Skip to main content
Log in

Fulvic acid-embedded poly (vinyl alcohol)–zinc oxide hydrogel nanocomposite: synthesis, characterization, swelling and release kinetic

  • Original Article
  • Published:
International Nano Letters Aims and scope Submit manuscript

Abstract

In this study, cryogel nanocomposite based on poly (vinyl alcohol) (PVA) in situ formed zinc oxide nanoparticles (ZnO NPs) in the presence of fulvic acid (FA) was fabricated via repeated freeze-thawing method. Fourier transformed infrared spectroscopy (FTIR) was used for chemical elucidation of the prepared samples. The surface morphologies of bare PVA and PVA cryogel–ZnO nanocomposites were evaluated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques. The SEM results demonstrated that synthesized cryogels illustrated porous morphology whereas TEM images confirmed the existence of nearly spherical and well-distributed ZnO NPs with diameter less than 50 nm. All related reflections for crystal structure of ZnO NPs were shown by X-ray diffraction (XRD) results. Thermal stability of synthesized hydrogels was investigated using TGA and DSC analyses. The effect of various salt solutions was studied for swelling behavior of prepared nanocomposites. PVA/FA/ZnO hydrogel nanocomposite was also tested for drug delivery activities for controlled release of FA. Moreover, the kinetic investigations showed the best fit with Korsmeyer–Peppas model with Fick’s diffusion as the drug release mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Akbari, A., Arsalani, N.: Preparation and characterization of novel hybrid nanocomposites by free radical copolymerization of vinyl pyrrolidone with incompletely condensed polyhedral oligomeric silsesquioxane. J. Inorg. Organomet. Polym Mater. 26(3), 536–544 (2016)

    Article  CAS  Google Scholar 

  2. Eftekhari-Sis, B., Akbari, A., Motlagh, P.Y., Bahrami, Z., Arsalani, N.: Dye Adsorption on cubic polyhedral oligomeric silsesquioxane-based poly(acrylamide-co-itaconic acid) hybrid nanocomposites: kinetic, thermodynamic and isotherms studies. J. Inorg. Organomet. Polym Mater. 28(5), 1728–1738 (2018)

    Article  CAS  Google Scholar 

  3. Garcia, C.V., Shin, G.H., Kim, J.T.: Metal oxide-based nanocomposites in food packaging: applications, migration, and regulations. Trends Food Sci. Technol. 82, 21–31 (2018)

    Article  CAS  Google Scholar 

  4. Alizadeh-Sani, M., Kia, E.M., Ghasempour, Z., Ehsani, A.: Preparation of active nanocomposite film consisting of sodium caseinate, ZnO nanoparticles and rosemary essential oil for food packaging applications. J. Polym. Environ. 29(2), 588–598 (2021)

    Article  CAS  Google Scholar 

  5. Rahdar, A., Rahdar, S., Labuto, G.: Environmentally friendly synthesis of Fe2O3@ SiO2 nanocomposite: characterization and application as an adsorbent to aniline removal from aqueous solution. Environ. Sci. Pollut. Res. 27, 9181–9191 (2020)

  6. Liu, Q., Chen, X., Kang, Z.-W., Zheng, C., Yang, D.-P.: Facile synthesis of eggshell membrane-templated Au/CeO2 3D nanocomposite networks for nonenzymatic electrochemical dopamine sensor. Nanoscale Res. Lett. 15(1), 1–10 (2020)

    Article  CAS  Google Scholar 

  7. Li, Y., Liu, K., Zhang, J., Yang, J., Huang, Y., Tong, Y.: Engineering the band-edge of Fe2O3/ZnO nanoplates via separate dual cation incorporation for efficient photocatalytic performance. Ind. Eng. Chem. Res. 59(42), 18865–18872 (2020)

    Article  CAS  Google Scholar 

  8. Li, Y., Xia, Y., Liu, K., Ye, K., Wang, Q., Zhang, S., Huang, Y., Liu, H.: Constructing Fe-MOF-derived Z-scheme photocatalysts with enhanced charge transport: nanointerface and carbon sheath synergistic effect. ACS Appl. Mater. Interfaces. 12(22), 25494–25502 (2020)

    Article  Google Scholar 

  9. Akbari, A., Amini, M., Tarassoli, A., Eftekhari-Sis, B., Ghasemian, N., Jabbari, E.: Transition metal oxide nanoparticles as efficient catalysts in oxidation reactions. Nano-Struct. Nano-Objects 14, 19–48 (2018)

    Article  CAS  Google Scholar 

  10. Saji, V.S.: Photoelectrochemical cathodic protection in the dark: a review of nanocomposite and energy-storing photoanodes. J. Electrochem. Soc. 167(12), 121505 (2020)

    Article  CAS  Google Scholar 

  11. Zahin, N., Anwar, R., Tewari, D., Kabir, M.T., Sajid, A., Mathew, B., Uddin, M.S., Aleya, L., Abdel-Daim, M.M.: Nanoparticles and its biomedical applications in health and diseases: special focus on drug delivery. Environ. Sci. Pollut. Res. 27, 19151–19168 (2020)

  12. Gholamali, I., Asnaashariisfahani, M., Alipour, E.: Silver nanoparticles incorporated in pH-sensitive nanocomposite hydrogels based on carboxymethyl chitosan-poly (vinyl alcohol) for use in a drug delivery system. Regener. Eng. Trans. Med. 6(2), 138–153 (2020)

    Article  CAS  Google Scholar 

  13. Chaturvedi, A., Bajpai, A.K., Bajpai, J., Singh, S.K.: Evaluation of poly (vinyl alcohol) based cryogel–zinc oxide nanocomposites for possible applications as wound dressing materials. Mater. Sci. Eng. C 65, 408–418 (2016)

    Article  CAS  Google Scholar 

  14. Soleymani, M., Akbari, A., Mahdavinia, G.R.: Magnetic PVA/laponite RD hydrogel nanocomposites for adsorption of model protein BSA. Polym. Bull. 76(5), 2321–2340 (2019)

    Article  CAS  Google Scholar 

  15. Baker, M.I., Walsh, S.P., Schwartz, Z., Boyan, B.D.: A review of polyvinyl alcohol and its uses in cartilage and orthopedic applications. J. Biomed. Mater. Res. B Appl. Biomater. 100(5), 1451–1457 (2012)

    Article  Google Scholar 

  16. Jiang, S., Liu, S., Feng, W.: PVA hydrogel properties for biomedical application. J. Mech. Behav. Biomed. Mater. 4(7), 1228–1233 (2011)

    Article  CAS  Google Scholar 

  17. Muppalaneni, S., Omidian, H.: Polyvinyl alcohol in medicine and pharmacy: a perspective. J. Dev. Drugs 2(3), 1–5 (2013)

    Article  Google Scholar 

  18. Matar, G.H., Andac, M.: Antibacterial efficiency of silver nanoparticles-loaded locust bean gum/polyvinyl alcohol hydrogels. Polymer Bull (2020). https://doi.org/10.1007/s00289-020-03418-7

    Article  Google Scholar 

  19. Darbasizadeh, B., Fatahi, Y., Feyzi-barnaji, B., Arabi, M., Motasadizadeh, H., Farhadnejad, H., Moraffah, F., Rabiee, N.: Crosslinked-polyvinyl alcohol-carboxymethyl cellulose/ZnO nanocomposite fibrous mats containing erythromycin (PVA-CMC/ZnO-EM): fabrication, characterization and in-vitro release and anti-bacterial properties. Int. J. Biol. Macromol. 141, 1137–1146 (2019)

    Article  CAS  Google Scholar 

  20. Khorasani, M.T., Joorabloo, A., Moghaddam, A., Shamsi, H., MansooriMoghadam, Z.: Incorporation of ZnO nanoparticles into heparinised polyvinyl alcohol/chitosan hydrogels for wound dressing application. Int. J. Biol. Macromol. 114, 1203–1215 (2018)

    Article  CAS  Google Scholar 

  21. Restrepo, I., Benito, N., Medinam, C., Mangalaraja, R., Flores, P., Rodriguez-Llamazares, S.: Development and characterization of polyvinyl alcohol stabilized polylactic acid/ZnO nanocomposites. Mater. Res. Express 4(10), 105019 (2017)

    Article  Google Scholar 

  22. Chee, B.S., de Lima, G.G., Devine, D.M., Nugent, M.J.: Investigation of the effects of orientation on freeze/thawed Polyvinyl alcohol hydrogel properties. Mater. Today Commun. 17, 82–93 (2018)

    Article  CAS  Google Scholar 

  23. Wang, Z., Ding, Y., Wang, J.: Novel Polyvinyl Alcohol (PVA)/Cellulose Nanocrystal (CNC) supramolecular composite hydrogels: preparation and application as soil conditioners. Nanomaterials 9(10), 1397 (2019)

    Article  CAS  Google Scholar 

  24. Patachia, S., Rinja, M., Isac, L.: Some methods for doping poly (vinyl alcohol) hydrogels [PVA-HG], Composites 1, 2 (2006)

  25. Ghazy, M.B., El-Hai, F.A., Mohamed, M.F., Essawy, H.A.: Multifunctional semi-interpenetrating superabsorbents from graft polymerization of acrylic acid on cellulose in presence of fulvic acid as potential slow release devices of soil nutrients. J. Adv. Chem. 12(2), 4045–4056 (2016)

    Article  CAS  Google Scholar 

  26. Yang, C.-C., Lin, S.-J., Hsu, S.-T.: Synthesis and characterization of alkaline polyvinyl alcohol and poly (epichlorohydrin) blend polymer electrolytes and performance in electrochemical cells. J. Power Sources 122(2), 210–218 (2003)

    Article  CAS  Google Scholar 

  27. Hashem, M., Sharaf, S., El-Hady, M.A., Hebeish, A.: Synthesis and characterization of novel carboxymethylcellulose hydrogels and carboxymethylcellulolse-hydrogel-ZnO-nanocomposites. Carbohyd. Polym. 95(1), 421–427 (2013)

    Article  CAS  Google Scholar 

  28. Akbari, A., Arsalani, N.: Organic–inorganic incompletely condensed polyhedral oligomeric silsesquioxane-based nanohybrid: synthesis, characterization and dye removal properties. Polym.-Plast. Technol. Eng. 55(15), 1586–1594 (2016)

    Article  CAS  Google Scholar 

  29. Abdeen, Z.I., El. Farargy, A.F., Negm, N.A.: Nanocomposite framework of chitosan/polyvinyl alcohol/ZnO: preparation, characterization, swelling and antimicrobial evaluation. J. Mol. Liq. 250, 335–343 (2018)

    Article  CAS  Google Scholar 

  30. Kanmaz, N., Saloglu, D., Hizal, J.: Humic acid embedded chitosan/poly (vinyl alcohol) pH-sensitive hydrogel: synthesis, characterization, swelling kinetic and diffusion coefficient. Chem. Eng. Commun. 206(9), 1168–1180 (2019)

    Article  CAS  Google Scholar 

  31. Rajesh Kumar, S., Juan, C.-H., Liao, G.-M., Lin, J.-S., Yang, C.-C., Ma, W.-T., You, J.-H., Jessie Lue, S.: Fumed silica nanoparticles incorporated in quaternized poly (vinyl alcohol) nanocomposite membrane for enhanced power densities in direct alcohol alkaline fuel cells. Energies 9(1), 15 (2016)

    Article  Google Scholar 

  32. Alinavaz, S., Mahdavinia, G.R., Jafari, H., Hazrati, M., Akbari, A.: Hydroxyapatite (HA)-based hybrid bionanocomposite hydrogels: ciprofloxacin delivery, release kinetics and antibacterial activity. J. Mol. Struct. 1225, 129095 (2021)

    Article  CAS  Google Scholar 

  33. Akbari, A., Padervand, M., Jalilian, E., Seidi, F.: Sodium alginate-halloysite nanotube gel beads as potential delivery system for sunitinib malate anticancer compound. Mater. Lett. 274, 128038 (2020)

    Article  CAS  Google Scholar 

  34. Sabbagh, N., Akbari, A., Arsalani, N., Eftekhari-Sis, B., Hamishekar, H.: Halloysite-based hybrid bionanocomposite hydrogels as potential drug delivery systems. Appl. Clay Sci. 148, 48–55 (2017)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Akbari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbari, A., Jafari, H., Gohari, G. et al. Fulvic acid-embedded poly (vinyl alcohol)–zinc oxide hydrogel nanocomposite: synthesis, characterization, swelling and release kinetic. Int Nano Lett 11, 347–354 (2021). https://doi.org/10.1007/s40089-021-00344-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40089-021-00344-y

Keywords

Navigation