Introduction and preliminaries

Fixed point theory plays an important role in functional and nonlinear analysis. Banach [1] proved a significant result for contraction mappings. Afterward, a large number of fixed point results have been established by various authors and they showed different generalizations of the Banach’s results, see for example ([2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28]).

On the other hand, Czerwik [26, 27] gave a generalization of the famous Banach fixed point theorem in so-called b-metric spaces. For some results on b-metric spaces, see ([17,18,19,20,21,22,23,24,25, 28]) and related references therein.

Definition 1

[18] Let \(\omega \) be a non-empty set. A function \(\check{d}:\omega \times \omega \rightarrow [0,\infty )\) is said to be a metric if for all \(\zeta ,\eta ,\upsilon \in \omega \), we have

  1. (1)

    \(\check{d}(\zeta ,\eta )=0\) if and only if \(x=y;\)

  2. (2)

    \(\check{d}(\zeta ,\eta )=\check{d}(\eta ,\zeta )\);

  3. (3)

    \(\check{d}(\zeta ,\eta )\le \check{d}(\zeta ,\upsilon )+\check{d} (\upsilon ,\eta ).\)

In this case, the pair \((\omega ,\check{d})\) is called a metric space (or for short MS).

Definition 2

[27] Let \(\omega \) be a non-empty set and \(\varrho \ge 1\in \left( -\infty ,\infty \right) \). A function \(\check{d}_{b}:\omega \times \omega \rightarrow [0,\infty )\) is said to be a b-metric if for all \(\zeta ,\eta ,\upsilon \in \omega \), we have

  1. (1)

    \(\check{d}_{b}(\zeta ,\eta )=0\) if and only if \(x=y;\)

  2. (2)

    \(\check{d}_{b}(\zeta ,\eta )=\check{d}_{b}(\eta ,\zeta )\);

  3. (3)

    \(\check{d}_{b}(\zeta ,\eta )\le \varrho \left[ \check{d}_{b}(\zeta ,\upsilon )+\check{d}_{b}(\upsilon ,\eta )\right] .\)

In this case, the pair \((\omega ,\check{d}_{b})\) is called a b-metric space with constant \(\varrho \) (or for short bMS).

Note that the concept of convergence in such spaces is similar to that of the standard metric spaces. The b-metric space \((\omega ,\check{d}_{b})\) is called complete if every Cauchy sequence of elements from \((\omega , \check{d}_{b})\) is convergent. In general, a b-metric is not a continuous functional. If b-metric \(\check{d}_{b}\) is continuous, then every convergent sequence has a unique limit.

Theorem 3

[10] Let\((\omega ,\check{d})\)be a compact MS and let\({\hat{S}}:\omega \longrightarrow \omega \). Assume that\(\forall \zeta ,\eta \in \omega \)with\(\zeta \ne \eta \),

$$\begin{aligned} \frac{1}{2}\check{d}\left( \zeta ,S\left( \zeta \right) \right)<\check{d} (\zeta ,\eta )\Longrightarrow \check{d}\left( S\left( \zeta \right) ,S\left( \eta \right) \right) <\check{d}(\zeta ,\eta ). \end{aligned}$$

Then \({\hat{S}}\)has a unique fixed point in \(\omega \).

Jleli and Samet [3, 4] introduced the notion of \(\theta \)-contraction.

Definition 4

Let \(\left( \omega ,\check{d}\right) \) be a MS. A mapping \(\check{T} :\omega \rightarrow \omega \) is said to be a \(\theta \)-contraction, if there exist a constant \(k\in \left( 0,1\right) \) and \(\theta \in \Theta \) such that

$$\begin{aligned}&\zeta ,\eta \in \omega ,\check{d}(\check{T}\left( \zeta \right) ,\check{T} \left( \eta \right) )\ne 0\\&\quad \Longrightarrow \theta \left( \check{d}(\check{T} \left( \zeta \right) ,\check{T}\left( \eta \right) )\right) \le \left[ \theta \left( \check{d}(\zeta ,\eta \right) \right] ^{k}, \end{aligned}$$

where \(\Theta \) is the set of functions \(\theta :\left( 0,\infty \right) \longrightarrow \left( 1,\infty \right) \) satisfying the following conditions:

\((\Theta 1)\):

\(\theta \) is non-decreasing,

\((\Theta 2)\):

for each sequence ,

\((\Theta 3)\):

there exist \(r\in \left( 0,1\right) \) and \(\ell \in \left( 0,\infty \right] \) such that

\((\Theta 4)\):

\(\theta \) is continuous.

Jleli and Samet [3] established the fixed point theorem as follows:

Theorem 5

[3] Let \(\left( \omega ,\check{d}\right) \)be a complete MS and\( \check{T}:\omega \rightarrow \omega \)be a\(\theta \)-contraction. Then\( \check{T}\)has a unique fixed point.

Very recently, Liu et al. [6] introduced the notion of (\(\varUpsilon ,\varLambda \))-Suzuki contractions.

Definition 6

Let \(\left( \omega ,\check{d}\right) \) be a MS. A mapping \(\check{T} :\omega \rightarrow \omega \) is said to be a \(\left( \varUpsilon ,\varLambda \right) \)-Suzuki contraction, if there exist a comparison function \( \varUpsilon \) and \(\varLambda \in \varPhi \) such that, for all, \(\zeta ,\eta \in \omega \) with \(\check{T}\left( \zeta \right) \ne \check{T}\left( \eta \right) \)

$$\begin{aligned}&\frac{1}{2}\check{d}\left( \zeta ,\check{T}\left( \zeta \right) \right) < \check{d}\left( \zeta ,\eta \right) \\&\quad \Longrightarrow \varLambda \left( \check{d} \left( \check{T}\left( \zeta \right) ,\check{T}\left( \eta \right) \right) \right) \le \varUpsilon \left[ \varLambda \left( U\left( \zeta ,\eta \right) \right) \right] , \end{aligned}$$

where

$$\begin{aligned} U\left( \zeta ,\eta \right)& = \max \left\{ d\left( \zeta ,\eta \right) ,d\left( \zeta ,\check{T}\left( \zeta \right) \right) ,d\left( \eta ,\check{T }\left( \eta \right) \right) \right. ,\\&\quad \left. \frac{d\left( \zeta ,T\left( \eta \right) \right) +d\left( \eta ,T\left( \zeta \right) \right) }{2}\right\} , \end{aligned}$$

\(\varPhi \) is the set of functions \(\varLambda :\left( 0,\infty \right) \longrightarrow \left( 0,\infty \right) \) satisfying the following conditions:

\((\varPhi 1)\):

\(\varLambda \) is non-decreasing,

\((\varPhi 2)\):

for each sequence ,

\((\varPhi 3)\):

\(\varLambda \) is continuous.

And as in [2], a function \(\varUpsilon :\left( 0,\infty \right) \longrightarrow \left( 0,\infty \right) \) is called a comparison function if it satisfies the following conditions:

  1. (1)

    \(\psi \) is monotone increasing, that is, ,

  2. (2)

    for all ţ\(\,>0\) , where \(\varUpsilon ^{n}\) stands for the nth iterate of \(\psi .\)

Clearly, if \(\varUpsilon \) is a comparison function, then for each \(>0\).

Lemma 7

[6] Let\(\varLambda :\left( 0,\infty \right) \longrightarrow \left( 0,\infty \right) \)be a non-decreasing and continuous function withandbe a sequence in\(\left( 0,\infty \right) \). Then,

Theorem 8

[8] Let\((\omega ,\check{d})\)be a complete MS and\(\check{S}:\omega \longrightarrow CB(\omega )\)be a multivalued mapping, where\(CB(\omega )\)is the family of all non-empty closed and bounded subsets of\(\omega \). If\( \check{S}\)is a multivalued contraction, that is, if there exists\(\lambda \in \left[ 0,1\right) \)such that

$$\begin{aligned} H\left( \check{S}\left( \zeta \right) ,\check{S}\left( \eta \right) \right) \le \lambda \check{d}(\zeta ,\eta ),{\text { all }}\zeta ,\eta \in \omega . \end{aligned}$$

Then\(\check{S}\)has a fixed point\(\zeta ^{*}\in \omega \)such that\( \zeta ^{*}\in \check{S}\left( \zeta ^{*}\right) \) .

Definition 9

[9] Let \(\left( \omega ,\check{d}\right) \) be a MS. Let \(\check{S} :\omega \longrightarrow CB(\omega )\) be a multivalued mapping. Then \(\check{S }\) is said to be a generalized multivalued-\({\mathrm{F}}\)-contraction if there exist \(\hbox {-}{\mathrm{F}}\in {\mathcal {F}}\) and \(\vartheta >0\) such that for all \(\zeta ,\eta \in \omega ,\)

$$\begin{aligned}&H\left( \check{S}\left( \zeta \right) ,\check{S}\left( \eta \right) \right) >0 \\&\quad \Longrightarrow \vartheta +\hbox {-}{\mathrm{F}}\left( H\left( \check{S}\left( \zeta \right) ,\check{S}\left( \eta \right) \right) \right) \le \hbox {-}{\mathrm{F}}\left( U\left( \zeta ,\eta \right) \right) , \end{aligned}$$

where

$$\begin{aligned} U\left( \zeta ,\eta \right)&=\,\,\max \left\{ \check{d}(\zeta ,\eta ),D\left( \zeta ,\check{S}\left( \zeta \right) \right) ,D\left( \eta ,\check{S}\left( \eta \right) \right) \right. ,\\&\quad \left. \frac{D\left( \zeta ,\check{S}\left( \eta \right) \right) +D\left( \eta ,\check{S}\left( \zeta \right) \right) }{2}\right\} . \end{aligned}$$

HanÇer et al. [7] (see also [5]) extended the concept of \( \theta \)-contraction to multivalued mappings as follows.

Definition 10

[7] Let \(\left( \omega ,\check{d}\right) \) be a metric space, \(\check{S }:\omega \longrightarrow CB(\omega )\) and \(\theta \in \Theta .\) Then \(\check{ S}\) is said to be a multivalued \(\theta \)- contraction if there exists a constant \(k\in \left[ 0,1\right) \) such that

$$\begin{aligned} \theta \left( H\left( \check{S}\left( \zeta \right) ,\check{S}\left( \eta \right) \right) \right) \le \left[ \theta \left( \check{d}(\zeta ,\eta )\right) \right] ^{k}, \end{aligned}$$

for all \(\zeta ,\eta \in \omega ,\) with \(H\left( \check{S}\left( \zeta \right) ,\check{S}\left( \eta \right) \right) >0.\)

From now on, let \((\omega ,\check{d}_{b})\) be a bMS. Let \(CB_{b}(\omega )\) denote the family of all bounded and closed sets in \(\omega \). For \( \zeta \in \omega \) and \(A,B\in CB_{b}(\omega )\), we define

$$\begin{aligned} D_{b}(\zeta ,A)=\underset{I\in A}{\inf }\check{d}_{b}(\zeta ,I){\text { and }} D_{b}(A,B)=\underset{I\in A}{\sup }D_{b}(I,B). \end{aligned}$$

Define a mapping \(H_{b}:CB_{b}(\omega )\times CB_{b}(\omega )\longrightarrow \left[ 0,\infty \right) \) by

$$\begin{aligned} H_{b}(A,B)=\max \left\{ \underset{\zeta \in A}{\sup }D_{b}(\zeta ,B), \underset{\eta \in B}{\sup }D_{b}(\eta ,A)\right\} , \end{aligned}$$

for every \(A,B\in CB_{b}(\omega )\). Then the mapping \(H_{b}\) is a b-metric, and it is called a Hausdorff b-metric induced by a b-metric space \( (\omega ,\check{d}_{b})\).

Lemma 11

[26] Let\((\omega ,\check{d})\)be a bMS. For any\(A,B,C\in CB_{b}(\omega )\)and any\(\zeta ,\eta \in \omega \), we have the following.

  1. (1)

    \(D_{b}(\zeta ,B)\le \check{d}_{b}(\zeta ,b)\) for any \(b\in B;\)

  2. (2)

    \(D_{b}(\zeta ,B)\le H_{b}(A,B);\)

  3. (3)

    \(D_{b}(\zeta ,A)\le s\left[ \check{d}_{b}(\zeta ,\eta )+D_{b}(\eta ,B) \right] ;\)

  4. (4)

    \(D_{b}(\zeta ,A)=0\Leftrightarrow \zeta \in A;\)

  5. (5)

    \(H_{b}(A,B)\le s\left[ H_{b}(A,C)+H_{b}(C,B)\right] .\)

Lemma 12

[26] LetAandBbe non-empty closed and bounded subsets of a bMS\( (\omega ,\check{d}_{b})\)and\(q>1.\)Then for all\(a\in A\), there exists\( b\in B\)such that\(\check{d}_{b}\left( a,b\right) \le qH_{b}(A,B)\).

Definition 13

[18] Let \((\omega ,\check{d}_{b})\) be a bMS, the b-metric–metric d is called \( *\)-continuous if for every \(A\in CB_{b}(\omega )\), every \(\zeta \in \omega \) and every sequence \(\left\{ \zeta _{n}\right\} _{n\in {\mathbb {N}} }\) of elements from \(\omega \) such that \(\lim _{n\rightarrow \infty }\zeta _{n}=\zeta \), we have

$$\begin{aligned} \lim _{n\rightarrow \infty }D_{b}(\zeta _{n},A)=D_{b}(\zeta ,A). \end{aligned}$$

Now we introduce the following definitions.

Definition 14

Let \(\left( \omega ,\check{d}_{b}\right) \) be a bMS. Let \(\check{S},\check{ T}:\omega \longrightarrow CB_{b}\left( \omega \right) \). Then the pair \( \left( \check{S},\check{T}\right) \) is called a generalized multivalued \( \left( \varUpsilon ,\varLambda \right) \)-contraction if there exist a comparison function \(\varUpsilon \) and \(\varLambda \in \varPhi \) such that for all \(\zeta ,\eta \in \omega ,\)

$$\begin{aligned}&H_{b}\left( \check{S}\left( \zeta \right) ,\check{T}\left( \eta \right) \right) >0 \nonumber \\&\quad \Longrightarrow \varLambda \left( s^{3}H_{b}\left( \check{S}\left( \zeta \right) ,\check{T}\left( \eta \right) \right) \right) \le \varUpsilon \left( \varLambda \left( U_{b}\left( \zeta ,\eta \right) \right) \right) , \end{aligned}$$
(1)

where

$$\begin{aligned} U_{b}\left( \zeta ,\eta \right)&=\,\, \max \left\{ \check{d}_{b}(\zeta ,\eta ),D_{b}\left( \zeta ,\check{S}\left( \zeta \right) \right) ,D_{b}\left( \eta ,\check{T}\left( \eta \right) \right) ,\right. \nonumber \\&\left. \frac{D_{b}\left( \zeta ,\check{T} \left( \eta \right) \right) +D_{b}\left( \eta ,\check{S}\left( \zeta \right) \right) }{2}\right\} . \end{aligned}$$
(2)

Definition 15

Let \(\left( \omega ,\check{d}_{b}\right) \) be a bMS. Let \(\check{S},\check{ T}:\omega \longrightarrow CB_{b}\left( \omega \right) \). Then the pair \( \left( \check{S},\check{T}\right) \) is called a generalized multivalued \( \left( \varUpsilon ,\varLambda \right) \)-Suzuki contraction if there exist a comparison function \(\varUpsilon \) and \(\varLambda \in \varPhi \) such that for all \( \zeta ,\eta \in \omega \), with \(\check{S}\left( \zeta \right) \ne \check{T} \left( \eta \right) ,\)

$$\begin{aligned}&\frac{1}{2s}\min \left\{ D_{b}\left( \zeta ,\check{S}\left( \zeta \right) \right) ,D_{b}\left( \eta ,\check{T}\left( \eta \right) \right) \right\} < \check{d}_{b}(\zeta ,\eta ) \nonumber \\&\quad \Longrightarrow \varLambda \left( s^{3}H_{b}\left( \check{S}\left( \zeta \right) ,\check{T}\left( \eta \right) \right) \right) \le \varUpsilon \left( \varLambda \left( U_{b}\left( \zeta ,\eta \right) \right) \right) , \end{aligned}$$
(3)

and \(U_{b}\left( \zeta ,\eta \right) \) is defined as in (2).

Main results

Theorem 16

Let \(\left( \omega ,\check{d}_{b}\right) \) be a complete bMS and \(\check{S}, \check{T}:\omega \longrightarrow CB_{b}\left( \omega \right) \) be a generalized multivalued \(\left( \varUpsilon ,\varLambda \right) \) -Suzuki contraction. Suppose that

  1. (1)

    \(\varUpsilon \) is continuous

  2. (2)

    \(\check{d}_{b}\)is\(*\)-continuous.

Then \(\check{S}\) and \(\check{T}\) have a common fixed point \(\zeta ^{*}\in \omega .\)

Proof

Let \(\zeta _{0}\in \omega \). Choose \(\zeta _{1}\in \check{S}\left( \zeta _{0}\right) .\) Assume that \(D_{b}\left( \zeta _{0},\check{S}\left( \zeta _{0}\right) \right) \), \(D_{b}\left( \zeta _{1},T\left( \zeta _{1}\right) \right) >0,\) therefore,

$$\begin{aligned} \frac{1}{2s}\min \left\{ D_{b}\left( \zeta _{0},\check{S}\left( \zeta _{0}\right) \right) ,D\left( \zeta _{1},\check{T}\left( \zeta _{1}\right) \right) \right\} <\check{d}_{b}\left( \zeta _{0},\zeta _{1}\right) \end{aligned}$$
(4)

By Lemma 18,

$$\begin{aligned} 0<D_{b}\left( \zeta _{1},\check{T}\left( \zeta _{1}\right) \right)\le &\,\, H_{b}\left( \check{S}\left( \zeta _{0}\right) ,\check{T}\left( \zeta _{1}\right) \right) \\\le &\,\, \left( s^{3}H_{b}\left( \check{S}\left( \zeta _{0}\right) ,\check{T}\left( \zeta _{1}\right) \right) \right) . \end{aligned}$$

Hence, there exists \(\zeta _{2}\in \check{T}\left( \zeta _{1}\right) ,\)

$$\begin{aligned} 0<\check{d}_{b}\left( \zeta _{1},\zeta _{2}\right)&\le\,\, H_{b}\left( \check{S} \left( \zeta _{0}\right) ,\check{T}\left( \zeta _{1}\right) \right) \nonumber \\&\le \,\, \left( s^{3}H_{b}\left( \check{S}\left( \zeta _{0}\right) ,\check{T}\left( \zeta _{1}\right) \right) \right) . \end{aligned}$$
(5)

Since \(\varLambda \) is non-decreasing, we have

$$\begin{aligned} \varLambda \left( \check{d}_{b}\left( \zeta _{1},\zeta _{2}\right) \right)&\,\, \le \varLambda \left( H_{b}\left( \check{S}\left( \zeta _{0}\right) ,\check{T} \left( \zeta _{1}\right) \right) \right) \nonumber \\&\,\, \le \varLambda \left( s^{3}H_{b}\left( \check{S}\left( \zeta _{0}\right) ,\check{T}\left( \zeta _{1}\right) \right) \right) . \end{aligned}$$
(6)

Hence from (3)

$$\begin{aligned} 0&\,\, \le \varLambda \left( \check{d}_{b}\left( \zeta _{1},\zeta _{2}\right) \right) \le \varLambda \left( s^{3}H_{b}\left( \check{S}\left( \zeta _{0}\right) ,\check{T}\left( \zeta _{1}\right) \right) \right) \nonumber \\&\,\, \le \varUpsilon \left( \varLambda \left( U_{b}\left( \zeta _{0},\zeta _{1}\right) \right) \right) , \end{aligned}$$
(7)

where

$$\begin{aligned}&U_{b}\left( \zeta _{0},\zeta _{1}\right) \\&\quad =\max \left\{ \begin{array}{c} \check{d}_{b}\left( \zeta _{0},\zeta _{1}\right) ,D_{b}\left( \zeta _{0}, \check{S}\left( \zeta _{0}\right) \right) ,D_{b}\left( \zeta _{1},\check{T} \left( \zeta _{1}\right) \right) , \\ \frac{D_{b}\left( \zeta _{0},\check{T}\left( \zeta _{1}\right) \right) +D\left( \zeta _{1},\check{S}\left( \zeta _{0}\right) \right) }{2s} \end{array} \right\} \\&\quad \le \max \left\{ \check{d}_{b}\left( \zeta _{0},\zeta _{1}\right) ,D_{b}\left( \zeta _{1},\check{T}\left( \zeta _{1}\right) \right) ,\frac{ D_{b}\left( \zeta _{0},\check{T}\left( \zeta _{1}\right) \right) }{2s}\right\} \\&\quad \le \max \left\{ \check{d}_{b}\left( \zeta _{0},\zeta _{1}\right) ,D_{b}\left( \zeta _{1},\check{T}\left( \zeta _{1}\right) \right) \right\} . \end{aligned}$$

If \(\max \left\{ \check{d}_{b}\left( \zeta _{0},\zeta _{1}\right) ,D_{b}\left( \zeta _{1},\check{T}\left( \zeta _{1}\right) \right) \right\} =D_{b}\left( \zeta _{1},\check{T}\left( \zeta _{1}\right) \right) ,\) then from (7), we have

$$\begin{aligned} \varLambda \left( \check{d}_{b}\left( \zeta _{1},\zeta _{2}\right) \right) \le \varUpsilon \left( \varLambda \left( \check{d}_{b}\left( \zeta _{1},\zeta _{2}\right) \right) \right) <\varLambda \left( \check{d}_{b}\left( \zeta _{1},\zeta _{2}\right) \right) , \end{aligned}$$

a contradiction. Thus, \(\max \left\{ \check{d}_{b}\left( \zeta _{0},\zeta _{1}\right) ,D_{b}\left( \zeta _{1},\check{T}\left( \zeta _{1}\right) \right) \right\} =\check{d}_{b}\left( \zeta _{0},\zeta _{1}\right) .\) By (7), we get that

$$\begin{aligned} \varLambda \left( \check{d}_{b}\left( \zeta _{1},\zeta _{2}\right) \right) \le \varUpsilon \left( \varLambda \left( \check{d}_{b}\left( \zeta _{0},\zeta _{1}\right) \right) \right) . \end{aligned}$$

Similarly, for \(\zeta _{2}\in \check{T}\left( \zeta _{1}\right) \) and \(\zeta _{3}\in \check{S}\left( \zeta _{2}\right) \). We have

$$\begin{aligned} \varLambda \left( \check{d}_{b}\left( \zeta _{2},\zeta _{3}\right) \right)&=\,\, \varLambda \left( D_{b}\left( \zeta _{2},\check{S}\left( \zeta _{2}\right) \right) \right) \\&\,\, \le \varLambda \left( H_{b}\left( \check{T}\left( \zeta _{1}\right) ,\check{S }\left( \zeta _{2}\right) \right) \right) \\&\,\, \le \varLambda \left( s^{3}H_{b}\left( \check{T}\left( \zeta _{1}\right) , \check{S}\left( \zeta _{2}\right) \right) \right) \\&\,\, \le \varUpsilon \left( \varLambda \left( U_{b}\left( \zeta _{1},\zeta _{2}\right) \right) \right) \\&\,\, \le \varUpsilon \left( \varLambda \left( \check{d}_{b}\left( \zeta _{1},\zeta _{2}\right) \right) \right) , \end{aligned}$$

which implies

$$\begin{aligned} \varLambda \left( \check{d}_{b}\left( \zeta _{2},\zeta _{3}\right) \right) \le \varUpsilon \left( \varLambda \left( \check{d}_{b}\left( \zeta _{1},\zeta _{2}\right) \right) \right) . \end{aligned}$$
(8)

By continuing this manner, we construct a sequence \(\{ \zeta _{n}\}\) in \( \omega \) such that \(\zeta _{2i+1}\in \check{S}\left( \zeta _{2i}\right) \) and \(\zeta _{2i+2}\in \check{T}\left( \zeta _{2i+1}\right) \), \(i=0,1,2,\ldots \),

$$\begin{aligned}&\frac{1}{2s}\min \left\{ D_{b}\left( \zeta _{2i},\check{S}\left( \zeta _{_{2i}}\right) \right) ,D\left( \zeta _{2i+1},\check{T}\left( \zeta _{_{2i+1}}\right) \right) \right\} \\&\quad <\check{d}_{b}\left( \zeta _{2i},\zeta _{2i+1}\right) , \end{aligned}$$

Hence from (3), we have

$$\begin{aligned} 0<\,\, & \varLambda \left( \check{d}_{b}\left( \zeta _{2i+1},\zeta _{2i+2}\right) \right) \nonumber \\&\,\, \le \varLambda \left( s^{3}H_{b}\left( \check{S}\left( \zeta _{2i}\right) ,\check{T}\left( \zeta _{2i+1}\right) \right) \right) \nonumber \\&\,\, \le \varUpsilon \left( \varLambda \left( U_{b}\left( \zeta _{2i},\zeta _{2i+1}\right) \right) \right) \end{aligned}$$
(9)

where

$$\begin{aligned}&U_{b}\left( \zeta _{2i},\zeta _{2i+1}\right) \\&\quad =\max \left\{ \begin{array}{c} \check{d}_{b}\left( \zeta _{2i},\zeta _{2i+1}\right) ,D_{b}\left( \zeta _{2i},\check{S}\left( \zeta _{2i}\right) \right) ,D_{b}\left( \zeta _{2i+1}, \check{T}\left( \zeta _{2i+1}\right) \right) , \\ \frac{D_{b}\left( \zeta _{2i},\check{T}\left( \zeta _{2i+1}\right) \right) +D_{b}\left( \zeta _{2i+1},\check{S}\left( \zeta _{2i}\right) \right) }{2s} \end{array} \right\} \\&\quad \le \max \left\{ \begin{array}{c} \check{d}_{b}\left( \zeta _{2i},\zeta _{2i+1}\right) ,\check{d}_{b}\left( \zeta _{2i+1},\zeta _{2i+2}\right) , \\ \frac{\check{d}_{b}\left( \zeta _{2i},\zeta _{2i+2}\right) }{2s} \end{array} \right\} \\&\quad \le \max \left\{ \check{d}_{b}\left( \zeta _{2i},\zeta _{2i+1}\right) , \check{d}_{b}\left( \zeta _{2i+1},\zeta _{2i+2}\right) \right\} . \end{aligned}$$

If \(\max \left\{ \check{d}_{b}\left( \zeta _{2i},\zeta _{2i+1}\right) , \check{d}_{b}\left( \zeta _{2i+1},\zeta _{2i+2}\right) \right\} =\check{d} _{b}\left( \zeta _{2i+1},\zeta _{2i+2}\right) ,\) then from (9) we have

$$\begin{aligned} \varLambda \left( \check{d}_{b}\left( \zeta _{2i+1},\zeta _{2i+2}\right) \right)&\,\, \le \varUpsilon \left( \varLambda \left( \check{d}_{b}\left( \zeta _{2i+1},\zeta _{2i+2}\right) \right) \right) \\<\,\, & \varLambda \left( \check{d}_{b}\left( \zeta _{2i+1},\zeta _{2i+2}\right) \right) , \end{aligned}$$

which is a contradiction. Thus,

$$\begin{aligned} \max \left\{ \check{d}_{b}\left( \zeta _{2i},\zeta _{2i+1}\right) ,\check{d} _{b}\left( \zeta _{2i+1},\zeta _{2i+2}\right) \right\} =\check{d}_{b}\left( \zeta _{2i},\zeta _{2i+1}\right) . \end{aligned}$$

By (9), we get that

$$\begin{aligned} \varLambda \left( \check{d}_{b}\left( \zeta _{2i},\zeta _{2i+1}\right) \right) <\varUpsilon \left( \varLambda \left( \check{d}_{b}\left( \zeta _{2i},\zeta _{2i+1}\right) \right) \right) . \end{aligned}$$

This implies that

$$\begin{aligned}&\frac{1}{2s}\min \left\{ D_{b}\left( \zeta _{n},\check{S}\left( \zeta _{_{n}}\right) \right) ,D_{b}\left( \zeta _{n+1},\check{T}\left( \zeta _{_{n+1}}\right) \right) \right\} \\&\quad <\check{d}_{b}\left( \zeta _{n},\zeta _{n+1}\right) , \end{aligned}$$

Hence,

$$\begin{aligned}&\varLambda \left( \check{d}_{b}\left( \zeta _{2n+1},\zeta _{2n+2}\right) \right) \\&\quad <\varUpsilon \left( \varLambda \left( \check{d}_{b}\left( \zeta _{2n},\zeta _{2n+1}\right) \right) \right) ,{\text { for all} }\,\,\, n\in {\mathbb {N}} , \end{aligned}$$

which implies

$$\begin{aligned} \varLambda \left( \check{d}_{b}\left( \zeta _{2n+1},\zeta _{2n+2}\right) \right)&\,\,\le \varUpsilon \left( \varLambda \left( \check{d}_{b}\left( \zeta _{2n+1},\zeta _{2n+2}\right) \right) \right) \\&\,\,\le \varUpsilon ^{2}\left( \varLambda \left( \check{d}_{b}\left( \zeta _{2n-1},\zeta _{2n}\right) \right) \right) \\&\,\, \le \cdots \le \varUpsilon ^{n}\left( \varLambda \left( \check{d}_{b}\left( \zeta _{0},\zeta _{1}\right) \right) \right) \end{aligned}$$

Letting \(n\longrightarrow \infty \) in the above inequality, we get

$$\begin{aligned} 0&\,\, \le \underset{n\longrightarrow \infty }{\lim }\varLambda \left( \check{d} _{b}\left( \zeta _{2n+1},\zeta _{2n+2}\right) \right) \\&\,\, \le \underset{ n\longrightarrow \infty }{\lim }\varUpsilon ^{n}\left( \varLambda \left( \check{d} _{b}\left( \zeta _{0},\zeta _{1}\right) \right) \right) =0, \end{aligned}$$

which implies

$$\begin{aligned} \underset{n\longrightarrow \infty }{\lim }\varLambda \left( \check{d}_{b}\left( \zeta _{2n+1},\zeta _{2n+2}\right) \right) =0. \end{aligned}$$

From \(\left( \varPhi 2\right) \) and Lemma (10), we get

$$\begin{aligned} \underset{n\longrightarrow \infty }{\lim }\check{d}_{b}\left( \zeta _{2n+1},\zeta _{2n+2}\right) =0. \end{aligned}$$
(10)

Now, we will prove that the sequence \(\left\{ \zeta _{n}\right\} \) is a Cauchy. Arguing by contradiction, we assume that there exist \(\varepsilon >0 \) and sequence \(\left\{ {\hat{h}}_{n}\right\} _{n=1}^{\infty }\) and \( \left\{ {\hat{\jmath }}_{n}\right\} _{n=1}^{\infty }\) of natural numbers such that for all \(n\in {\mathbb {N}} ,\,{\hat{h}}_{n}>{\hat{\jmath }}_{n}>n\) with \(\check{d}_{b}\left( \zeta _{{\hat{h}} \left( n\right) },\zeta _{{\hat{\jmath }}\left( n\right) }\right) \ge \varepsilon ,\,\check{d}_{b}\left( \zeta _{{\hat{h}}\left( n\right) -1},\zeta _{{\hat{\jmath }}\left( n\right) }\right) <\varepsilon .\) Therefore,

$$\begin{aligned} \varepsilon&\,\, \le \check{d}_{b}\left( \zeta _{{\hat{h}}\left( n\right) },\zeta _{{\hat{\jmath }}\left( n\right) }\right) \nonumber \\&\,\,\le s\left[ \check{d}_{b}\left( \zeta _{{\hat{h}}\left( n\right) },\zeta _{{\hat{h}}\left( n\right) -1}\right) + \check{d}_{b}\left( \zeta _{{\hat{h}}\left( n\right) -1},\zeta _{{\hat{\jmath }} \left( n\right) }\right) \right] \nonumber \\&<s\varepsilon +s\check{d}_{b}\left( \zeta _{{\hat{h}}\left( n\right) },\zeta _{ {\hat{h}}\left( n\right) -1}\right) . \end{aligned}$$
(11)

By setting \(n\rightarrow \infty \) in (11) , we get

$$\begin{aligned} \varepsilon<\underset{n\rightarrow \infty }{\lim }\check{d}_{b}\left( \zeta _{{\hat{h}}\left( n\right) },\zeta _{{\hat{\jmath }}\left( n\right) }\right) <s\varepsilon . \end{aligned}$$
(12)

From triangular inequality, we have

$$\begin{aligned} \check{d}_{b}\left( \zeta _{{\hat{h}}\left( n\right) },\zeta _{{\hat{\jmath }} \left( n\right) }\right)&\,\,\le [\check{d}_{b}\left( \zeta _{{\hat{h}}\left( n\right) },\zeta _{{\hat{h}}\left( n\right) +1}\right) \nonumber \\&+\check{d}_{b}\left( \zeta _{{\hat{h}}\left( n\right) +1},\zeta _{{\hat{\jmath }}\left( n\right) }\right) ], \end{aligned}$$
(13)

and

$$\begin{aligned} \check{d}_{b}\left( \zeta _{{\hat{h}}\left( n\right) +1},\zeta _{{\hat{\jmath }} \left( n\right) }\right)&\,\,\le s[\check{d}_{b}\left( \zeta _{{\hat{h}}\left( n\right) },\zeta _{{\hat{h}}\left( n\right) +1}\right) \nonumber \\&+\check{d}_{b}\left( \zeta _{{\hat{h}}\left( n\right) },\zeta _{{\hat{\jmath }}\left( n\right) }\right) ]. \end{aligned}$$
(14)

By taking upper limit as \(n\rightarrow \infty \) in (13) and applying (10), (12) ,

$$\begin{aligned} \varepsilon&\,\, \le\,\, \underset{n\rightarrow \infty }{\lim }\sup \check{d} _{b}\left( \zeta _{{\hat{h}}\left( n\right) },\zeta _{{\hat{\jmath }}\left( n\right) }\right) \\&\,\,\le s\left( \underset{n\rightarrow \infty }{\lim }\sup \check{d}_{b}\left( \zeta _{{\hat{h}}\left( n\right) +1},\zeta _{{\hat{\jmath }} \left( n\right) }\right) \right) . \end{aligned}$$

Again, by taking the upper limit as \(n\rightarrow \infty \) in (14), we get

$$\begin{aligned} \underset{n\rightarrow \infty }{\lim }\sup \check{d}_{b}\left( \zeta _{\hat{h }\left( n\right) +1},\zeta _{{\hat{\jmath }}\left( n\right) }\right)&\,\, \le s\left( \underset{n\rightarrow \infty }{\lim }\sup \check{d}_{b}\left( \zeta _{{\hat{h}}\left( n\right) },\zeta _{{\hat{\jmath }}\left( n\right) }\right) \right) \\&\,\, \le s.s\varepsilon =s^{2}\varepsilon . \end{aligned}$$

Thus

$$\begin{aligned} \frac{\varepsilon }{s}\le \underset{n\rightarrow \infty }{\lim }\sup \check{ d}_{b}\left( \zeta _{{\hat{h}}\left( n\right) +1},\zeta _{{\hat{\jmath }}\left( n\right) }\right) \le s^{2}\varepsilon . \end{aligned}$$
(15)

Similarly

$$\begin{aligned} \frac{\varepsilon }{s}\le \underset{n\rightarrow \infty }{\lim }\sup \check{ d}_{b}\left( \zeta _{{\hat{h}}\left( n\right) },\zeta _{{\hat{\jmath }}\left( n\right) +1}\right) \le s^{2}\varepsilon . \end{aligned}$$
(16)

By triangular inequality, we have

$$\begin{aligned} \check{d}_{b}\left( \zeta _{{\hat{h}}\left( n\right) +1},\zeta _{{\hat{\jmath }} \left( n\right) }\right)&\,\, \le s[\check{d}_{b}\left( \zeta _{{\hat{h}}\left( n\right) +1},\zeta _{{\hat{\jmath }}\left( n\right) +1}\right) \nonumber \\&+\check{d} _{b}\left( \zeta _{{\hat{\jmath }}\left( n\right) +1},\zeta _{{\hat{\jmath }} \left( n\right) }\right) ]. \end{aligned}$$
(17)

On letting \(n\rightarrow \infty \) in (17) and using the inequalities (10), (15), we get

$$\begin{aligned} \frac{\varepsilon }{s^{2}}\le \underset{k\rightarrow \infty }{\lim }\sup \check{d}_{b}\left( \zeta _{{\hat{h}}\left( n\right) +1},\zeta _{{\hat{\jmath }} \left( n\right) +1}\right) . \end{aligned}$$
(18)

Following the above process, we find

$$\begin{aligned} \underset{n\rightarrow \infty }{\lim }\sup \check{d}_{b}\left( \zeta _{\hat{h }\left( n\right) +1},\zeta _{{\hat{\jmath }}\left( n\right) +1}\right) \le s^{3}\varepsilon . \end{aligned}$$
(19)

From (18) and (19), we get

$$\begin{aligned} \frac{\varepsilon }{s^{2}}\le \underset{n\rightarrow \infty }{\lim }\sup \check{d}_{b}\left( \zeta _{{\hat{h}}\left( n\right) +1},\zeta _{{\hat{\jmath }} \left( n\right) +1}\right) \le s^{3}\varepsilon . \end{aligned}$$
(20)

From (10) and (12), we can choose a positive integer \(n_{0}\ge 1\) such that

$$\begin{aligned}&\frac{1}{2s}\min \left\{ D_{b}\left( \zeta _{{\hat{h}}\left( n\right) }, \check{S}\left( \zeta _{_{{\hat{h}}\left( n\right) }}\right) \right) ,D_{b}\left( \zeta _{{\hat{\jmath }}\left( n\right) },\check{T}\left( \zeta _{_{ {\hat{\jmath }}\left( n\right) }}\right) \right) \right\} \\&\quad<\frac{1}{2s} \varepsilon <\check{d}_{b}\left( \zeta _{{\hat{h}}\left( n\right) },\zeta _{ {\hat{\jmath }}\left( n\right) }\right) , \end{aligned}$$

for all \(n\ge n_{0}\), from (3), we get

$$\begin{aligned} 0<\,\, & \varLambda \left( s^{3}\check{d}_{b}\left( \zeta _{{\hat{h}}\left( n\right) +1},\zeta _{{\hat{\jmath }}\left( n\right) +1}\right) \right) \\&\,\, \le \varLambda \left( s^{3}H_{b}\left( \check{S}\left( \zeta _{_{{\hat{h}}\left( n\right) }}\right) ,\check{T}\left( \zeta _{_{{\hat{\jmath }}\left( n\right) }}\right) \right) \right) \\&\,\, \le \psi \left( \phi \left( U_{b}\left( \zeta _{{\hat{h}}\left( n\right) },\zeta _{{\hat{\jmath }}\left( n\right) }\right) \right) \right) ,{\text { for all }}n\ge n_{0}, \end{aligned}$$

where

$$\begin{aligned}&U_{b}\left( \zeta _{{\hat{h}}\left( n\right) },\zeta _{{\hat{\jmath }}\left( n\right) }\right) \\&\quad =\max \left\{ \begin{array}{c} \check{d}_{b}\left( \zeta _{{\hat{h}}\left( n\right) },\zeta _{{\hat{\jmath }} \left( n\right) }\right) ,D_{b}\left( \zeta _{{\hat{h}}\left( n\right) }, \check{S}\left( \zeta _{{\hat{h}}\left( n\right) }\right) \right) ,D_{b}\left( \zeta _{_{{\hat{\jmath }}\left( n\right) }},\check{T}\left( \zeta _{_{\hat{ \jmath }\left( n\right) }}\right) \right) , \\ \frac{D_{b}\left( \zeta _{{\hat{h}}\left( n\right) },\check{T}\left( \zeta _{_{ {\hat{\jmath }}\left( n\right) }}\right) \right) +D_{b}\left( \zeta _{_{\hat{ \jmath }\left( n\right) }},\check{S}\left( \zeta _{p\left( n\right) }\right) \right) }{2s} \end{array} \right\} \\&\quad \le \max \left\{ \begin{array}{c} \check{d}_{b}\left( \zeta _{{\hat{h}}\left( n\right) },\zeta _{{\hat{\jmath }} \left( n\right) }\right) ,\check{d}_{b}\left( \zeta _{{\hat{h}}\left( n\right) },\zeta _{{\hat{h}}\left( n\right) +1}\right) ,\check{d}_{b}\left( \zeta _{_{ {\hat{\jmath }}\left( n\right) }},\zeta _{_{{\hat{\jmath }}\left( n\right) +1}}\right) , \\ \frac{\check{d}_{b}\left( \zeta _{{\hat{h}}\left( n\right) },\zeta _{_{\hat{ \jmath }\left( n\right) +1}}\right) +\check{d}_{b}\left( \zeta _{_{\hat{\jmath }\left( n\right) }},\zeta _{{\hat{h}}\left( n\right) +1}\right) }{2s} \end{array} \right\} . \end{aligned}$$

Taking the limit as \(n\rightarrow \infty \) and using (10), (12), (15) and (16), we get

$$\begin{aligned} \varepsilon&=\,\, \max \left\{ \varepsilon ,\frac{\frac{\varepsilon }{s}+\frac{ \varepsilon }{s}}{2s}\right\} \\&\,\, \le \underset{n\rightarrow \infty }{\lim } \sup U_{b}\left( \zeta _{{\hat{h}}\left( n\right) },\zeta _{{\hat{\jmath }}\left( n\right) }\right) \\&\,\, \le \max \left\{ s\varepsilon ,\frac{s^{2}\varepsilon +s^{2}\varepsilon }{2s}\right\} =s\varepsilon . \end{aligned}$$

From (18) , and (\(\varPhi 2\)), we get

$$\begin{aligned} \varLambda (s\varepsilon )&=\,\, \varLambda \left( s^{3}(\frac{\varepsilon }{s^{2}} )\right) \\&\,\, \le \varLambda \left( s^{3}\underset{n\rightarrow \infty }{\lim }\sup \check{d}_{b}\left( \zeta _{{\hat{h}}\left( n\right) +1},\zeta _{{\hat{\jmath }} \left( n\right) +1}\right) \right) \\&\,\, \le \underset{n\rightarrow \infty }{\lim }\varUpsilon \left( \varLambda \left( U_{b}\left( \zeta _{{\hat{h}}\left( n\right) },\zeta _{{\hat{\jmath }}\left( n\right) }\right) \right) \right) \\&=\,\, \varUpsilon \left( \varLambda (s\varepsilon )\right) <\varLambda (s\varepsilon ). \end{aligned}$$

This is a contradiction. Therefore \(\left\{ \zeta _{n}\right\} \) is a Cauchy. Since X is a complete, we can assume that \(\left\{ x_{n}\right\} \) converges to some point \(\zeta ^{*}\in \omega ,\) that is, \(\underset{n\rightarrow \infty }{\lim }\check{d}_{b}\left( \zeta _{n},\zeta ^{*}\right) =0\) and so

$$\begin{aligned} \underset{n\rightarrow \infty }{\lim }\check{d}_{b}\left( \zeta _{n},\zeta ^{*}\right)&=\,\, \underset{n\rightarrow \infty }{\lim }\check{d}_{b}\left( \zeta _{2n},\zeta ^{*}\right) \nonumber \\&=\,\, \underset{n\rightarrow \infty }{\lim } \check{d}_{b}\left( \zeta _{2n+1},\zeta ^{*}\right) =0 \end{aligned}$$
(21)

Now, we claim that

$$\begin{aligned}&\frac{1}{2s}\min \left\{ D_{b}\left( \zeta _{n},\check{S}\left( \zeta _{_{n}}\right) \right) ,D_{b}\left( \zeta ^{*},\check{T}\left( \zeta ^{*}\right) \right) \right\} \nonumber \\&\quad <\check{d}_{b}\left( \zeta _{n},\zeta ^{*}\right) , \end{aligned}$$
(22)

or

$$\begin{aligned}&\frac{1}{2s}\min \left\{ D_{b}\left( \zeta ^{*},\check{S}\left( \zeta ^{*}\right) \right) ,D_{b}\left( \zeta _{n+1},\check{T}\left( \zeta _{_{n}+1}\right) \right) \right\} \\&\quad <\check{d}_{b}\left( \zeta _{n+1},\zeta ^{*}\right) ,\,\forall n\in {\mathbb {N}} . \end{aligned}$$

Assume that it does not hold, there exists \(m\in {{\mathbb {N}}}\) such that

$$\begin{aligned}&\frac{1}{2s}\min \left\{ D_{b}\left( \zeta _{m},\check{S}\left( \zeta _{_{m}}\right) \right) ,D_{b}\left( \zeta ^{*},\check{T}\left( \zeta ^{*}\right) \right) \right\} \nonumber \\&\quad \ge \check{d}_{b}\left( \zeta _{m},\zeta ^{*}\right) , \end{aligned}$$
(23)

and

$$\begin{aligned}&\frac{1}{2s}\min \left\{ D_{b}\left( \zeta ^{*},\check{S}\left( \zeta ^{*}\right) \right) ,D_{b}\left( x_{m+1},Tx_{_{m+1}}\right) \right\} \nonumber \\&\quad \ge \check{d}_{b}\left( x_{m+1},x^{*}\right) . \end{aligned}$$
(24)

Therefore,

$$\begin{aligned} 2s\check{d}_{b}\left( \zeta _{m},\zeta ^{*}\right)&\,\, \le \min \left\{ D_{b}\left( \zeta _{m},\check{S}\left( \zeta _{_{m}}\right) \right) ,D_{b}\left( \zeta ^{*},\check{T}\left( \zeta ^{*}\right) \right) \right\} \\&\,\, \le \min \left\{ s\left[ \check{d}_{b}\left( \zeta _{m},\zeta ^{*}\right) +D_{b}\left( \zeta ^{*},\check{S}\left( \zeta _{_{m}}\right) \right) \right] , \right. \\&\left. D_{b}\left( \zeta ^{*},\check{T}\left( \zeta ^{*}\right) \right) \right\} \\&\,\, \le s\left[ \check{d}_{b}\left( \zeta _{m},\zeta ^{*}\right) +D_{b}\left( \zeta ^{*},\check{S}\left( \zeta _{_{m}}\right) \right) \right] \\&\,\, \le s\left[ \check{d}_{b}\left( \zeta _{m},\zeta ^{*}\right) + \check{d}_{b}\left( \zeta ^{*},\zeta _{_{m+1}}\right) \right] , \end{aligned}$$

which implies

$$\begin{aligned} \check{d}_{b}\left( \zeta _{m},\zeta ^{*}\right) \le \check{d} _{b}\left( \zeta ^{*},\zeta _{_{m+1}}\right) . \end{aligned}$$

This together with (23) shows that

$$\begin{aligned} \check{d}_{b}\left( \zeta _{m},\zeta ^{*}\right)&\,\, \le \check{d} _{b}\left( \zeta ^{*},\zeta _{_{m+1}}\right) \nonumber \\&\,\, \le \frac{1}{2s}\min \left\{ D_{b}\left( \zeta ^{*},\check{S}\left( \zeta _{_{m}}\right) \right) ,\right. \nonumber \\&\left. D_{b}\left( \zeta _{m+1},\check{T}\left( \zeta _{_{m+1}}\right) \right) \right\} . \end{aligned}$$
(25)

Since \(\frac{1}{2s}\min \left\{ D_{b}\left( \zeta _{m},\check{S}\left( \zeta _{_{m}}\right) \right) ,D_{b}\left( \zeta ^{*},\check{T}\left( \zeta ^{*}\right) \right) \right\} <\check{d}_{b}\left( \zeta _{m},\zeta _{_{m+1}}\right) ,\) by (3), we have

$$\begin{aligned} 0<\,\, & \varLambda \left( \check{d}_{b}\left( \zeta _{m+1},\zeta _{m+2}\right) \right) \nonumber \\&\,\, \le \varLambda \left( s^{3}H_{b}\left( \check{S}\left( \zeta _{_{m}}\right) ,\check{T}\left( \zeta _{_{m+1}}\right) \right) \right) \nonumber \\&\,\, \le \varUpsilon \left( \varLambda \left( U_{b}\left( \zeta _{m},\zeta _{m+1}\right) \right) \right) \end{aligned}$$
(26)

where

$$\begin{aligned}&U_{b}\left( \zeta _{m},\zeta _{m+1}\right) \\&\quad =\max \left\{ \begin{array}{c} \check{d}_{b}\left( \zeta _{m},\zeta _{_{m+1}}\right) ,D_{b}\left( \zeta _{m},\check{S}\left( \zeta _{_{m}}\right) \right) ,D_{b}\left( \zeta _{m+1}, \check{T}\left( \zeta _{_{m+1}}\right) \right) , \\ \frac{D_{b}\left( \zeta _{m},\check{T}\left( \zeta _{_{m+1}}\right) \right) +D_{b}\left( \zeta _{m+1},\check{S}\left( \zeta _{_{m}}\right) \right) }{2s} \end{array} \right\} \\&\quad \le \max \left\{ \begin{array}{c} \check{d}_{b}\left( \zeta _{m},\zeta _{_{m+1}}\right) ,\check{d}_{b}\left( \zeta _{m+1},\zeta _{m+2}\right) , \\ \frac{\check{d}_{b}\left( \zeta _{m},\zeta _{m+2}\right) }{2s} \end{array} \right\} \\&\quad \le \max \left\{ \check{d}_{b}\left( \zeta _{m},\zeta _{_{m+1}}\right) , \check{d}_{b}\left( \zeta _{m+1},\zeta _{m+2}\right) \right\} . \end{aligned}$$

If \(\max \left\{ \check{d}_{b}\left( \zeta _{m},\zeta _{_{m+1}}\right) , \check{d}_{b}\left( \zeta _{m+1},\zeta _{m+2}\right) \right\} =\check{d} _{b}\left( \zeta _{m+1},\zeta _{m+2}\right) ,\) then from (26) we have

$$\begin{aligned} \varLambda \left( \check{d}_{b}\left( \zeta _{m+1},\zeta _{m+2}\right) \right)&\,\, \le \varUpsilon \left( \varLambda \left( \check{d}_{b}\left( \zeta _{m+1},\zeta _{m+2}\right) \right) \right) \\<\,\, & \varLambda \left( \check{d}_{b}\left( \zeta _{m+1},\zeta _{m+2}\right) \right) , \end{aligned}$$

a contradiction. Thus,

$$\begin{aligned} \max \left\{ \check{d}_{b}\left( \zeta _{m},\zeta _{_{m+1}}\right) ,\check{d }_{b}\left( \zeta _{m+1},\zeta _{m+2}\right) \right\} =\check{d}_{b}\left( \zeta _{m},\zeta _{_{m+1}}\right) . \end{aligned}$$

By (25), we get that

$$\begin{aligned} \varLambda \left( \check{d}_{b}\left( \zeta _{m+1},\zeta _{m+2}\right) \right)&\,\, \le \varUpsilon \left( \varLambda \left( \check{d}_{b}\left( \zeta _{m},\zeta _{_{m+1}}\right) \right) \right) \\<\,\, & \varLambda \left( \check{d}_{b}\left( \zeta _{m},\zeta _{_{m+1}}\right) \right) . \end{aligned}$$

It follows from conditions \((\varPhi 1)\)

$$\begin{aligned} \check{d}_{b}\left( \zeta _{m+1},\zeta _{m+2}\right) <\check{d}_{b}\left( \zeta _{m},\zeta _{_{m+1}}\right) . \end{aligned}$$
(27)

From (24), (25), and (27), we get

$$\begin{aligned} \check{d}_{b}\left( \zeta _{m+1},\zeta _{m+2}\right)<\,\, & \check{d}_{b}\left( \zeta _{m},\zeta _{_{m+1}}\right) \\&\,\, \le s\left[ \check{d}_{b}\left( \zeta _{m},\zeta ^{*}\right) +\check{d }_{b}\left( \zeta ^{*},\zeta _{m+1}\right) \right] \\&\,\, \le \frac{1}{2}\min \left\{ D_{b}\left( \zeta ^{*},\check{S}\left( \zeta ^{*}\right) \right) ,\right. \\&\quad \left. D_{b}\left( \zeta _{m+1},\check{T}\left( \zeta _{_{m+1}}\right) \right) \right\} \\&+\frac{1}{2}\min \left\{ D_{b}\left( \zeta ^{*},\check{S}\left( \zeta ^{*}\right) \right) , \right. \\&\quad \left. D_{b}\left( \zeta _{m+1},\check{T}\left( \zeta _{_{m+1}}\right) \right) \right\} \\&=\,\, \min \left\{ D_{b}\left( \zeta ^{*}, \right. \right. \\&\left. \left. \check{S}\left( \zeta ^{*}\right) \right) ,\check{d}_{b}\left( \zeta _{m+1},\zeta _{m+2}\right) \right\} \\&\,\, \le \check{d}_{b}\left( \zeta _{m+1},\zeta _{m+2}\right) , \end{aligned}$$

a contradiction. Hence (22) holds, that is, \(\forall n\ge 2\)

$$\begin{aligned}&\frac{1}{2s}\min \left\{ D_{b}\left( \zeta _{n},\check{S}\left( \zeta _{_{n}}\right) \right) ,D_{b}\left( \zeta ^{*},\check{T}\left( \zeta ^{*}\right) \right) \right\} \nonumber \\&\quad <\check{d}_{b}\left( \zeta _{n},\zeta ^{*}\right) , \end{aligned}$$
(28)

holds. By (3), it follows that for every \(n\ge 2\)

$$\begin{aligned} 0<\,\, & \varLambda \left( D_{b}\left( \zeta _{n+1},\check{T}\left( \zeta ^{*}\right) \right) \right) \nonumber \\&\,\, \le \varLambda \left( s^{3}H_{b}\left( \check{S} \left( \zeta _{n}\right) ,\check{T}\left( \zeta ^{*}\right) \right) \right) \nonumber \\&\,\, \le \varUpsilon \left( \varLambda \left( U_{b}\left( \zeta _{n},\zeta ^{*}\right) \right) \right) \end{aligned}$$
(29)

where

$$\begin{aligned}&U_{b}\left( \zeta _{n},\zeta ^{*}\right) \\&\quad =\max \left\{ \begin{array}{c} \check{d}_{b}\left( \zeta _{n},\zeta ^{*}\right) ,\check{d}_{b}\left( \zeta _{n},\zeta _{n+1}\right) ,D_{b}\left( \zeta ^{*},\check{T}\left( \zeta ^{*}\right) \right) , \\ \frac{D_{b}\left( \zeta _{n},\check{T}\left( \zeta ^{*}\right) \right) + \check{d}_{b}\left( \zeta _{n+1},\zeta _{n+1}\right) }{2s} \end{array} \right\} . \end{aligned}$$

Now, we show that \(\zeta ^{*}\in \check{T}\left( \zeta ^{*}\right) \) . Suppose on the contrary, \(D_{b}\left( \zeta ^{*},\check{T}\left( \zeta ^{*}\right) \right) >0.\) Since d is \(*\)-continuous,

$$\begin{aligned} \underset{n\rightarrow \infty }{\lim }D_{b}\left( \zeta _{n},\check{T}\left( \zeta ^{*}\right) \right) =D_{b}\left( \zeta ^{*},\check{T}\left( \zeta ^{*}\right) \right) . \end{aligned}$$
(30)

Letting \(n\longrightarrow \infty \) in (29) and by using (21), (30), (\( \varPhi 3\)), we obtain

$$\begin{aligned} \varLambda \left( D_{b}\left( \zeta ^{*},\check{T}\left( \zeta ^{*}\right) \right) \right)&=\,\, \underset{n\rightarrow \infty }{\lim }\varLambda \left( D_{b}\left( \zeta _{n+1},\check{T}\left( \zeta ^{*}\right) \right) \right) \\&\,\,\le \underset{n\rightarrow \infty }{\lim }\varUpsilon \left( \varLambda \left( U_{b}\left( \zeta _{n},\zeta ^{*}\right) \right) \right) \\=&\varUpsilon \left( \varLambda \left( D_{b}\left( \zeta ^{*},\check{T}\left( \zeta ^{*}\right) \right) \right) \right) \\<& \varLambda \left( D_{b}\left( \zeta ^{*},\check{T}\left( \zeta ^{*}\right) \right) \right) , \end{aligned}$$

which is a contradiction. Therefore, \(D_{b}\left( \zeta ^{*},\check{T} \left( \zeta ^{*}\right) \right) =0\) and from Lemma  18, we obtain \(\zeta ^{*}\in \check{T}\left( \zeta ^{*}\right) .\) Similarly we can show that \(\zeta ^{*}\in \check{S}\left( \zeta ^{*}\right) .\) Thus \( \check{S}\) and \(\check{T}\) have a common fixed point. \(\square \)

Corollary 17

Let\(\left( \omega ,\check{d}\right) \)be a complete bMS and\(\check{S}, \check{T}:\omega \longrightarrow CB_{b}\left( \omega \right) \)be a generalized multivalued\(\left( \varUpsilon ,\varLambda \right) \)-contraction. Suppose that

  1. (1)

    \(\varUpsilon \)is continuous

  2. (2)

    d is\(*\)-continuous.

Then\(\check{S}\)and\(\check{T}\)have a common fixed point\(\zeta ^{*}\in \omega \).

Example 18

Let \(X=\left[ 0,1\right] \). Define \(\check{d}:\omega \times \omega \rightarrow [0,+\infty )\) by \(\check{d}(\zeta ,\eta )=\left| \zeta -\zeta \right| ^{2},\) for all \(\zeta ,\eta \in \omega \). Clearly, \( (\omega ,\check{d})\) is a complete bMS with \(s=2,\) but \((\omega ,\check{d})\) is not a metric space. For \(\zeta =0\), \(\eta =1\) and \(\upsilon =\frac{1}{2} \), we have

$$\begin{aligned} \check{d}(\zeta ,\eta )=1>\frac{1}{4}+\frac{1}{4}=\check{d}(\zeta ,\upsilon )+\check{d}(\upsilon ,\eta ). \end{aligned}$$

Define \(\varLambda :\left( 0,\infty \right) \longrightarrow \left( 0,\infty \right) \) by \(\varLambda \left( t\right) =te^{t},\) for all \(t>0.\) Then \(\varLambda \in \varPhi .\) Also, define \(\varUpsilon :\left( 0,\infty \right) \longrightarrow \left( 0,\infty \right) \) by \(\varUpsilon \left( t\right) =\frac{198t}{200},\) for all \(t>0.\) Then \(\varUpsilon \) is a continuos comparison function. Define the mappings \(\check{S},\check{T}:\omega \longrightarrow CB_{b}\left( \omega \right) \) by

$$\begin{aligned} \check{S}\left( \zeta \right) =\left[ 0,\frac{\zeta }{6}\right] {\text { and }} \check{T}\left( \zeta \right) =\left[ 0,\frac{\zeta }{4}\right] . \end{aligned}$$

Suppose, without any loss of generality, that all \(\zeta ,\eta \) are nonzero and \(\zeta <\eta \). Then

$$\begin{aligned} \varLambda \left( s^{3}H_{b}\left( \check{S}\left( \zeta \right) ,\check{T} \left( \eta \right) \right) \right)&=\,\, \varLambda \left( s^{3}H_{b}\left( \left[ 0,\frac{\zeta }{6}\right] ,\left[ 0,\frac{\eta }{4}\right] \right) \right) \\&=\,\, \varLambda \left( 8\left| \frac{\zeta }{6}-\frac{\eta }{4} \right| ^{2}\right) \\&=\,\, 8\left| \frac{\gamma }{6}-\frac{\eta }{4}\right| ^{2}e^{8\left| \frac{\zeta }{6}-\frac{\eta }{4}\right| ^{2}} \\&\,\,\le \frac{198}{200}\left| \zeta -\eta \right| ^{2}e^{\left| \zeta -\eta \right| ^{2}} \\&\,\,\le \frac{198}{200}U_{b}\left( \zeta ,\eta \right) e^{U_{b}\left( \zeta ,\eta \right) } \\&=\,\, \frac{198}{200}\varLambda \left( U_{b}\left( \zeta ,\eta \right) \right) \\&=\,\, \varUpsilon \left( \varLambda \left( U_{b}\left( \zeta ,\eta \right) \right) \right) . \end{aligned}$$

Hence all the hypotheses of Corollary 17 are satisfied, and thus, \(\check{S}\) and \(\check{T}\) have a common fixed point.

Corollary 19

Let\(\left( \omega ,\check{d}\right) \)be a complete bMS such thatdis a continuous function and\(\check{S},\check{T}:\omega \longrightarrow \omega \)be a generalized\(\left( \varUpsilon ,\varLambda \right) \)-type contraction, that is, if there exist a comparison function\(\varUpsilon \)and\(\varLambda \in \varPhi \)such that, for all,\(\zeta ,\eta \in \omega \)with\(\check{S}\left( \zeta \right) \ne \check{T}\left( \eta \right) ,\)

$$\begin{aligned} \varLambda \left( s^{3}\check{d}\left( \check{S}\left( \zeta \right) ,\check{T} \left( \eta \right) \right) \right) \le \varUpsilon \left[ \varLambda \left( U_{b}\left( \zeta ,\eta \right) \right) \right] , \end{aligned}$$

where

$$\begin{aligned} U_{b}\left( \zeta ,\eta \right)&=\,\, \max \left\{ \check{d}_{b}(\zeta ,\eta ), \check{d}_{b}\left( \zeta ,\check{S}\left( \zeta \right) \right) ,\check{d} _{b}\left( \eta ,\check{T}\left( \eta \right) \right) , \right. \\&\quad \left. \frac{\check{d} _{b}\left( \zeta ,\check{T}\left( \eta \right) \right) +\check{d}_{b}\left( \eta ,\check{S}\left( \zeta \right) \right) }{2}\right\} . \end{aligned}$$

If\(\psi \)is continuous, thenSandThave a unique common fixed point\( x^{*}\in X\).

Corollary 20

Let\(\left( \omega ,\check{d}\right) \)be a complete bMS and\(\check{S} :\omega \longrightarrow CB_{b}\left( \omega \right) \)be a generalized multivalued\(\left( \varUpsilon ,\varLambda \right) \)-Suzuki contraction, that is, if there exist a comparison function\(\varUpsilon \)and\(\varLambda \in \varPhi \)such that, for all,\(\zeta ,\eta \in \omega \)with\(\check{S}\left( \zeta \right) \ne \check{S}\left( \eta \right) ,\)

$$\begin{aligned} \frac{1}{2s}D_{b}\left( \zeta ,\check{S}\left( \zeta \right) \right)<\,\, & \check{ d}_{b}(\zeta ,\eta )\Longrightarrow \varLambda \left( s^{3}H_{b}\left( \check{S} \left( \zeta \right) ,\check{S}\left( \eta \right) \right) \right) \\&\,\,\le \varUpsilon \left[ \varLambda \left( U_{b}\left( \zeta ,\eta \right) \right) \right] , \end{aligned}$$

where

$$\begin{aligned}&U_{b}\left( \zeta ,\eta \right) \\&\quad =\max \left\{ \check{d}_{b}(\zeta ,\eta ),D_{b}\left( \zeta ,\check{S}\left( \zeta \right) \right) ,D_{b}\left( \eta ,\check{S}\left( \eta \right) \right) ,\right. \\&\qquad \left. \frac{D_{b}\left( \zeta ,\check{S} \left( \eta \right) \right) +D_{b}\left( \eta ,\check{S}\left( \zeta \right) \right) }{2}\right\} . \end{aligned}$$

Suppose that

  1. (1)

    \(\varUpsilon \)is continuous

  2. (2)

    dis\(*\)-continuous.

Then\(\check{S}\)has a fixed point\(\zeta ^{*}\in \omega \).

Corollary 21

Let\(\left( \omega ,\check{d}\right) \)be a complete bMS such that\(\check{d} \)is a continuous function and\(\check{S}:\omega \longrightarrow \omega \)be a generalized\(\left( \varUpsilon ,\varLambda \right) \)-type Suzuki contraction. If\(\varUpsilon \)is continuous. Then\(\check{S}\)has a unique fixed point\( \zeta ^{*}\in \omega \).

Corollary 22

[6] Let\(\left( \omega ,\check{d}\right) \)be a complete MS such that\(\check{d}\)is a continuous function and\(\check{S}:\omega \longrightarrow \omega \)be a generalized\(\left( \varUpsilon ,\varLambda \right) \)-type Suzuki contraction. If\(\varUpsilon \)is continuous. Then\(\check{S}\)has a unique fixed point\(\zeta ^{*}\in \omega \).

Remark 23

Theorem 16 is a generalization of the main results in Suzuki [10] and the recent result in Liu [6].

Remark 24

Corollary 17 is a generalization of Nadler [8] and the recent results in Jleli et al. [3, 4], HanÇer et al. [7] and Vetro [5].

Application

In this section, we present an application of our result in solving functional equations arising in dynamic programming.

Decision space and a state space are two basic components of dynamic programming problem. State space is a set of states including initial states, action states and transitional states. So a state space is set of parameters representing different states. A decision space is the set of possible actions that can be taken to solve the problem. We assume that U and V are Banach spaces, \(W\subseteq U\), \(D\subseteq V\) and

$$\begin{aligned} \xi&:&W\times D\longrightarrow W \\ g,u&:&W\times D\longrightarrow {\mathbb {R}} \\ \Gamma ,\Psi&:&W\times D\times {\mathbb {R}} \longrightarrow {\mathbb {R}} , \end{aligned}$$

and for more details on dynamic programming we refer to ([29,30,31,32]). Suppose that W and D are the state and decision spaces, respectively, and the problem of dynamic programming related reduces to the problem of solving the functional equations

$$\begin{aligned} p(\zeta )&=\,\, \underset{\eta \in D}{\sup }\{g(\zeta ,\eta )+\Gamma (\zeta ,\eta ,p(\xi (\zeta ,\eta )))\},{\text { for }}\zeta \in W \end{aligned}$$
(31)
$$\begin{aligned} q(\zeta )&=\,\, \underset{\eta \in D}{\sup }\{u(\zeta ,\eta )+\Psi (\zeta ,\eta ,q(\xi (x,y)))\},{\text { for }}\zeta \in W, \end{aligned}$$
(32)

We aim to give the existence and uniqueness of common and bounded solution of functional equations given in (31) and (32). Let B(W) denote the set of all bounded real-valued functions on W. For \(h,k\in B(W)\), define

$$\begin{aligned} \check{d}(h,k)=\left\| \left( h-k\right) ^{2}\right\| _{\infty }= \underset{x\in W}{\sup }\left| h\zeta -k\zeta \right| ^{2}. \end{aligned}$$
(33)

Suppose that the following conditions hold:

(B1) :  \(\Gamma ,\Psi ,g,\) and u are bounded and continuous.

(B2) :  For \(\zeta \in W\), \(h\in B(W)\) and \(b>0,\) define \( E,A:B(W)\longrightarrow B(W)\) by

$$\begin{aligned} Eh(\zeta )&=\,\, \sup \nolimits _{\eta \in D}\{g(\zeta ,\eta )+\Gamma (\zeta ,\eta ,h(\xi (\zeta ,\eta )))\}, \end{aligned}$$
(34)
$$\begin{aligned} Ah(\zeta )&=\,\, \sup \nolimits _{\eta \in D}\{u(\zeta ,\eta )+\Psi (\zeta ,\eta ,h(\xi (\zeta ,\eta )))\}. \end{aligned}$$
(35)

Moreover, for every \((\zeta ,\eta )\in W\times D,\)\(h,k\in B(W)\) and \(t\in W\) we have

$$\begin{aligned} \left| \Gamma (\zeta ,\eta ,h(t))-\Psi (\zeta ,\eta ,k(t))\right| \le \sqrt{\frac{U_{b}(h(t),k(t))}{s^{3}\left( U_{b}(h(t),k(t))+1\right) }} \end{aligned}$$
(36)

where

$$\begin{aligned}&U_{b}((h(t),k(t)) \\&\quad =\max \left\{ \check{d}(h(t),k(t)),\check{d}(h(t),Eh(t)), \check{d}(k(t),Ak(t)), \right. \\&\qquad \left. \frac{\check{d}(h(t),Ak(t))+\check{d}(k(t),Eh(t))}{2s}\right\} . \end{aligned}$$

Theorem 25

Assume that the conditions\((B1)-(B2)\)are satisfied. Then the system of functional equations (31) and (32) has a unique  common and bounded solution inB(W).

Proof

Note that (B(W), d) is a complete bMS with constant \(s=2\). By (B1), EA are self-maps of B(W). Let \(\lambda \) be an arbitrary positive number and \(h_{1},h_{2}\in B(W)\). Choose \(\zeta \in W\) and \(\eta _{1},\eta _{2}\in D \) such that

$$\begin{aligned} Eh_{1}<\,\, & g(\zeta ,\eta _{1})+\Gamma (\zeta ,\eta _{1},h_{1}(\xi (\zeta ,\eta _{1}))+\lambda \end{aligned}$$
(37)
$$\begin{aligned} Ah_{2}<\,\, & g(\zeta ,\eta _{2})+\Psi (\zeta ,\eta _{2},h_{2}(\xi (\zeta ,\eta _{2}))+\lambda \end{aligned}$$
(38)

Further from (37) and (38), we have

$$\begin{aligned} Eh_{1} &\,\, \ge g(\zeta ,\eta _{2})+\Gamma (\zeta ,\eta _{2},h_{1}(\xi (\zeta ,\eta _{2})) \end{aligned}$$
(39)
$$\begin{aligned} Ah_{2}&\,\, \ge g(\zeta ,\eta _{1})+\Psi (\zeta ,\eta _{1},h_{2}(\xi (\zeta ,\eta _{1})). \end{aligned}$$
(40)

Then (37) and (40) together with (36) imply

$$\begin{aligned} Eh_{1}(\zeta )-Ah_{2}(\zeta )<\,\, & \Gamma (\zeta ,\eta _{1},h_{1}(\xi (\zeta ,\eta _{1}))) \nonumber \\&-\Psi (\zeta ,\eta _{1},h_{2}(\xi (\zeta ,\eta _{1})))+\lambda \nonumber \\&\,\,\le \left| \Gamma (\zeta ,\eta _{1},h_{1}(\xi (\zeta ,\eta _{1})))\right. \nonumber \\&\left. -\Psi (\zeta ,\eta _{1},h_{2}(\xi (\zeta ,\eta _{1})))\right| +\lambda \nonumber \\&\,\,\le \sqrt{\frac{U_{b}(h_{1}(\zeta ),h_{2}(\zeta ))}{s^{3}( U_{b}(h_{1}(\zeta ),h_{2}(\zeta )+1)}}+\lambda . \end{aligned}$$
(41)

Then (38) and (39) together with (36) imply

$$\begin{aligned} Ah_{2}(\zeta )-Eh_{1}(\zeta )&\,\,\le \Gamma (\zeta ,\eta _{2},h_{1}(\xi (\zeta ,\eta _{2})))\nonumber \\&-\Psi (\zeta ,\eta _{2},h_{2}(\xi (\zeta ,\eta _{2})))+\lambda \nonumber \\&\,\,\le \left| \Gamma (\zeta ,\eta _{2},h_{1}(\xi (\zeta ,\eta _{2}))) \right. \nonumber \\&\left. -\Psi (\zeta ,\eta _{2},h_{2}(\xi (\zeta ,\eta _{2}))\right| +\lambda \nonumber \\&\,\,\le \sqrt{\frac{U_{b}(h_{1}(\zeta ),h_{2}(\zeta ))}{s^{3}\left( U_{b}(h_{1}(\zeta ),h_{2}(\zeta )+1\right) }}+\lambda , \nonumber \\ \end{aligned}$$
(42)

where

$$\begin{aligned}&U_{b}((h_{1}(\zeta ),h_{2}(\zeta )) \\&\quad =\max \left\{ \check{d}(h_{1}(\zeta ),h_{2}(\zeta )),\check{d}(h_{1}(\zeta ), \right. \\&\qquad Eh_{1}(\zeta )),\check{d} (h_{2}(\zeta ),Ah_{2}(\zeta )), \\&\qquad \left. \frac{\check{d}(h_{1}(\zeta ),Ah_{2}(\zeta ))+\check{d}(h_{2}(\zeta ),Eh_{1}(\zeta ))}{2s}\right\} \end{aligned}.$$

From (41), (42), and since \(\lambda >0\) was taken as an arbitrary number, we obtain

$$\begin{aligned} \left| Eh_{1}(\zeta )-Ah_{2}(\zeta )\right| \le \sqrt{\frac{ U_{b}(h_{1}(\zeta ),h_{2}(\zeta ))}{s^{3}\left( U_{b}(h_{1}(x),h_{2}(x)+1\right) }}. \end{aligned}$$

Thus,

$$\begin{aligned} \left| Eh_{1}(\zeta )-Ah_{2}(\zeta )\right| ^{2}\le \frac{ U_{b}(h_{1}(\zeta ),h_{2}(\zeta ))}{s^{3}\left( U_{b}(h_{1}(x),h_{2}(x)+1\right) }. \end{aligned}$$
(43)

The inequality (43) implies

$$\begin{aligned} d(Eh_{1}(\zeta ),Ah_{2}(\zeta ))\le \frac{U_{b}(h_{1}(\zeta ),h_{2}(\zeta )) }{s^{3}\left( U_{b}(h_{1}(x),h_{2}(x)+1\right) }. \end{aligned}$$
(44)

Taking \(\varLambda \left( t\right) =t,\)\(t>0\) and \(\varUpsilon \left( t\right) = \frac{t}{t+1},\)\(t>0\), we get

$$\begin{aligned} \varLambda \left( s^{3}d(Eh_{1}(\zeta ),Ah_{2}(\zeta ))\right) \le \varUpsilon \left( \varLambda \left( U_{b}(h_{1}(\zeta ),h_{2}(\zeta ))\right) \right) . \end{aligned}$$
(45)

Therefore, all the conditions of Corollary 17 immediately hold. Thus, E and A have a common fixed point \(h^{*}\in B(W),\) that is, \(h^{*}(\zeta )\) is a unique, bounded and common solution of the system of functional equations (31) and (32). \(\square \)