Skip to main content

Advertisement

Log in

A common platform technology for green synthesis of multiple nanoparticles and their applicability in crop growth

  • Original Article
  • Published:
International Nano Letters Aims and scope Submit manuscript

Abstract

The study describes green synthesis of diverse nanoparticles using a single platform technology using water extract of powdered coffee and clove/polyphenols of coffee and clove under mild environmental conditions. Treatment of the respective chloride salt solutions/chloride salt combinations, with sodium bicarbonate (NaHCO3) in presence of polyphenolic plant extract yielded 6.5–26.8% nanoparticles of Mn, Zn, Cu, Co, Fe, Ni, and P, with diameters ranging from 1.0 to 99.7 nm. The nanoparticles were found to be stable for more than 15 days. Their potential in enhancing crop growth was also examined by treating pearl millet plants to foliar sprays of the synthesized nanoparticles. Green-synthesized Fe nanoparticles had a greater effect in enhancing the plant biomass when compared with commercially available Fe nanoparticles. The nanoparticle spray also did not affect the soil microflora adversely. The biological route to nanoparticle synthesis, utilizing indigenous plant products is a cost-effective approach, and their potential to be utilized as both reducing and stabilizing agents in the process offers a green platform for nanoparticle synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Dhand, C., Dwivedi, N., Loh, X.J., Ying, A.N.J., Verma, N.K., Beuerman, R.W., Lakshminarayanan, R., Ramakrishna, S.: Methods and strategies for the synthesis of diverse nanoparticles and their applications: a comprehensive overview. RSC Adv. 5, 105003–105037 (2015). https://doi.org/10.1039/C5RA19388E

    Article  CAS  Google Scholar 

  2. Iravani, S., Korbekandi, H., Mirmohammadi, S.V., Zolfaghari, B.: Synthesis of silver nanoparticles: chemical, physical and biological methods. Res. Pharm. Sci. 9, 385–406 (2014)

    CAS  Google Scholar 

  3. Marslin, G., Siram, K., Maqbool, Q., Selvakesavan, R.K., Kruszka, D., Kachlicki, P., Franklin, G.: Secondary metabolites in the green synthesis of metallic nanoparticles. Materials 11, 940 (2018). https://doi.org/10.3390/ma11060940

    Article  CAS  Google Scholar 

  4. Singh, P., Kim, Y.-J., Zhang, D., Yang, D.-C.: Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol. 34, 588–599 (2016). https://doi.org/10.1016/j.tibtech.2016.02.006

    Article  CAS  Google Scholar 

  5. Mittal, A.K., Chisti, Y., Banerjee, U.C.: Synthesis of metallic nanoparticles using plant extracts. Biotechnol. Adv. 31, 346–356 (2013). https://doi.org/10.1016/j.biotechadv.2013.01.003

    Article  CAS  Google Scholar 

  6. Khandel, P., Yadaw, R.K., Soni, D.K., Kanwar, L., Shahi, S.K.: Biogenesis of metal nanoparticles and their pharmacological applications: present status and application prospects. J. Nanostruct. Chem. 8, 217–254 (2018). https://doi.org/10.1007/s40097-018-0267-4

    Article  CAS  Google Scholar 

  7. Adisa, I.O., Pullagurala, V.L.R., Peralta-Videa, J.R., Dimkpa, C.O., Elmer, W.H., Gardea-Torresdey, J.L., White, J.C.: Recent advances in nano-enabled fertilizers and pesticides: a critical review of mechanisms of action. Environ. Sci. Nano 6, 2002–2030 (2019)

    Article  CAS  Google Scholar 

  8. Batsmanova LM, Gonchar LM, Taran NY, Okanenko AA.: Using a colloidal solution of metal nanoparticles as micronutrient fertilizer for cereals. In: Proceedings of the International Conference on Nanomaterials: Applications and Properties vol.2, 16–21 September, Odesa, Ukraine (2013)

  9. Raliya, R., Nair, R., Chavalmane, S., Wang, W.-N., Biswas, P.: Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. Metallomics 7, 1584–1594 (2015). https://doi.org/10.1039/C5MT00168D

    Article  CAS  Google Scholar 

  10. Shahwan, T., Sirriah, S.A., Nairat, M., Boyac, E., Eroğlu, A.E., Scott, T.B., Hallam, K.R.: Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes. Chem. Eng. J. 172, 58–266 (2011). https://doi.org/10.1016/j.cej.2011.05.103

    Article  CAS  Google Scholar 

  11. Hudlikar, M., Joglekar, S., Dhaygude, M., Kodam, K.: Latex-mediated synthesis of ZnS nanoparticles: green synthesis approach. J. Nanopart. Res. 14, 865 (2012). https://doi.org/10.1007/s11051-012-0865-x

    Article  CAS  Google Scholar 

  12. Kumar, M.A.P., Suresh, D., Nagabhushana, H., Sharma, S.C.: Beta vulgaris aided green synthesis of ZnO nanoparticles and their luminescence, photocatalytic and antioxidant properties. Eur. Phys. J. Plus 130, 109 (2015). https://doi.org/10.1140/epjp/i2015-15109-2

    Article  CAS  Google Scholar 

  13. Iliger, K.S., Sofi, T.A., Bhat, N.A., Ahanger, F.A., Sekhar, J.C., Elhendi, A.Z., Al-Huqail, A.A., Khan, F.: Copper nanoparticles: green synthesis and managing fruit rot disease of chilli caused by Colletotrichum capsici. Saudi J. Biol. Sci. 28, 1477–1486 (2021). https://doi.org/10.1016/j.sjbs.2020.12.003

    Article  CAS  Google Scholar 

  14. Umavathi, S., Mahboob, S., Govindarajan, M., Al-Ghanim, K.A., Ahmed, Z., Virik, P., Al-Mulhm, N., Subash, M., Gopinath, K., Kavitha, C.: Green synthesis of ZnO nanoparticles for antimicrobial and vegetative growth applications: a novel approach for advancing efficient high quality health care to human wellbeing. Saudi J. Biol. Sci. 28, 1808–1815 (2021). https://doi.org/10.1016/j.sjbs.2020.12.025

    Article  CAS  Google Scholar 

  15. Devatha, C.P., Thalla, A.K., Katte, S.Y.: Green synthesis of iron nanoparticles using different leaf extracts for treatment of domestic waste water. J Clean Prod. 139, 1425–1435 (2016). https://doi.org/10.1016/j.jclepro.2016.09.019

    Article  CAS  Google Scholar 

  16. Długosz, O., Szostak, K., Krupiński, M., Banach, M.: Synthesis of Fe3O4/ZnO nanoparticles and their application for the photodegradation of anionic and cationic dyes. Int. J. Environ. Sci. Technol. 18, 561–574 (2020). https://doi.org/10.1007/s13762-020-02852-4

    Article  CAS  Google Scholar 

  17. Makkar, H.P.S., Blümmel, M., Borowy, N.K., Becker, K.: Gravimetric determination of tannins and their correlations with chemical and protein precipitation methods. J. Sci. Food Agric. 61, 161–165 (1993). https://doi.org/10.1002/jsfa.2740610205

    Article  CAS  Google Scholar 

  18. Raliya, R., Tarafdar, J.C.: ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in clusterbean (Cyamopsis tetragonoloba L.). Agric. Res. 2, 48–57 (2013). https://doi.org/10.1007/s40003-012-0049-z

    Article  CAS  Google Scholar 

  19. Tabatabai, M.A.: Soil enzymes. In: Page, A.L., Miller, R.H., Keeney, D.R. (eds.) Methods of Soil Analysis Part 2, p. 1159. American Society of Agronomy and Soil Science Society of America, Madison (1982)

    Google Scholar 

  20. Marslin, G., Selvakesavan, R.K., Franklin, G., Sarmento, B., Dias, A.C.: Antimicrobial activity of cream incorporated with silver nanoparticles biosynthesized from Withania somnifera. Int. J. Nanomed. 10, 5955–5963 (2015). https://doi.org/10.2147/IJN.S81271

    Article  CAS  Google Scholar 

  21. Calle, L.C., López, M.E.L.: Green synthesis of silver nanoparticles using green coffee bean extract. In: Torres, I., Bustamante, J., Sierra, D. (eds.) VII Latin American Congress on Biomedical Engineering CLAIB (IFMBE Proceedings), vol. 60. Springer, Bucaramanga, Santander, Colombia, Singapore (2017). https://doi.org/10.1007/978-981-10-4086-3_55

    Chapter  Google Scholar 

  22. Nitthikan, N., Leelapornpisid, P., Natakankitkul, S., Chaiyana, W., Mueller, M., Viernstein, H., Kiattisin, K.: Improvement of stability and transdermal delivery of bioactive compounds in green robusta coffee beans extract loaded nanostructured lipid carriers. J. Nanotechnol. (2018). https://doi.org/10.1155/2018/7865024

    Article  Google Scholar 

  23. Li, H., Cao, Y.: For the love of nature: people who prefer natural versus synthetic drugs are higher in nature connectedness. J. Environ. Psychol. 71, 101496 (2020). https://doi.org/10.1016/j.jenvp.2020.101496

    Article  Google Scholar 

  24. Pérez-Jiménez, J., Neveu, V., Vos, F., Scalbert, A.: Identification of the 100 richest dietary sources of polyphenols: an application of the Phenol-Explorer database. Eur. J. Clin. Nutr. 64, S112–S120 (2010). https://doi.org/10.1038/ejcn.2010.221

    Article  CAS  Google Scholar 

  25. Kasana, R.C., Panwar, N.R., Burman, U., Kumar, P.: Prosopis cineraria leaf extract mediated green biosynthesis of copper oxide nanoparticles. Inorg. Nano-Met. Chem. Published online (2022). https://doi.org/10.1080/24701556.2021.2025073

    Article  Google Scholar 

  26. Desalegn, B., Megharaj, M., Chen, Z., Naidu, R.: Green synthesis of zero valent iron nanoparticle using mango peel extract and surface characterization using XPS and GC-MS. Heliyon 5, e01750 (2019). https://doi.org/10.1016/j.heliyon.2019.e01750

    Article  Google Scholar 

  27. Bollella, P., Hibino, Y., Conejo-Valverde, P., Soto-Cruz, J., Bergueiro, J., Calderón, M., Rojas-Carrillo, O., Kano, K., Gorton, L.: The influence of the shape of Au nanoparticles on the catalytic current of fructose dehydrogenase. Anal. Bioanal. Chem. 411, 7645–7657 (2019). https://doi.org/10.1007/s00216-019-01944-6

    Article  CAS  Google Scholar 

  28. Kumar, P., Burman, U., Santra, P.: Effect of nano-zinc oxide on nitrogenase activity in legumes: an interplay of concentration and exposure time. Int. Nano Lett. 5, 191–198 (2015). https://doi.org/10.1007/s40089-015-0155-6

    Article  CAS  Google Scholar 

  29. Cormode, D.P., Gao, L., Koo, H.: Emerging biomedical applications of enzyme-like catalytic nanomaterials. Trends Biotechnol. 36, 15–29 (2018). https://doi.org/10.1016/j.tibtech.2017.09.006

    Article  CAS  Google Scholar 

  30. Rui, M., Ma, C., Hao, Y., Guo, J., Rui, Y., Tang, X., Zhao, Q., Fan, X., Zhang, Z., Hou, T., Zhu, S.: Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea). Front. Plant Sci. 7, 815 (2016). https://doi.org/10.3389/fpls.2016.00815

    Article  Google Scholar 

  31. He, S., Feng, Y., Ren, H., Zhang, Y., Gu, N., Lin, X.: The impact of iron oxide magnetic nanoparticles on the soil bacterial community. J. Soils Sediments. 11, 1408–1417 (2011). https://doi.org/10.1007/s11368-011-0415-7

    Article  CAS  Google Scholar 

  32. Pawlett, M., Ritz, K., Dorey, R.A., Rocks, S., Ramsden, J., Harris, J.A.: The impact of zero-valent iron nanoparticles upon soil microbial communities is context dependent. Environ. Sci. Pollut. Res. Int. 20, 1041–1049 (2013). https://doi.org/10.1007/s11356-012-1196-2

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Director, ICAR-Central Arid Zone Research Institute, Jodhpur, India, for providing the facilities to prepare the manuscript.

Funding

The authors declare that no funds or grants were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

NRP and SM conducted the experiments and wrote the manuscript. PK conceptualized the idea. PK and UB critically reviewed the manuscript.

Corresponding author

Correspondence to M. Saritha.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 438 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panwar, N.R., Saritha, M., Kumar, P. et al. A common platform technology for green synthesis of multiple nanoparticles and their applicability in crop growth. Int Nano Lett 13, 177–183 (2023). https://doi.org/10.1007/s40089-023-00399-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40089-023-00399-z

Keywords

Navigation