Skip to main content

Advertisement

Log in

Optimization and fabrication of alginate scaffold for alveolar bone regeneration with sufficient drug release

  • Original Article
  • Published:
International Nano Letters Aims and scope Submit manuscript

Abstract

Bone tissues, with their porous structure and the crucial role of producing and releasing blood elements into the bloodstream, can act as a suitable candidate for drug delivery stations in all parts of the body. Making an appropriate osteoconductive scaffold with drug delivery is the basis of this study for designing such materials. In this research, bone scaffolds containing drugs and magnetite nanoparticles were designed and produced for bone tissue approaches. As a new class of treatment for bone defects or deformity, calcium silicate ceramics (CSC) have been able to attract a lot of attention among researchers as a viable solution. With the incorporation of metal oxides (like Fe3O4: magnetite nanoparticles; MNPs) into the base binary xCaO-ySiO2-MgO as well as the substitution of calcium ions, CSCs can be fabricated. In the current work, the scanning electron microscope (SEM) and X-ray diffraction (XRD) technique were used to determine the phase and morphology of the porous scaffolds for dental fracture. The observation shows that the compressive strength and elastic modulus increase from 0.9 to 1.76 MPa and 59 to 81 MPa, respectively. The SEM images proved that the porosity dimensions were reduced from sample 0 wt% to sample 15 wt% (From 85 to 70%). Also, the absorbance test was found to be increased from 0 to 15 wt% sample in the PBS immersion solution. The obtained results indicated that the samples with a maximum of 10 wt% MNPs might release the drug more comfortably, which can be reported as a suitable candidate for bone tissue application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kordjamshidi, A., Saber-Samandari, S., Nejad, M.G., Khandan, A.: Preparation of novel porous calcium silicate scaffold loaded by celecoxib drug using freeze drying technique: fabrication, characterization and simulation. Ceram. Int. 45(11), 14126–14135 (2019)

    Article  CAS  Google Scholar 

  2. JoneidiYekta, H., Shahali, M., Khorshidi, S., Rezaei, S., Montazeran, A.H., Samandari, S., Khandan, A., et al.: Mathematically and experimentally defined porous bone scaffold produced for bone substitute application. Nanomed. J. 5(4), 227–234 (2018)

    Google Scholar 

  3. Esmaeili, S., Aghdam, H.A., Motififard, M., Saber-Samandari, S., Montazeran, A.H., Bigonah, M., Khandan, A., et al.: A porous polymeric–hydroxyapatite scaffold used for femur fractures treatment: fabrication, analysis, and simulation. Eur. J. Orthop. Surg. Traumatol. 30(1), 123–131 (2020)

    Article  Google Scholar 

  4. Seyfi, J., Panahi-Sarmad, M., OraeiGhodousi, A., Goodarzi, V., Khonakdar, H.A., Asefnejad, A., Shojaei, S.: Antibacterial superhydrophobic polyvinyl chloride surfaces via the improved phase separation process using silver phosphate nanoparticles. Colloids Surf. B Biointerfaces 183, 110438 (2019)

    Article  CAS  Google Scholar 

  5. Moghadas, B.K., Akbarzadeh, A., Azadi, M., Aghili, A., Rad, A.S.: The morphological properties and biocompatibility studies of synthesized nanocomposite foam from modified polyethersulfone/graphene oxide using supercritical CO2. J. Macromol. Sci. Part A 57(6), 451–460 (2020)

    Article  CAS  Google Scholar 

  6. KamyabMoghadas, B., Azadi, M.: Fabrication of nanocomposite foam by supercritical CO2 technique for application in tissue engineering. J. Tissues Mater. 2(1), 23–32 (2019)

    Google Scholar 

  7. Shirani, K., Sheikhbahaei, E., Torkpour, Z., Nejad, M.G., Moghadas, B.K., Ghasemi, M., Khandan, A., et al.: A narrative review of COVID-19: the new pandemic disease. Iran. J. Med. Sci. 45(4), 233 (2020)

    Google Scholar 

  8. Monshi, M., Esmaeili, S., Kolooshani, A., Moghadas, B.K., Saber-Samandari, S., Khandan, A.: A novel three-dimensional printing of electroconductive scaffolds for bone cancer therapy application. Nanomed. J. 7(2), 138–148 (2020)

    CAS  Google Scholar 

  9. Diez-Escudero, A., Espanol, M., Ginebra, M.P.: Synthetic bone graft substitutes: calcium-based biomaterials. In: Dental Implants and Bone Grafts, pp. 125–157. Woodhead Publishing (2020)

  10. Alksne, M., Kalvaityte, M., Simoliunas, E., Rinkunaite, I., Gendviliene, I., Locs, J., Bukelskiene, V., et al.: In vitro comparison of 3D printed polylactic acid/hydroxyapatite and polylactic acid/bioglass composite scaffolds: Insights into materials for bone regeneration. J. Mech. Behav. Biomed. Mater. 104, 103641 (2020)

    Article  CAS  Google Scholar 

  11. Najafinezhad, A., Abdellahi, M., Ghayour, H., Soheily, A., Chami, A., Khandan, A.: A comparative study on the synthesis mechanism, bioactivity and mechanical properties of three silicate bioceramics. Mater. Sci. Eng. C 72, 259–267 (2017)

    Article  CAS  Google Scholar 

  12. Moghadas, B.K., Safekordi, A.A., Honarvar, B., Kaljahi, J.F., Yazdi, S.A.V.: Experimental study of dorema aucheri extraction with supercritical carbon dioxide. Asian J. Chem. 24(8) (2012)

  13. Kazemi, A., Abdellahi, M., Khajeh-Sharafabadi, A., Khandan, A., Ozada, N.: Study of in vitro bioactivity and mechanical properties of diopside nano-bioceramic synthesized by a facile method using eggshell as raw material. Mater. Sci. Eng. C 71, 604–610 (2017)

    Article  CAS  Google Scholar 

  14. Sharafabadi, A.K., Abdellahi, M., Kazemi, A., Khandan, A., Ozada, N.: A novel and economical route for synthesizing akermanite (Ca2MgSi2O7) nano-bioceramic. Mater. Sci. Eng. C 71, 1072–1078 (2017)

    Article  CAS  Google Scholar 

  15. Khandan, A., Ozada, N., Saber-Samandari, S., Nejad, M.G.: On the mechanical and biological properties of bredigite-magnetite (Ca7MgSi4O16-Fe3O4) nanocomposite scaffolds. Ceram. Int. 44(3), 3141–3148 (2018)

    Article  CAS  Google Scholar 

  16. Khandan, A., Ozada, N.: Bredigite-magnetite (Ca7MgSi4O16-Fe3O4) nanoparticles: a study on their magnetic properties. J. Alloy. Compd. 726, 729–736 (2017)

    Article  CAS  Google Scholar 

  17. Shokuhi Rad, A., Zareyee, D., PouralijanFoukolaei, V., KamyabMoghadas, B., Peyravi, M.: Study on the electronic structure of Al12N12 and Al12P12 fullerene-like nano-clusters upon adsorption of CH3F and CH3Cl. Mol. Phys. 114(21), 3143–3149 (2016)

    Article  CAS  Google Scholar 

  18. Sahmani, S., Khandan, A., Esmaeili, S., Saber-Samandari, S., Nejad, M.G., Aghdam, M.M.: Calcium phosphate-PLA scaffolds fabricated by fused deposition modeling technique for bone tissue applications: fabrication, characterization and simulation. Ceram. Int. 46(2), 2447–2456 (2020)

    Article  CAS  Google Scholar 

  19. Charmforoushan, A., Roknabadi, M.R., Shahtahmassebi, N., Malaekeh-Nikouei, B.: Low temperature facile synthesis of pseudowollastonite nanoparticles by the surfactant-assisted sol-gel method. Mater. Chem. Phys. 243, 122629 (2020)

    Article  CAS  Google Scholar 

  20. Siriphannon, P., Kameshima, Y., Yasumori, A., Okada, K., Hayashi, S.: Formation of hydroxyapatite on CaSiO3 powders in simulated body fluid. J. Eur. Ceram. Soc. 22(4), 511–520 (2002)

    Article  CAS  Google Scholar 

  21. Siriphannon, P., Hayashi, S., Yasumori, A., Okada, K.: Preparation and sintering of CaSiO3 from coprecipitated powder using NaOH as precipitant and its apatite formation in simulated body fluid solution. J. Mater. Res. 14(2), 529–536 (1999)

    Article  CAS  Google Scholar 

  22. Hazar, A.B.Y.: Preparation and in vitro bioactivity of CaSiO3 powders. Ceram. Int. 33(4), 687–692 (2007)

    Article  CAS  Google Scholar 

  23. Morteza, P.H., Reza, F.M., Nasrin, S., Ehsan, N., Ali, R.S., Amini, M.: Deterioration of parabens in preserved magnesium hydroxide oral suspensions. J. Appl. Sci 7, 3322–3325 (2007)

    Article  CAS  Google Scholar 

  24. Nassireslami, E., Nikbin, P., Amini, E., Payandemehr, B., Shaerzadeh, F., Khodagholi, F., Sharifzadeh, M., et al.: How sodium arsenite improve amyloid β-induced memory deficit? Physiol. Behav. 163, 97–106 (2016)

    Article  CAS  Google Scholar 

  25. Nassireslami, E., Motififard, M., Kamyab Moghadas, B., Hami, Z., Jasemi, A.,Lachiyani, A., Khandan, A., et al.: Potential of magnetite nanoparticles with biopolymers loaded with gentamicin drug for bone cancer treatment. J. Nanoanal. (2020)

  26. Rad, A.S., Samipour, V., Movaghgharnezhad, S., Mirabi, A., Shahavi, M.H., Moghadas, B.K.: X12N12 (X= Al, B) clusters for protection of vitamin C; molecular modeling investigation. Surfaces and Interfaces 15, 30–37 (2019)

    Article  CAS  Google Scholar 

  27. Monfared, R.M., Ayatollahi, M.R., Isfahani, R.B.: Synergistic effects of hybrid MWCNT/nanosilica on the tensile and tribological properties of woven carbon fabric epoxy composites. Theor. Appl. Fract. Mech. 96, 272–284 (2018)

    Article  CAS  Google Scholar 

  28. Maghsoudlou, M.A., Isfahani, R.B., Saber-Samandari, S., Sadighi, M.: Effect of interphase, curvature and agglomeration of SWCNTs on mechanical properties of polymer-based nanocomposites: experimental and numerical investigations. Compos. Part B Eng. 175, 107119 (2019)

    Article  CAS  Google Scholar 

  29. Ayatollahi, M.R., BarbazIsfahani, R., MoghimiMonfared, R.: Effects of multi-walled carbon nanotube and nanosilica on tensile properties of woven carbon fabric-reinforced epoxy composites fabricated using VARIM. J. Compos. Mater. 51(30), 4177–4188 (2017)

    Article  CAS  Google Scholar 

  30. Ayatollahi, M.R., MoghimiMonfared, R., BarbazIsfahani, R.: Experimental investigation on tribological properties of carbon fabric composites: effects of carbon nanotubes and nano-silica. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 233(5), 874–884 (2019)

    CAS  Google Scholar 

  31. Barbaz, I.R.: Experimental determining of the elastic modulus and strength of composites reinforced with two nanoparticles. Doctoral dissertation, MSc Thesis, School of Mechanical Engineering Iran University of Science and Technology, Tehran, Iran (2014)

  32. Najafi, S., Payandemehr, B., Tabrizian, K., Shariatpanahi, M., Nassireslami, E., Azami, K., Sharifzadeh, M., et al.: The role of nitric oxide in the PKA inhibitor induced spatial memory deficits in rat: involvement of choline acetyltransferase. Eur. J. Pharmacol. 714(1–3), 478–485 (2013)

    Article  CAS  Google Scholar 

  33. Seyedi, S.Y., Salehi, F., Payandemehr, B., Hossein, S., Hosseini-Zare, M.S., Nassireslami, E., Sharifzadeh, M., et al.: Dual effect of cAMP agonist on ameliorative function of PKA inhibitor in morphine-dependent mice. Fundam. Clin. Pharmacol. 28(4), 445–454 (2014)

    Article  CAS  Google Scholar 

  34. Raisi, A., Asefnejad, A., Shahali, M., Kazerouni, Z.A.S., Kolooshani, A., Saber‑Samandari, S., Khandan, A., et al.: Preparation, characterization, and antibacterial studies of N, O‑carboxymethyl chitosan as a wound dressing for bedsore application. Arch. Trauma Res. (2020)

  35. Zamani, D., Razmjooee, K., Moztarzadeh, F., Bizari, D.: Synthesis and characterization of alginate scaffolds containing bioactive glass for bone tissue engineering applications. In: 2017 24th national and 2nd international Iranian conference on biomedical engineering (ICBME), pp. 330–333. IEEE (2017)

  36. Bruni, S., Maino, G., Marrocchino, E., Vaccaro, C., Volpe, L.: A study of the Civic Tower in Ravenna as an example of medieval towers’ preservation problems. Eur. Phys. J. Plus 128(3), 33 (2013)

    Article  CAS  Google Scholar 

  37. Razmjooee, K., Nassireslami, E., Dadpay, M., Chehri, H., Golaghei, A.: Chitosan physical hydrogel for diabetic wound treatment. Paramed. Sci. Mil. Health 13(2), 11–20 (2018)

    Google Scholar 

  38. La Porta, C.A., Ghilardi, A., Pasini, M., Laurson, L., Alava, M.J., Zapperi, S., Amar, M.B.: Osmotic stress affects functional properties of human melanoma cell lines. Eur. Phys. J. Plus 130(4), 64 (2015)

    Article  CAS  Google Scholar 

  39. Karbasian, M., Eftekhari, S.A., KarimzadehKolamroudi, M., KamyabMoghadas, B., Nasri, P., Jasemi, A., Khandan, A., et al.: Therapy with new generation of biodegradable and bioconjugate 3D printed artificial gastrointestinal lumen. Iran. J. Basic Med. Sci. 24(3), 391–399 (2021)

    Google Scholar 

  40. Moradi-Dastjerdi, R., Malek-Mohammadi, H., Momeni-Khabisi, H.: Free vibration analysis of nanocomposite sandwich plates reinforced with CNT aggregates. ZAMM J. Appl. Math. Mech. 97(11), 1418–1435 (2017)

    Google Scholar 

  41. Achour, A., Arman, A., Islam, M., Zavarian, A.A., Al-Zubaidi, A.B., Szade, J.: Synthesis and characterization of porous CaCO3 micro/nano-particles. Eur. Phys. J. Plus 132(6), 267 (2017)

    Article  CAS  Google Scholar 

  42. Moradi-dastjerdi, R., Malek-Mohammadi, H.: Free vibration and buckling analyses of functionally graded nanocomposite plates reinforced by carbon nanotube. Mech. Adv. Compos. Struct. 4(1), 59–73 (2017)

    Google Scholar 

  43. Maghsoudlou, M.A., Nassireslami, E., Saber-Samandar, S., Khandan, A.: Bone regeneration using bio-nanocomposite tissue reinforced with bioactive nanoparticles for femoral defect applications in medicine. Avicenna J. Med. Biotechnol. 12, 68 (2020)

    Google Scholar 

  44. Khandan, A., Nassireslami, E., Saber-Samandari, S., Arabi, N.: Fabrication and characterization of porous bioceramic-magnetite biocomposite for maxillofacial fractures application. Dent. Hypotheses 11(3), 74 (2020)

    CAS  Google Scholar 

  45. Abd-Khorsand, S., Saber-Samandari, S., Saber-Samandari, S.: Development of nanocomposite scaffolds based on TiO2 doped in grafted chitosan/hydroxyapatite by freeze drying method and evaluation of biocompatibility. Int. J. Biol. Macromol. 101, 51–58 (2017)

    Article  CAS  Google Scholar 

  46. Saber-Samandari, S., Mohammadi-Aghdam, M., Saber-Samandari, S.: A novel magnetic bifunctional nanocomposite scaffold for photothermal therapy and tissue engineering. Int. J. Biol. Macromol. 138, 810–818 (2019)

    Article  CAS  Google Scholar 

  47. Sahmani, S., Shahali, M., Nejad, M.G., Khandan, A., Aghdam, M.M., Saber-Samandari, S.: Effect of copper oxide nanoparticles on electrical conductivity and cell viability of calcium phosphate scaffolds with improved mechanical strength for bone tissue engineering. Eur. Phys. J. Plus 134(1), 7 (2019)

    Article  CAS  Google Scholar 

  48. Panahi-Sarmad, M., Goodarzi, V., Amirkiai, A., Noroozi, M., Abrisham, M., Dehghan, P., Asefnejad, A., et al.: Programing polyurethane with systematic presence of graphene-oxide (GO) and reduced graphene-oxide (rGO) platelets for adjusting of heat-actuated shape memory properties. Eur. Polym. J. 118, 619–632 (2019)

    Article  CAS  Google Scholar 

  49. Biazar, E., Beitollahi, A., Rezayat, S.M., Forati, T., Asefnejad, A., Rahimi, M., Heidari, M., et al.: Effect of the mechanical activation on size reduction of crystalline acetaminophen drug particles. Int. J. Nanomed. 4, 283 (2009)

    Article  CAS  Google Scholar 

  50. Shojaie, S., Rostamian, M., Samadi, A., Alvani, M.A.S., Khonakdar, H.A., Goodarzi, V., Saeb, M.R., et al.: Electrospun electroactive nanofibers of gelatin-oligoaniline/poly (vinyl alcohol) templates for architecting of cardiac tissue with on-demand drug release. Polym. Adv. Technol. 30(6), 1473–1483 (2019)

    Article  CAS  Google Scholar 

  51. Biazar, E., Rezayat, S.M., Montazeri, N., Pourshamsian, K., Zeinali, R., Asefnejad, A., Ziaei, M., et al.: The effect of acetaminophen nanoparticles on liver toxicity in a rat model. Int. J. Nanomed. 5, 197 (2010)

    Article  CAS  Google Scholar 

  52. Raisi, A., Asefnejad, A., Shahali, M., Doozandeh, Z., KamyabMoghadas, B., Saber-Samandari, S., Khandan, A.: A soft tissue fabricated using freeze-drying technique with carboxymethyl chitosan and nanoparticles for promoting effects on wound healing. J. Nanoanal. 7(4), 262–274 (2020)

    Google Scholar 

  53. Khandan, A., Saber-Samandari, S., Telloo, M., Kazeroni, Z.S., Esmaeili, S., Sheikhbahaei, E., Kamyab, B., et al.: A mitral heart valve prototype using sustainable polyurethane polymer: fabricated by 3D bioprinter, tested by molecular dynamics simulation. AUT J. Mech. Eng. (2020)

  54. Haghayegh, M., Zabihi, F., Eikani, M.H., KamyaMoghadas, B., VaziriYazdi, S.A.: Supercritical fluid extraction of flavonoids and terpenoids from herbal compounds: experiments and mathematical modeling. J. Essent. Oil Bear. Plants 18(5), 1253–1265 (2015)

    Article  CAS  Google Scholar 

  55. Mousavi, H., Mohammadi, M., Aghdam, H.A.: Injury to the infrapatellar branch of the saphenous nerve during ACL reconstruction with hamstring tendon autograft: a comparison between oblique and vertical incisions. Arch. Bone Jt. Surg. 6(1), 52 (2018)

    Google Scholar 

  56. Moeini, M., BarbazIsfahani, R., Saber-Samandari, S., Aghdam, M.M.: Molecular dynamics simulations of the effect of temperature and strain rate on mechanical properties of graphene–epoxy nanocomposites. Mol. Simul. 46(6), 476–486 (2020)

    Article  CAS  Google Scholar 

  57. Ghadirinejad, M., Atasoylu, E., Izbirak, G., Gha-Semi, M.: A stochastic model for the ethanol pharmacokinetics. Iran. J. Public Health 45(9), 1170 (2016)

    Google Scholar 

  58. Bagherifard, A., JoneidiYekta, H., Akbari Aghdam, H., Motififard, M., Sanatizadeh, E., GhadiriNejad, M., Khandan, A., et al.: Improvement in osseointegration of tricalcium phosphate-zircon for orthopedic applications: an in vitro and in vivo evaluation. Med. Biol. Eng. Comput. 58, 1681–1693 (2020)

    Article  Google Scholar 

  59. Khandan, A., Saber-Samandari, S., Telloo, M., Kazeroni, Z. S., Esmaeili, S., Sheikhbahaei, E., Kamyab, B., et al.: A mitral heart valve prototype using sustainable polyurethane polymer: fabricated by 3D bioprinter, tested by molecular dynamics simulation. AUT J. Mech. Eng. (2020)

  60. Moradi-Dastjerdi, R., Behdinan, K., Safaei, B., Qin, Z.: Buckling behavior of porous CNT-reinforced plates integrated between active piezoelectric layers. Eng. Struct. 222, 111141 (2020)

    Article  Google Scholar 

  61. Razmjooee, K., Saber-Samandari, S., Keshvari, H., Ahmadi, S.: Improving anti thrombogenicity of nanofibrous polycaprolactone through surface modification. J. Biomater. Appl. 34(3), 408–418 (2019)

    Article  CAS  Google Scholar 

  62. Saber-Samandari, S., Gross, K.A.: Nano-indentation on amorphous calcium phosphate splats: Effect of droplet size on mechanical properties. J. Mech. Behav. Biomed. Mater. 16, 29–37 (2012)

    Article  CAS  Google Scholar 

  63. Fada, R., Farhadi Babadi, N., Azimi, R., Karimian, M., Shahgholi, M.: Mechanical properties improvement and bone regeneration of calcium phosphate bone cement, polymethyl methacrylate and glass ionomer. J. Nanoanal. (2020)

  64. Abbasi-Rad, S., Akbari, A., Malekzadeh, M., Shahgholi, M., Arabalibeik, H., Rad, H.S.: Quantifying cortical bone free water using short echo time (STE-MRI) at 1.5 T. Magn. Reson Imaging 71, 17–24 (2020)

    Article  Google Scholar 

  65. Malekzadeh, M., Abbasi-Rad, S., Shahgholi, M., Naghdi, P., Hoseini, M.S., Yazdi, N.A., Rad, H.S., et al.: Design and validation of synchronous QCT calibration phantom: practical methodology. J. Med. Imaging Radiat. Sci. 50(1), 157–162 (2019)

    Article  Google Scholar 

  66. Karimipour, A., Malekahmadi, O., Karimipour, A., Shahgholi, M., Li, Z.: Thermal conductivity enhancement via synthesis produces a new hybrid mixture composed of copper oxide and multi-walled carbon nanotube dispersed in water: experimental characterization and artificial neural network modeling. Int. J. Thermophys. 41(8), 1–27 (2020)

    Article  CAS  Google Scholar 

  67. Shahgholi, M., Oliviero, S., Baino, F., Vitale-Brovarone, C., Gastaldi, D., Vena, P.: Mechanical characterization of glass-ceramic scaffolds at multiple characteristic lengths through nanoindentation. J. Eur. Ceram. Soc. 36(9), 2403–2409 (2016)

    Article  CAS  Google Scholar 

  68. Shahsavar, A., Sardari, P.T., Toghraie, D.: Free convection heat transfer and entropy generation analysis of water-Fe3O4/CNT hybrid nanofluid in a concentric annulus. Int. J. Numer. Methods Heat Fluid Flow. (2019)

  69. Aghdam, H.A., Sanatizadeh, E., Motififard, M., Aghadavoudi, F., Saber-Samandari, S., Esmaeili, S., Khandan, A., et al.: Effect of calcium silicate nanoparticle on surface feature of calcium phosphates hybrid bio-nanocomposite using for bone substitute application. Powder Technol. 361, 917–929 (2020)

    Article  CAS  Google Scholar 

  70. Yan, S.R., Fazilati, M.A., Samani, N., Ghasemi, H., Toghraie, D., Nguyen, Q., Karimipour, A.: Energy efficiency optimization of the waste heat recovery system with embedded phase change materials in greenhouses: a thermo-economic-environmental study. J. Energy Storage 30, 101445 (2020)

    Article  Google Scholar 

  71. Jozaalizadeh, T., Toghraie, D.: Numerical investigation behavior of reacting flow for flameless oxidation technology of MILD combustion: effect of fluctuating temperature of inlet co-flow. Energy 178, 530–537 (2019)

    Article  CAS  Google Scholar 

  72. Oveissi, S., Toghraie, D.S., Eftekhari, S.A.: Investigation on the effect of axially moving carbon nanotube, nanoflow, and Knudsen number on the vibrational behavior of the system. Int. J. Fluid Mech. Res. 45(2) (2018)

  73. Foroutan, S., Hashemian, M., Khandan, A.: A novel porous graphene scaffold prepared using Freeze-drying technique for orthopedic approaches: fabrication and buckling simulation using GDQ method. Iran. J. Mater. Sci. Eng. 17(4), 62–76 (2020)

    Google Scholar 

  74. Salmani, M.M., Hashemian, M., Yekta, H.J., Nejad, M.G., Saber-Samandari, S., Khandan, A.: Synergic effects of magnetic nanoparticles on hyperthermia-based therapy and controlled drug delivery for bone substitute application. J. Supercond. Novel Magn. 33, 2809–2820 (2020)

    Article  CAS  Google Scholar 

  75. Hajela, P., Shih, C.-J.: Multiobjective optimum design in mixed integer and discrete design variable problems. AIAA J. 28(4), 670–675 (1990)

    Article  Google Scholar 

  76. Nejad, M.G., Shavarani, S.M., Vizvári, B., Barenji, R.V.: Trade-off between process scheduling and production cost in cyclic flexible robotic cells. Int. J. Adv. Manuf. Technol. 96(1–4), 1081–1091 (2018)

    Article  Google Scholar 

Download references

Funding

There is no funding source to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amirsalar Khandan.

Ethics declarations

Conflict of interest

The authors declare no potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soleimani, M., Asgharzadeh Salmasi, A., Asghari, S. et al. Optimization and fabrication of alginate scaffold for alveolar bone regeneration with sufficient drug release. Int Nano Lett 11, 295–305 (2021). https://doi.org/10.1007/s40089-021-00342-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40089-021-00342-0

Keywords

Navigation