Skip to main content
Log in

A numerical method to solve fractional pantograph differential equations with residual error analysis

  • Original Paper
  • Published:
Mathematical Sciences Aims and scope Submit manuscript

Abstract

In this study, we have introduced a fractional series solution method to solve fractional pantograph differential equations numerically. The method is constructed by collocation approach and Bernstein polynomials. Each term of the equation is converted into a matrix form by the fractional Bernstein series. Then, the problems are reduced into a set of algebraic equations including unknown Bernstein coefficients by using the collocation nodes. Hence, by determining the coefficients, the approximate solution is obtained. For the error analysis of this method, we give two techniques which estimate or bound the absolute error. To demonstrate the efficiency and applicability of the method, some illustrative examples are given. We also compare the method with some known methods in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hilfer, R.: Application Of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    Book  MATH  Google Scholar 

  2. Magin, R.L.: Fractional calculus models of complex dynamics in biological tissues. Comput. Math. Appl. 59(5), 1586–1593 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Sabatier, J., Lanusse, P., Melchior, P., Oustaloup, A.: Fractional Order Differentiation and Robust Control Design, CRONE. Springer, H-infinity and Motion Control (2015)

    Book  MATH  Google Scholar 

  4. He, J.-H.: Variational iteration method-a kind of non-linear analytical technique: some examples. Int. J. Non-Linear Mech. 34(4), 699–708 (1999)

    Article  MATH  Google Scholar 

  5. Wu, G.C., Baleanu, D.: Variational iteration method for the Burgers flow with fractional derivatives new Lagrange multipliers. Appl. Math. Model. 37(9), 6183–6190 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Baleanu, D., Wu, G.C., Duan, J.S.: Some analytical techniques in fractional calculus: realities and challenges. In: Tenreiro-Machado, J.A., Luo, A.C.J. (eds.) ) Discontinuity and complexity in nonlinear physical systems. Springer, New York (2014)

    Google Scholar 

  7. Saha Ray, S., Bera, R.K.: An approximate solution of a nonlinear fractional differential equation by Adomian decomposition method. Appl. Math. Comput. 67(1), 561–571 (2005)

    MathSciNet  MATH  Google Scholar 

  8. Garra, R., Polito, F.: Analytic solutions of fractional differential equations by operational methods. Appl. Math. Comput. 218(21), 10642–10646 (2012)

    MathSciNet  MATH  Google Scholar 

  9. Dattoli, G., Migliorati, M., Khan, S.: Solutions of integro-differential equations and operatorial methods. Appl. Math Comput. 186, 302–308 (2007)

    MathSciNet  MATH  Google Scholar 

  10. Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 172(1), 65–77 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Sun, H., Chen, W., Li, C., Chen, Y.: Fractional differential models for anomalous diffusion. Phys. A 389(14), 2719–2724 (2010)

    Article  Google Scholar 

  12. Diethelm, K., Ford, N.J., Freed, A.D.: A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29(1), 3–22 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Deng, W.: Short memory principle and a predictor-corrector approach for fractional differential equations. J. Comput. Appl. Math. 206(1), 174–188 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Li, X., Xu, C.: Existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation. Commun. Comput. Phys. 8(5), 10–16 (2010)

    MathSciNet  Google Scholar 

  15. Zayernouri, M., Karniadakis, G.E.: Fractional spectral collocation method. SIAM J. Sci. Comput. 36(1), 40–62 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Aslan, İ: Analytic investigation of a reaction-diffusion brusselator model with the time-space fractional derivative. Int. J. Nonlinear Sci. Numer. Simul. 15(2), 149–155 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Saadatmandi, A., Dehghan, M.: A new operational matrix for solving fractional-order differential equations. Comput. Math. Appl. 59(3), 1326–1336 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Doha, E.H., Bhrawy, A.H., Ezz-Eldien, S.S.: A new Jacobi operational matrix: an application for solving fractional differential equations. Appl. Math. Model. 36(10), 4931–4943 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dai, C.Q., Wang, Y.Y.: Exact traveling wave solutions of the discrete nonlinear Schrödinger equation and the hybrid lattice equation obtained via the exp-function method. Physica Scripta. 78, 1–6 (2008)

    Article  Google Scholar 

  20. Ma, W.X., You, Y.: Rational solutions of the Toda lattice equation in Casoratian form. Chaos Soliton Fract. 22, 395–406 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Zhu, S.D., Chu, Y.M., Qiu, S.L.: The homotopy perturbation method for discontinued problems arising in nanotechnology. Comput. Math. Appl. 58, 2398–2401 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Yang, P., Chen, Y., Li, Z.B.: ADM-Padé technique for the nonlinear lattice equations. Appl. Math. Comput. 210, 362–375 (2009)

    MathSciNet  MATH  Google Scholar 

  23. Hu, X.B., Ma, W.X.: Application of Hirota’s bilinear formalism to the Toeplitz lattice-some special soliton-like solutions. Phys. Lett. A 293, 161–165 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhang, S., Dong, L., Ba, J.M., Sun, Y.N.: The (G′/G)-expansion method for nonlinear differential-difference equations. Phys. Lett. A. 373, 905–910 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Aslan, İ: An analytic approach to a class of fractional differential-difference equations of rational type via symbolic computation. Math. Methods Appl. Sci. 38(1), 27–36 (2013). https://doi.org/10.1002/mma.3047

    Article  MathSciNet  MATH  Google Scholar 

  26. Aslan, İ: Exact Solutions of a Fractional-Type Differential-Difference Equation Related to Discrete MKdV Equation. Commun. Theor. Phys. 61(5), 595–599 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Aslan, İ: Symbolic computation of exact solutions for fractional differential-difference equation models. Nonlinear Anal. Model. Control. 20(1), 132–144 (2014)

    MathSciNet  MATH  Google Scholar 

  28. Saadatmandi, A., Dehghan, M.: Numerical solution of the higher-order linear Fredholm integro-differential-difference equation with variable coefficients. Comput. Math. Appl. 59, 2996–3004 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Chen, Y., Moore, K.L.: Analytical stability bound for a class of delayed fractional-order dynamic systems. Nonlinear Dyn. 29, 191–200 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lazarević, M.P., Spasić, A.M.: Finite-time stability analysis of fractional order time-delay systems: Gronwall’s approach. Math. Comput. Model. 49, 475–481 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kaslik, E., Sivasundaram, S.: Analytical and numerical methods for the stability analysis of linear fractional delay differential equations. J. Comput. Appl. Math. 236(16), 4027–4041 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Abbas, S.: Existence of solutions to fractional order ordinary and delay differential equations and applications. Electron. J. Differ. Equ. 9, 1–11 (2011)

    MathSciNet  Google Scholar 

  33. Jalilian, Y., Jalilian, R.: Existence of solution for delay fractional differential equations. Mediterr. J. Math. 10, 1731–1747 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ghasemi, M., Jalilian, Y., Trujillo, J.: Existence and numerical simulation of solutions for nonlinear fractional pantograph equations. Inter. J. Comput. Math. 94(10), 2041–2062 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  35. Morgado, M.L., Ford, N.J., Lima, P.M.: Analysis and numerical methods for fractional differential equations with delay. J. Comput. Appl. Math. 252, 159–168 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Moghaddam, B.P., Mostaghim, Z.S.: A numerical method based on finite difference for solving fractional delay differential equations. J. Taibah Univ. Sci. 7, 120–127 (2013)

    Article  Google Scholar 

  37. Wang, Z.: A numerical method for delayed fractional-order differential equations. J. Appl. Math. 2013, 1–7 (2013)

    MathSciNet  Google Scholar 

  38. Khader, M.M., Hendy, A.S.: The approximate and exact solutions of the fractional-order delay differential equations using Legendre pseudospectral method. Int. J. Pure. Appl. Math. 74, 287–297 (2012)

    MATH  Google Scholar 

  39. Saeed, U., Rehman, M.: Hermite wavelet method for fractional delay differential equations. J. Differ Equ. 2014, 1–9 (2014)

    Google Scholar 

  40. Hashemi, M., Atangana, A., Hajikhah, S.: Solving fractional pantograph delay equations by an effective computational method. Math Comput Simul. 177, 295–305 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  41. Bhrawy, A., Al-Zahrani, A., Alhamed, Y., Baleanu, D.: A new generalized Laguerre-Gauss collocation scheme for numerical solution of generalized fractional pantograph equations. Rom. J. Phys. 59(7–8), 646–657 (2014)

    MATH  Google Scholar 

  42. Ghasemi, M., Fardi, M., Ghaziani, R.K.: Numerical solution of nonlinear delay differential equations of fractional order in reproducing kernel Hilbert space. Appl. Math. Comput. 268, 815–831 (2015)

    MathSciNet  MATH  Google Scholar 

  43. Isah, A., Phang, C., Phang, P.: Collocation method based on genocchi operational matrix for solving generalized fractional pantograph equations. Int. J. Differ. Equ. Appl. (2017). https://doi.org/10.1155/2017/2097317

    Article  MATH  Google Scholar 

  44. Jafari, H., Mahmoudi, M., Noori Skandari, M.H.: A new numerical method to solve pantograph delay differential equations with convergence analysis. Adv. Differ. Equ. 129, 1–12 (2021)

    Google Scholar 

  45. Chen, X., Wang, L.: The variational iteration method for solving a neutral functional-differential equation with proportional delays. Comput. Math. Appl. 59, 2696–2702 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  46. Rahimkhani, P., Ordokhani, Y., Babolian, E.: Numerical solution of fractional pantograph differential equations by using generalized fractional-order Bernoulli wavelet. J. Comput. Appl. Math. 309, 493–510 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  47. Vichitkunakorn, P., Vo, T.N., Razzaghi, M.: A numerical method for fractional pantograph differential equations based on Taylor wavelets. Trans. Inst. Meas. Control. 42(7), 1334–1344 (2020)

    Article  Google Scholar 

  48. Nemati, S., Lima, P., Sedaghat, S.: An effective numerical method for solving fractional pantograph differential equations using modification of hat functions. Appl. Numer. Math. 131, 174–189 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  49. Rabiei, K., Ordokhani, Y.: Solving fractional pantograph delay differential equations via fractional-order Boubaker polynomials. Eng. Comput. 35, 1431–1441 (2019)

    Article  Google Scholar 

  50. Brunner, H., Huang, Q., Xie, H.: Discontinuous galerkin methods for delay differential equations of pantograph type. SIAM J. Numer. Anal. 48(5), 1944–1967 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  51. Bataineh, A.S., Al-Omari, A.A., Isik, O.R., Hashim, I.: Multistage Bernstein collocation method for solving strongly nonlinear damped systems. J. Vib. Control 25(1), 122–131 (2019)

    Article  MathSciNet  Google Scholar 

  52. Alshbool, M.H.T., Bataineh, A.S., Hashim, I., Işık, O.R.: Solution of fractional-order differential equations based on the operational matrices of new fractional Bernstein functions. J. King Saud Univ.-Sci. 29(1), 1–18 (2017)

    Article  Google Scholar 

  53. Podlubny, I.: Fractional differential equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  54. Caputo, M.: Linear models of dissipation whose q is almost frequency independent-II. Geophys. J. Int. 13(5), 529–539 (1967)

    Article  Google Scholar 

  55. Vivek, D., Kanagarajan, K., Harikrishnan, S.: Existence and uniqueness results for pantograph equations with generalized fractional derivative. J. Nonlinear Anal. Appl. 2018(2), 151–157 (2018)

    MATH  Google Scholar 

  56. Bellen, A., Zennaro, M.: Numerical methods for delay differential equations. Numerical mathematics and scientific computation. The Clarendon Press, New York (2003)

    Book  MATH  Google Scholar 

  57. Wang, W.S., Li, S.F.: On the one-leg—method for solving nonlinear neutral functional differential equations. Appl. Math. Comput. 193, 285–301 (2007)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the referees and the editor for a careful checking of the details and for helpful comments that improved this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elcin Gokmen.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gokmen, E., Isik, O.R. A numerical method to solve fractional pantograph differential equations with residual error analysis. Math Sci 16, 361–371 (2022). https://doi.org/10.1007/s40096-021-00426-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40096-021-00426-0

Keywords

Navigation