and nanoscale hematite by soft x-ray spectroscopy. Phys. Rev. B 79, 7 (2009)

    Article  Google Scholar 

  8. Rosseinsky, D.R., Lim, H., Jiang, H.J., Chai, J.W.: Optical charge-transfer in iron(III)hexacyanoferrate(II): electro-intercalated cations induce lattice-energy-dependent ground-state energies. Inorg. Chem. 42, 6015–6023 (2003)

    Article  CAS  PubMed  Google Scholar 

  9. Choi, J.W., Kim, J.Y., Lee, W., Lee, W.H., Jang, H.D., Lee, S.B.: UV protection characteristics and fabrication of modified TiO2 nanoparticles. J. Ind. Eng. Chem. 10, 428–434 (2004)

    CAS  Google Scholar 

  10. Sedighi, A., Montazer, M., Mazinani, S.: Fabrication of electrically conductive superparamagnetic fabric with microwave attenuation, antibacterial properties and UV protection using PEDOT/magnetite nanoparticles. Mater. Des. 160, 34–47 (2018)

    Article  CAS  Google Scholar 

  11. Nilsson, H., Galland, S., Larsson, P.T., Gamstedt, E.K., Nishino, T., Berglund, L.A.: A non-solvent approach for high-stiffness all-cellulose biocomposites based on pure wood cellulose. Compos. Sci. Technol. 70(12), 1704–1712 (2010)

    Article  CAS  Google Scholar 

  12. Choi, H.Y., Lee, T.-W., Lee, S.-E., Lim, J., Jeong, Y.G.: Silver nanowire/carbon nanotube/cellulose hybrid papers for electrically conductive and electromagnetic interference shielding elements. Compos. Sci. Technol. 150, 45–53 (2017)

    Article  CAS  Google Scholar 

  13. Piltonen, P., Hildebrandt, N.C., Westerlind, B., Valkama, J.P., Tervahartiala, T., Illikainen, M.: Green and efficient method for preparing all-cellulose composites with NaOH/urea solvent. Compos. Sci. Technol. 135, 153–158 (2016)

    Article  CAS  Google Scholar 

  14. Zhang, Y., Song, P.A., Liu, H.Z., Li, Q., Fu, S.Y.: Morphology, healing and mechanical performance of nanofibrillated cellulose reinforced poly(epsilon-caprolactone)/epoxy composites. Compos. Sci. Technol. 125, 62–70 (2016)

    Article  CAS  Google Scholar 

  15. Shchipunov, Y., Postnova, I.: Cellulose mineralization as a route for novel functional materials. Adv. Funct. Mater. 28, 28 (2018)

    Article  Google Scholar 

  16. Wicklein, B., Diem, A.M., Knoeller, A., Cavalcante, M.S., Bergstroem, L., Bill, J., Burghard, Z.: Dual-fiber approach toward flexible multifunctional hybrid materials. Adv. Funct. Mater. 28, 1704274 (2018)

    Article  Google Scholar 

  17. Shahzadi, K., Zhang, X., Mohsin, I., Ge, X., Jiang, Y., Peng, H., Liu, H., Li, H., Mu, X.: Reduced graphene oxide/alumina, a good accelerant for cellulose-based artificial nacre with excellent mechanical, barrier, and conductive properties. ACS Nano 11, 5717–5725 (2017)

    Article  CAS  PubMed  Google Scholar 

  18. Shojaeiarani, J., Bajwa, D.S., Hartman, K.: Esterified cellulose nanocrystals as reinforcement in poly(lactic acid) nanocomposites. Cellulose 26, 2349–2362 (2019)

    Article  CAS  Google Scholar 

  19. de la Motte, H., Hasani, M., Brelid, H., Westman, G.: Molecular characterization of hydrolyzed cationized nanocrystalline cellulose, cotton cellulose and softwood kraft pulp using high resolution 1D and 2D NMR. Carbohydr. Polym. 85, 738–746 (2011)

    Article  Google Scholar 

  20. Fraschini, C., Chauve, G., Bouchard, J.: TEMPO-mediated surface oxidation of cellulose nanocrystals (CNCs). Cellulose 24, 2775–2790 (2017)

    Article  CAS  Google Scholar 

  21. Hoeng, F., Denneulin, A., Neuman, C., Bras, J.: Charge density modification of carboxylated cellulose nanocrystals for stable silver nanoparticles suspension preparation. J. Nanopart. Res. 17, 244 (2015)

    Article  Google Scholar 

  22. Li, Y.L., Sun, H., Zhang, Y.Y., Xu, M., Shi, S.Q.: The three-dimensional heterostructure synthesis of ZnO/cellulosic fibers and its application for rubber composites. Compos. Sci. Technol. 177, 10–17 (2019)

    Article  CAS  Google Scholar 

  23. Shi, Y.G., Jiang, R.M., Liu, M.Y., Fu, L.H., Zeng, G.J., Wan, Q., Mao, L.C., Deng, F.J., Zhang, X.Y., Wei, Y.: Facile synthesis of polymeric fluorescent organic nanoparticles based on the self-polymerization of dopamine for biological imaging. Mater. Sci. Eng. C 77, 972–977 (2017)

    Article  CAS  Google Scholar 

  24. Zhang, X.Y., Huang, Q., Liu, M.Y., Tian, J.W., Zeng, G.J., Li, Z., Wang, K., Zhang, Q.S., Wan, Q., Deng, F.J., Wei, Y.: Preparation of amine functionalized carbon nanotubes via a bioinspired strategy and their application in Cu2+ removal. Appl. Surf. Sci. 343, 19–27 (2015)

    Article  CAS  Google Scholar 

  25. Liu, S.L., Zhang, L.N., Zhou, J.P., Xiang, J.F., Sun, J.T., Guan, J.G.: Fiberlike Fe2O3 macroporous nanomaterials fabricated by calcinating regenerate cellulose composite fibers. Chem. Mater. 20, 3623–3628 (2008)

    Article  CAS  Google Scholar 

  26. Liu, Z., Wang, H.S., Li, B., Liu, C., Jiang, Y.J., Yu, G., Mu, X.D.: Biocompatible magnetic cellulose-chitosan hybrid gel microspheres reconstituted from ionic liquids for enzyme immobilization. J. Mater. Chem. 22, 15085–15091 (2012)

    Article  CAS  Google Scholar 

  27. Sun, N., Swatloski, R.P., Maxim, M.L., Rahman, M., Harland, A.G., Haque, A., Spear, S.K., Daly, D.T., Rogers, R.D.: Magnetite-embedded cellulose fibers prepared from ionic liquid. J. Mater. Chem. 18, 283–290 (2008)

    Article  CAS  Google Scholar 

  28. Zhang, M., Han, C., Cao, W.-Q., Cao, M.-S., Yang, H.-J., Yuan, J.: A nano-micro engineering nanofiber for electromagnetic absorber. Green shielding and sensor. Nano-Micro Lett. 13, 27 (2020)

    Article  CAS  Google Scholar 

  29. Xia, X.H., Chao, D.L., Zhang, Y.Q., Shen, Z.X., Fan, H.J.: Three-dimensional graphene and their integrated electrodes. Nano Today 9, 785–807 (2014)

    Article  CAS  Google Scholar 

  30. Qiu, B., Xing, M., Zhang, J.: Recent advances in three-dimensional graphene based materials for catalysis applications. Chem. Soc. Rev. 47, 2165–2216 (2018)

    Article  CAS  PubMed  Google Scholar 

  31. Zhang, Y., Li, J., Ma, N., Meng, Z., Sui, G.: Processing cellulose@Fe3O4 into mechanical, magnetic and biodegradable synapse-like material. Compos. B Eng. 177, 1077432 (2019)

    Article  Google Scholar 

  32. Ou, Y., Qiu, X., Xu, Z., Lin, J., Liao, D.: Synthesis of nanoscale Fe2O3 particles by homogenous precipitation method. J. Xiamen Univ. 43, 882–885 (2004)

    CAS  Google Scholar 

  33. Zhang, H.T., Huang, H., Sun, R., Huang, J.X.: Preparation of micron-size monodispersed PS/P(St/MAA) microspheres by seeded dispersion polymerization. J. Appl. Polym. Sci. 99, 3586–3591 (2006)

    Article  CAS  Google Scholar 

  34. Zhang, X., Si, Y.F., Mo, J.L., Guo, Z.G.: Robust micro-nanoscale flowerlike ZnO/epoxy resin superhydrophobic coating with rapid healing ability. Chem. Eng. J. 313, 1152–1159 (2017)

    Article  CAS  Google Scholar 

  35. Chen, Y., Zhang, H.B., Wang, M., Qian, X.A., Dasari, Z.ZYu.: Phenolic resin-enhanced three-dimensional graphene aerogels and their epoxy nanocomposites with high mechanical and electromagnetic interference shielding performances. Compos. Sci. Technol. 152, 254–262 (2017)

    Article  CAS  Google Scholar 

  36. Jiang, J.J., Deng, G.L., Chen, X., Gao, X.Y., Guo, Q., Xu, C.M., et al.: On the successful chemical recycling of carbon fiber/epoxy resin composites under the mild condition. Compos. Sci. Technol. 151, 243–251 (2017)

    Article  CAS  Google Scholar 

  37. Kontturi, E., Laaksonen, P., Linder, M.B., Nonappa, A.H., Groschel, O.J., Rojas, O.I.: Advanced materials through assembly of nanocelluloses. Adv. Mater. 30, 39 (2018)

    Article  Google Scholar 

  38. Gui, Z., Zhu, H.L., Gillette, E., Han, X.G., Rubloff, G.W., Hu, L.B., Lee, S.B.: Natural cellulose fiber as substrate for supercapacitor. ACS Nano 7, 6037–6046 (2013)

    Article  CAS  PubMed  Google Scholar 

  39. Song, J.W., Chen, C.J., Yang, Z., Kuang, Y.D., Li, T., Li, Y.J., Huang, H., Kierzewski, I., Liu, B.Y., He, S.M., Gao, T.T., Yuruker, S.U., Gong, A., Yang, B., Hu, L.B.: Highly compressible, anisotropic aerogel with aligned cellulose nanofibers. ACS Nano 12, 140–147 (2018)

    Article  CAS  PubMed  Google Scholar 

  40. Chen, Y., Wang, H., Dang, B., Xiong, Y., Yao, Q., Wang, C., Sun, Q., Jin, C.: Bio-Inspired nacre-like nanolignocellulose-poly (vinyl alcohol)-TiO2 composite with superior mechanical and photocatalytic properties. Sci. Rep. 7, 1823 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ren, P.-G., Wang, H., Yan, D.-X., Huang, H.-D., Wang, H.-B., Zhang, Z.-P., Xu, L., Li, Z.-M.: Ultrahigh gas barrier poly (vinyl alcohol) nanocomposite film filled with congregated and oriented Fe3O4@GO sheets induced by magnetic-field. Compos. A Appl. Sci. Manuf. 97, 1–9 (2017)

    Article  CAS  Google Scholar 

  42. Ishikawa, T., Kumagai, M., Yasukawa, A., Kandori, K., Nakayama, T., Yuse, F.: Influences of metal ions on the formation of gamma-FeOOH and magnetite rusts. Corros. Sci. 44, 1073–1086 (2002)

    Article  CAS  Google Scholar 

  43. Cao, L., Liu, Y., Zhang, B., Lu, L.: In situ controllable growth of prussian blue nanocubes on reduced graphene oxide: facile synthesis and their application as enhanced nanoelectrocatalyst for H2O2 reduction. ACS Appl. Mater. Interfaces. 2, 2339–2346 (2010)

    Article  CAS  PubMed  Google Scholar 

  44. Tan, Y., Liu, Y.Z., Chen, W.S., Liu, Y.X., Wang, Q.W., Li, J., Yu, H.P.: Homogeneous dispersion of cellulose nanofibers in waterborne acrylic coatings with improved properties and unreduced transparency. ACS Sustain. Chem. Eng. 4, 3766–3772 (2016)

    Article  CAS  Google Scholar 

  45. Wang, X., Chen, X., Cowling, S., Wang, L., Liu, X.: Polymer brushes tethered ZnO crystal on cotton fiber and the application on durable and washable UV protective clothing. Adv. Mater. Interfaces. 6, 1900564 (2019)

    Article  Google Scholar 

  46. Zhang, Y., Zhang, Z., Li, J., Sui, G.: (3-aminopropyl) triethoxysilane grafted poly(dopamine)@Fe3O4 nanoparticles and their epoxy composites for functional application. Composites B 169, 148–156 (2019)

    Article  CAS  Google Scholar 

  47. Wan, X., Zhan, Y., Long, Z., Zeng, G., Ren, Y., He, Y.: High-performance magnetic poly (arylene ether nitrile) nanocomposites: co-modification of Fe3O4 via mussel inspired poly(dopamine) and amino functionalized silane KH550. Appl. Surf. Sci. 425, 905–914 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Chinese Academy of Sciences for the Joint Austrian-Chinese Cooperative R&D Projects FFG & CAS (No.GJHZ2045), the National Natural Science Foundation of China (No. U20A20284).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shan Shi or Guoxin Sui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13084 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Xu, Z., Meng, Z. et al. Cellulose in situ formation of three primary nanoparticles for polymer scalable colors. J Nanostruct Chem 13, 439–449 (2023). https://doi.org/10.1007/s40097-022-00469-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40097-022-00469-2

Keywords

Navigation