Skip to main content

Advertisement

Log in

Performance improvement of variable speed wind turbine by uncertainty estimator-based robust control design

  • Original Research
  • Published:
International Journal of Energy and Environmental Engineering Aims and scope Submit manuscript

Abstract

The development of a robust control system for a variable speed wind turbine (VSWT) is presented in this paper. The proposed controller is designed for torque and pitch control of VSWT operation based on the uncertainty estimator and output feedback for the extraction of utmost power from the wind. A suitable reference model has been obtained for smooth tracking of rotor speed and estimating the uncertainty. The simulation study has been made to show the efficacy of the robust controller designed for VSWT. The performance of the proposed controller has been analyzed by a comparative evaluation with the standard controllers of the wind turbines in terms of the degree of rotor speed tracking, elimination of the effect of uncertainties, maximum power extraction, etc. It is found that the performance of the VSWT operation using the proposed control scheme has been improved significantly in comparison to a few existing control schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig.2
Fig. 3
Fig.4
Fig.5
Fig.6
Fig.7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

\(C_{{\text{p}}}\) :

Performance coefficient

\(C_{{p_{\max } }}\) :

Maximum performance coefficient

\(R\) :

Radius of blade

\(\rho\) :

Air density

\(\nu_{{\text{w}}}\) :

Speed of wind

\(\nu_{{\text{w}}}^{r}\) :

Relative wind speed

\(\lambda\) :

Tip-speed ratio

\(\lambda_{{{\text{opt}}}}\) :

Optimal tip-speed ratio

\(F_{{\text{t}}}\) :

Thrust force

\(C_{{\text{t}}}\) :

Coefficient of thrust

\(j_{{\text{r}}}\) :

Moment of inertia (rotor side)

\(j_{{\text{g}}}\) :

Moment of inertia (generator side)

\(d_{{\text{s}}}\) :

Low speed flexible shaft’s damping coefficient

\(k_{{\text{s}}}\) :

Spring constant

\(\delta\) :

Twist

\(t_{{{\text{d}},{\text{r}}}}\) :

Torque at rotor side of the transmission

\(t_{{{\text{d}},{\text{g}}}}\) :

Torque at generator side of the transmission

\(n_{g}\) :

Gear box ratio

\(\xi\) :

Displacement of nacelle

\(t_{{\text{r}}}\) :

Rotor torque

\(t_{{\text{g}}}\) :

Generator torque

\(\mho_{{\text{r}}}\) :

Angular position of the rotor shaft

\(\mho_{{\text{g}}}\) :

Angular position of the generator shaft

\(\omega_{{\text{r}}}\) :

Angular velocities of rotor

\(\omega_{{\text{r,opt}}}\) :

Optimal angular velocities of rotor

\(\omega_{{{\text{rated}}}}\) :

Rated angular velocities of rotor

\(\omega_{{\text{g}}}\) :

Angular velocities of generator

\(\omega_{{{\text{g}}_{{{\text{nom}}}} }}\) :

Nominal angular velocity of generator

\(m_{{\text{t}}}\) :

Mass constant of tower

\(d_{{\text{t}}}\) :

Damping constant

\(k_{{\text{t}}}\) :

Spring constant

\(\tau_{{\text{T}}}\) :

Time constant

\(T_{{\text{g}}}\) :

Generator torque

\(T_{{{\text{g.ref}}}}\) :

Reference generator torque

\(\theta\) :

Pitch angle of blade

\(\theta_{{{\text{ref}}}}\) :

Reference pitch angle

\(\theta_{{{\text{opt}}}}\) :

Optimal pitch angle

\(\omega_{n}\) :

Natural frequency of actuator

\(\zeta\) :

Damping of pitch actuator

\(P_{{\text{o}}}\) :

Power output

\(P_{{\text{o,nom}}}\) :

Nominal power output

References

  1. Njiri, J.G., Soffker, D.: State-of-the-art in wind turbine control: Trends and challenges. Renew. Sustain. Energy Rev. 60, 377–393 (2016)

    Article  Google Scholar 

  2. Carlin, P.W., Laxson, A.S., Muljadi, E.B.: The history and state of the art of variable-speed wind turbine technology. Wind Energy 6, 129–159 (2003)

    Article  Google Scholar 

  3. Apata, O., Oyedokun, D.T.O.: An overview of control techniques for wind turbine systems. Elsevier Sci. Afr. 10, e00566 (2020)

    Google Scholar 

  4. Hand, M.M.: Variable-speed wind turbine controller systematic design methodology: A comparison of non-linear and linear model based designs. National Renewable Energy Laboratory, Golden, Colorado (1999).

  5. Soued, S., Ebrahim, M.A., Ramadan, H.S., Becherif, M.: Optimal blade pitch control for enhancing the dynamic performance of wind power plants via metaheuristic optimizers. IET Electr. Power Appl. 11(8), 1432–1440 (2017)

    Article  Google Scholar 

  6. Soliman, M.A., Hany, M.H., Haitham, Z.A., El-Kholy, E.E., Mahmoud, S.A.: Linear-quadratic regulator algorithm-based cascaded control scheme for performance enhancement of a variable-speed wind energy conversion system. Arab. J. Sci. Eng. 44, 2281–2293 (2019)

    Article  Google Scholar 

  7. Jain, A., Schildbach, G., Fagiano, L., Morari, M.: On the design and tuning of linear model predictive control for wind turbines. Renewable Energy 80, 664–673 (2015)

    Article  Google Scholar 

  8. Song, D., Yang, J., Dong, M., et al.: Model predictive control with finite control set for variable-speed wind turbines. Energy 126, 564–572 (2017)

    Article  Google Scholar 

  9. Singh, N., Pratap, B., Swarup, A.: Design of robust control for wind turbine using quantitative feedback theory. In: 4th IFAC Conference on Advances in Control and Optimization of Dynamical Systems. Tiruchirappalli, India. 49(1), 718–723 (2016).

  10. Singh, N., Pratap, B., Swarup, A.: Discrete-time robust control of variable speed wind turbine using quantitative feedback theory. In: 14th IEEE India Council International Conference. Roorkee, India (2017).

  11. Colombo, L., Corradini, M.L., Ippoliti, G., Orlando, G.: Pitch angle control of a wind turbine operating above the rated wind speed: A sliding mode control approach. ISA Trans. 96, 95–102 (2019)

    Article  Google Scholar 

  12. Merida, J., Aguilar, L.T., Davila, J.: Analysis and synthesis of sliding mode control for large scale variable speed wind turbine for power optimization. Renewable Energy 71, 715–728 (2014)

    Article  Google Scholar 

  13. Beltran, B., Benbouzid, M.E.H., Ahmed-Ali, T.: High-order sliding-mode control of variable-speed wind turbines. IEEE Trans. Industr. Electron. 56(9), 3314–3321 (2012)

    Article  Google Scholar 

  14. Seker, M., Zergeroglu, E., Tatlicioglu, E.: Non-linear control of variable-speed wind turbines with permanent magnet synchronous generators: a robust backstepping approach. Int. J. Syst. Sci. 47(2), 420–432 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ren, H., Zhang, H., Zhou, H., et al.: A novel constant output powers compound control strategy for variable-speed variable-pitch wind turbines. IEEE Access. 6, 17050–17059 (2018)

    Article  Google Scholar 

  16. Toulabi, M., Salehi, D.A., Ranjbar, A.M.: An adaptive feedback linearization approach to inertial frequency response of wind turbines. IEEE Trans. Sustain. Energy. 8(3) (2017).

  17. Abolvafaei, M., Ganjefar, S.: Two novel approaches to capture the maximum power from variable speed wind turbines using optimal fractional high-order fast terminal sliding mode control. Eur. J. Control. 60, 78–94 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  18. Abolvafaei, M., Ganjefar, S.: Maximum power extraction from fractional order doubly fed induction generator based wind turbines using homotopy singular perturbation method. Electr. Power Energy Syst. 119, 1–17 (2020)

    Article  MATH  Google Scholar 

  19. Moradi, H., Vossoughi, G.: Robust control of the variable speed wind turbines in the presence of uncertainties: A comparison between H∞ and PID controllers. Energy 90, 1508–1521 (2015)

    Article  Google Scholar 

  20. Da, C.J.P., Pinheiro, H., Degner, T., Arnold, G.: Robust controller for DFIGs of grid-connected wind turbines. IEEE Trans. Industr. Electron. 58(9), 4023–4038 (2010)

    Google Scholar 

  21. Yang, B., Hu, Y., Huang, H., Shu, H., Yu, T., Jiang, L.: Perturbation estimation based robust state feedback control for grid connected DFIG wind energy conversion system. Int. J. Hydrogen Energy 42(33), 20994–21005 (2017)

    Article  Google Scholar 

  22. Suboh, S.M., Sharma, R.: Robust control of wind turbines under uncertain wind speed measurements. In : 2019 IEEE PES GTD Grand International Conference and Exposition Asia (GTD Asia). 927–932 (2019).

  23. Singh, N., Pratap, B., Swarup, A.: Nonlinear robust observer based adaptive control design for variable speed wind turbine. J. Eng. Res. 7(3), 258–285 (2019)

    Google Scholar 

  24. Ren, B., Zhong, Q.C., Chen, J.: Robust control for a class of nonaffine nonlinear systems based on the uncertainty and disturbance estimator. IEEE Trans. Industr. Electron. 62(9), 5881–5888 (2015)

    Article  Google Scholar 

  25. Merida, J.O., Davila, J.A., Aguilar, L.T.: Robust quasi continuous sliding-mode control of a variable-speed wind turbine. In: 9th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), Mexico (2012).

  26. Rajendran, S., Jena, D.: Control of variable speed variable pitch wind turbine at above and below rated wind speed. J. Wind Energy. 1–14 (2014).

  27. Singh, N., Pratap, B., Swarup, A.: Robust control design of variable speed wind turbine using quantitative feedback theory. Proc. Inst. Mech. Eng. Part A J. Power Energy. 232(6), 691–705 (2018)

    Article  Google Scholar 

  28. Thomsen, S.C.: Nonlinear control of a wind turbine, informatics and mathematical modelling. DTU, Denmark (2006).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhanu Pratap.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The parameters of the considered VSWT are listed in Table 3, which have been used in simulation.

Table 3 VSWT System Parameters [7]

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, A.K., Pratap, B. & Swarup, A. Performance improvement of variable speed wind turbine by uncertainty estimator-based robust control design. Int J Energy Environ Eng 13, 1163–1175 (2022). https://doi.org/10.1007/s40095-022-00478-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40095-022-00478-5

Keywords

Navigation