Skip to main content
Log in

Abstract

We present in this note a local in time well-posedness result for the singular 2-dimensional quasilinear generalized parabolic Anderson model equation

$$\begin{aligned} \partial _t u - a(u)\Delta u = g(u)\xi . \end{aligned}$$

The key idea of our approach is a simple transformation of the equation which allows to treat the problem as a semilinear problem. The analysis is done within the elementary setting of paracontrolled calculus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alinhac, S.: Paracomposition et opérateurs paradifférentiels. Commun. Partial Differ. Equ. 11(1), 87–121 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  2. Allez, R., Chouk, K.: The continuous Anderson Hamiltonian in dimension two. arXiv:1511.02718, (2015)

  3. Auscher, P., McIntosh, A., Tchamitchian, P.: Noyau de la chaleur doperateurs elliptiques complexes. Math. Res. Lett. 1, 37–45 (1994)

    Article  MATH  Google Scholar 

  4. Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier analysis and nonlinear partial differential equations. In: Grundlehren der mathematischen Wissenschaften, vol. 353, Springer, Berlin

  5. Bailleul, I., Bernicot, F.: Heat semigroup and singular PDEs. J. Funct. Anal. 270(9), 3344–3452 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bailleul, I., Bernicot, F.: Higher order paracontrolled calculus. arXiv:1609.06966, (2016)

  7. Bailleul, I., Bernicot, F., Frey, D.: Space-time paraproducts for paracontrolled calculus, 3d-PAM and multiplicative Burgers equations. arXiv:1506.08773, (2015)

  8. Bruned, Y., Hairer, M., Zambotti, L.: Algebraic renormalisation of regularity structures. arXiv:1610:08468, (2016)

  9. Cannizzaro, G., Chouk, K.: Multidimensional SDEs with singular drift and universal construction of the polymer measure with white noise potential. arXiv:1501.04751, (2015)

  10. Furlan, M., Gubinelli, M.: Paracontrolled quasilinear SPDEs. arXiv:1610.0788, (2016)

  11. Gubinelli, M., Imkeller, P., Perkowski, N.: Paracontrolled distributions and singular PDEs. In: Forum of Mathematics, Pi, vol. 3, (2015)

  12. Hairer, M.: A theory of regularity structures. Invent. Math. 198(2), 269–504 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hairer, M., Labbé, C.: A simple construction of the continuum parabolic Anderson model on \(\mathbb{R}^2\). Electron. Commun. Probab. 20(43), 1–11 (2015)

    MathSciNet  MATH  Google Scholar 

  14. Hairer, M., Pardoux, E.: A Wong-Zakai theorem for stochastic PDEs. J. Math. Soc. Jpn. 67(4), 1551–1604 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hairer, M., Quastel, J.: A class of growth models rescaling to KPZ. arXiv:1512:07845, (2015)

  16. Mourrat, J.-C., Weber, H.: Global well-posedness of the dynamics \(\Phi ^4_3\) model on the torus. arXiv:1601:01234, (2016)

  17. Otto, F., Weber, H.: Quasilinear SPDEs via rough paths. arXiv:1605.09744, (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Bailleul.

Additional information

I. Bailleul: Thanks the U.B.O. for their hospitality. I. Bailleul and A. Debussche: Benefit from the support of the French Government “Investissements d’Avenir” program ANR-11-LABX-0020-01. M. Hofmanová: Gratefully acknowledges the financial support by the DFG via Research Unit FOR 2402.

A Elementary side results

A Elementary side results

We collect in this Appendix a number of side results, together with their proofs, to make this work self-contained. They can all be found somewhere else in one form or another. As a warm-up, we start with some claims, used in the main body of the text. Recall the classical notation \(\Delta _i\) for the Fourier multipliers used in Littlewood-Paley decomposition. We refer to Bahouri et al. [4] textbook for the basics on this subject.

Lemma 9

  1. 1.

    For u in the spatial Hölder space \(C^\alpha \), we have

    $$\begin{aligned} \big \Vert g (u) \big \Vert _{C^\alpha } \le \Vert g \Vert _{C^1} \big (1 + \Vert u\Vert _{C^\alpha }\big ), \end{aligned}$$

    and

    $$\begin{aligned} \big \Vert g (u) - g (v) \big \Vert _{C^\alpha } \le \Vert g \Vert _{C^2} \big (1 + \Vert u \Vert _{\alpha }\big ) \Vert u - v \Vert _{C^\alpha }. \end{aligned}$$
  2. 2.

    For u in the parabolic Hölder space \(\mathcal {C}^\alpha \), and \(0< \beta \le \alpha \), we have

    $$\begin{aligned} \big \Vert g (u) \big \Vert _{\mathcal {C}^\beta } \lesssim T^{\frac{\alpha - \beta }{2}} \Vert g \Vert _{C^1} \big (1 + \Vert u \Vert _{\mathcal {C}^\alpha }\big ) + \big \Vert g (u_0)\big \Vert _{C^\beta }, \end{aligned}$$

    and if \(u_{t=0}=v_{t=0}\), then

    $$\begin{aligned} \big \Vert g (u) - g (v)\big \Vert _{\mathcal {C}^\beta } \lesssim T^{\frac{\alpha - \beta }{2}} \Vert g\Vert _{C^2} \big (1 + \Vert u \Vert _{\mathcal {C}^\alpha }\big ) \Vert u - v\Vert _{\mathcal {C}^\alpha }. \end{aligned}$$

Proof

The Lipschitz estimate of point 1 comes by writing

$$\begin{aligned} \big (g(u)-g(v)\big )(x) - \big (g(u)-g(v)\big )(y) \end{aligned}$$

as the boundary term of the integral of the derivative of the function \(s \in [0,1] \mapsto (g(u)-g(v))(y+s(x-y))\).

To see point 2, take any function \(h\in \mathcal {C}^\beta \) and start from the following two estimates

$$\begin{aligned} \big \Vert \Delta _i \big \{h(t) - h(0)\big \} \big \Vert _{L^{\infty }} \lesssim \left\{ \begin{array}{l} 2^{- i \alpha } \, \Vert h\Vert _{C_T \mathcal {C}^{\alpha }} \\ T^{\frac{\alpha }{2}} \, \Vert h\Vert _{C^{\alpha / 2}_T L^{\infty }} \end{array} \right. \end{aligned}$$

to get by interpolation of the two upper bounds the estimate

$$\begin{aligned} \Vert h\Vert _{C_T C^\beta } \lesssim T^{\frac{\alpha - \beta }{2}} \Vert h\Vert _{C_T C^\alpha }^\varepsilon \, \Vert h\Vert ^{1 - \varepsilon }_{C_T^\frac{\alpha }{2} L^{\infty }} + \big \Vert h(0)\big \Vert _{C^\beta }. \end{aligned}$$

It follows that if \(u_{t=0}=v_{t=0}\), then we have

$$\begin{aligned} \big \Vert g (u) - g (v) \big \Vert _{C_T \mathcal {C}^{\beta }}\lesssim & {} T^{\frac{\alpha -\beta }{2}} \, \big \Vert g (u) - g (v) \big \Vert _{C_T C^\alpha }^{\varepsilon } \big \Vert g (u) - g (v) \big \Vert ^{1 - \varepsilon }_{C_T^{{\alpha /2}} L^{\infty }} \\\lesssim & {} T^{\frac{\alpha - \beta }{2}} \Vert g \Vert _{C^2} \Big \{(1 + \Vert u \Vert _{C_T \mathcal {C}^{\alpha }}) \Vert u - v \Vert _{C_T \mathcal {C}^{\alpha }} \\&\quad +\,\Big (1 + \Vert u\Vert _{C_T^{\alpha /2} L^{\infty }}\Big ) \Vert u - v \Vert _{C_T^{\alpha /2} L^{\infty }}\Big \}. \end{aligned}$$

The Lipschitz estimate of point 2 then comes as a consequence of the inequality

$$\begin{aligned} \big \Vert g (u) - g (v) \big \Vert _{C^{\beta / 2}_T L^{\infty }}\le & {} T^{\frac{\alpha - \beta }{2}} \, \big \Vert g (u) - g (v) \big \Vert _{C^{\alpha / 2}_T L^{\infty }} \\\le & {} T^{\frac{\alpha - \beta }{2}} \Vert g \Vert _{C^2} \Big (1 + \Vert u \Vert _{C^{\alpha / 2}_T L^{\infty }}\Big ) \Vert u - v \Vert _{C^{\alpha / 2}_T L^{\infty }}. \end{aligned}$$

\(\square \)

The next result is a variation on Gubinelli et al. fundamental “commutator” lemma. It is the first part of Lemma 3. It also happens to be special case of a more general result, proved in Theorem 2 of [6]. Recall that we work with \(\alpha >\frac{2}{3}\).

Lemma 10

Let \(f, g \in C^\beta \), and \(a \in C^\alpha \) and \(b \in C^{\alpha - 2}\) be given, such that \(\Pi (a,b)\) is a well-defined element of \(C^{2\alpha -2}\). Then

$$\begin{aligned} \Big \Vert \Pi \big (\Pi _f a, \Pi _g b\big ) - (f g) \Pi (a,b) \Big \Vert _{C^{2 \alpha + \beta - 2}} \lesssim \Vert f \Vert _{C^\beta } \Vert g \Vert _{C^\beta } \Vert a\Vert _{C^\alpha } \Vert b\Vert _{C^{\alpha - 2}}. \end{aligned}$$

Proof

Denote by \(K_{k, x} (z) := K_k (x - z)\) the convolution kernel of the Littlewood-Paley projector \(\Delta _k\). We have

$$\begin{aligned} \Delta _k \Big (\Pi \big (\Pi _f a, \Pi _g b\big )\Big ) (x)= & {} \int K_{k, x} (y) \Big (\Pi \big (\Pi _{f (y)}a, \Pi _{g (y)}b\big )\Big )(y)\,dy \\&\quad + \int K_{k, x} (y) \Big (\Pi \big (\Pi _{f - f (y)}a, \Pi _{g (y)}b\big )\Big ) (y)\,dy \\&\quad + \int K_{k, x} (y) \Big (\Pi \big (\Pi _f a, \Pi _{g - g (y)}b\big )\Big ) (y)\,dy \\=: & {} \mathsf{I}_1 + \mathsf{I}_2 + \mathsf{I}_3. \end{aligned}$$

The first term gives

$$\begin{aligned} \Big (\Pi \big (\Pi _{f (y)}a, \Pi _{g (y)}b\big )\Big ) (y)= & {} \sum _{i \sim j} \Delta _i \big (\Pi _{f (y)}a\big )(y) \Delta _j\big (\Pi _{g (y)}b\big )(y) \\= & {} \sum _{i \sim j} f (y) g (y) \big (\Delta _i a\big ) (y) \big (\Delta _j b\big ) (y) {=} f (y) g (y) \, \Pi (a, b) (y) \end{aligned}$$

so it remains to estimate \(\mathsf{I}_2\) and \(\mathsf{I}_3\) in the spatial Hölder space \(C^{2\alpha + \beta - 2}\). We have

$$\begin{aligned} | \mathsf{I}_2 |= & {} \left| \int K_{k, x} (y) \sum _{i \sim j \gtrsim k} \Delta _i\big (\Pi _{f - f (y)}a\big ) (y) g (y) \big (\Delta _j b\big ) (y) \,dy\right| \\\lesssim & {} \Vert f \Vert _{C^\alpha } \Vert a\Vert _{C^\alpha } \Vert g\Vert _{L^{\infty }} \Vert b\Vert _{C^{\alpha - 2}} \int \big |K_{k, x}(y)\big | \left( \sum _{i \gtrsim k} 2^{- (2 \alpha + \beta - 2) i}\right) \,dy. \end{aligned}$$

Since \(2 \alpha + \beta - 2 > 0\) we obtain in the end

$$\begin{aligned} | \mathsf{I}_2 | \lesssim 2^{- (2 \alpha + \beta - 2) k} \Vert f \Vert _{C^\alpha } \Vert a\Vert _{C^\alpha } \Vert g \Vert _{L^{\infty }} \Vert b \Vert _{C^{\alpha - 2}}. \end{aligned}$$

Similarly, we have

$$\begin{aligned} | \mathsf{I}_3 | \lesssim 2^{- (2 \alpha + \beta - 2) k} \Vert f \Vert _{L^{\infty }} \Vert a\Vert _{C^\alpha } \Vert g \Vert _{C^\beta } \Vert b\Vert _{C^{\alpha - 2}}, \end{aligned}$$

which completes the proof.\(\square \)

Lemma 11

Given \(f \in C^{2 \beta }\), \(g \in C^\beta \), and \(h \in C^{\alpha - 2}\), with regularity exponents in (0, 2), we have

$$\begin{aligned} \big \Vert f \, \Pi _g h - \Pi _{f g} h \big \Vert _{C^{\beta + \alpha - 2}} \lesssim \Vert f\Vert _{C^{2 \beta }} \Vert g \Vert _{C^\beta } \Vert h \Vert _{C^{\alpha - 2}}. \end{aligned}$$

Proof

We have

$$\begin{aligned} f \, \Pi _g h= & {} \Pi _f (\Pi _g h) + \Pi _{\Pi _g h} (f) + \Pi \big (f, \Pi _gh\big ) \\= & {} \big (\Pi _f (\Pi _g h) - \Pi _{f g}h\big ) + \Pi _{f g}h + \Pi _{\Pi _g h}(f) + \Pi \big (f, \Pi _g h\big ), \end{aligned}$$

where

$$\begin{aligned} \big \Vert \Pi _f \big (\Pi _g h\big ) - \Pi _{f g}h \big \Vert _{C^{\beta + \alpha - 2}} \lesssim \Vert f \Vert _{L^{\infty }}\, \Vert g \Vert _{C^\beta } \, \Vert h \Vert _{{C^{\alpha - 2}}}, \end{aligned}$$

due to Proposition 23 of [6], and

$$\begin{aligned} \big \Vert \Pi \big (f, \Pi _g h\big )\big \Vert _{C^{2\beta + \alpha - 2}}\lesssim & {} \Vert f \Vert _{C^{2\beta }} \,\Vert g \Vert _{L^{\infty }}\, \Vert h \Vert _{C^{\alpha - 2}} \\ \big \Vert \Pi _{\Pi _g h} f \big \Vert _{C^{2\alpha - 2}}\lesssim & {} \Vert f \Vert _{C^\alpha } \, \Vert g\Vert _{L^{\infty }} \,\Vert h \Vert _{C^{\alpha - 2}}. \end{aligned}$$

The next proposition gives the second part of Lemma 3, recall \(\mathscr {L}^0 = \partial _t - a(u_0)\Delta \).\(\square \)

Proposition 12

Given \(u'\in \mathcal {C}^\beta \), we have the following continuity result for a commutator

$$\begin{aligned} \Big \Vert \mathscr {L}^0 \big (\overline{\Pi }_{u'} X\big ) - \Pi _{a \big (u^T_0\big ) u'} (-\Delta X) \Big \Vert _{C_T\mathcal {C}^{\alpha + \beta - 2}} \lesssim \big (1 + T^{- \frac{2\beta -\alpha }{2}} \Vert u_0\Vert _{C^\alpha }\big ) \Vert u' \Vert _{\mathcal {C}^\beta } \Vert X \Vert _{C^\alpha }. \end{aligned}$$

Proof

Recall first from Lemma 5.1 in [11] that

$$\begin{aligned} \big \Vert \overline{\Pi }_{u'} (\Delta X) - \Pi _{u'} (\Delta X) \big \Vert _{C_T C^{\alpha + \beta - 2}} \lesssim \Vert u' \Vert _{C^{\beta / 2}_TL^{\infty }} \Vert X \Vert _{C^\alpha }. \end{aligned}$$
(12)

Then we write

$$\begin{aligned} \mathscr {L}^0 \big (\overline{\Pi }_{u'}X\big ) - \Pi _{a \big (u^T_0\big ) u'} (-\Delta X)= & {} \Big \{\mathscr {L}^0 \big (\overline{\Pi }_{u'}X\big ) + a \big (u^T_{^{} 0}\big ) \overline{\Pi }_{u'} (\Delta X)\Big \} \\&\quad +\,a \big (u^T_0\big ) \Big \{\Pi _{u'} (\Delta X) - \overline{\Pi }_{u'} (\Delta X)\Big \} \\&\quad +\,\Big \{\Pi _{a \big (u^T_0\big ) u'} (\Delta X) - a \big (u^T_0\big ) \Pi _{u'} (\Delta X)\Big \}, \end{aligned}$$

and observe that the second term on the right hand side can be estimated with inequality (12) to obtain

$$\begin{aligned} \Big \Vert a \big (u^T_0\big ) \Big \{\Pi _{u'} (\Delta X) - \overline{\Pi }_{u'} (\Delta X)\Big \}\Big \Vert _{C^{\alpha + \beta - 2}} \lesssim \big (1 + \Vert u_0 \Vert _{\alpha }\big ) \Vert u'\Vert _{C^{\beta / 2}_T L^{\infty }} \Vert X \Vert _{C^\alpha }, \end{aligned}$$

and that the third term can be taken care of by Lemma 11 to obtain

$$\begin{aligned} \big \Vert \Pi _{a \big (u^T_0\big ) u'} (\Delta X) - a \big (u^T_0\big ) \Pi _{u'} (\Delta X) \big \Vert _{C^{\alpha + \beta - 2}} \lesssim \left( 1 + T^{- \frac{2\beta -\alpha }{2}} \Vert u_0\Vert _{C^\alpha }\right) \Vert u' \Vert _{\mathcal {C}^\beta } \Vert X \Vert _{C^\alpha }. \end{aligned}$$

We now estimate the first term. Since X does not depend on t,

$$\begin{aligned} \partial _t \big (\overline{\Pi }_{u'} X\big ) = \sum _i \partial _t (S_{i - 1} Q_i u') \Delta _i X. \end{aligned}$$

Since the spatial Fourier transform of \(\partial _t \big (S_{i - 1} Q_i u'\big ) \Delta _i X\) is localized in an annulus of size \(2^i\), we obtain from estimate (32) in [11] that

$$\begin{aligned} \big \Vert \partial _t (S_{i - 1} Q_i u')\big \Vert _{C_T L^{\infty }}= & {} \big \Vert \partial _t (Q_i S_{i - 1} u')\big \Vert _{C_T L^{\infty }} \\\lesssim & {} 2^{- (\beta - 2) i} \big \Vert S_{i - 1} u' \big \Vert _{C^{\beta / 2}_T L^{\infty }} \\\lesssim & {} 2^{- (\beta - 2) i} \Vert u' \Vert _{C^{\beta / 2}_T L^{\infty }}, \end{aligned}$$

so

$$\begin{aligned} \big \Vert \partial _t (\overline{\Pi }_{u'}X\big )\big \Vert _{C_T C^{\alpha + \beta - 2}} \lesssim \Vert u' \Vert _{\mathcal {C}^\beta } \Vert X \Vert _{C^\alpha }. \end{aligned}$$
(13)

We have, on the other hand,

$$\begin{aligned} \Delta \big (\overline{\Pi }_{u'}X\big ) - \overline{\Pi }_{u'} (\Delta X) = \overline{\Pi }_{\Delta u}X - 2 \overline{\Pi }_{\nabla u'} (\nabla X), \end{aligned}$$

with

$$\begin{aligned} \big \Vert Q_i S_{i - 1} \Delta u' \big \Vert _{C_T L^{\infty }} \le \big \Vert S_{i - 1} \Delta u' \big \Vert _{C_T L^{\infty }} \lesssim 2^{- (\beta - 2) i} \Vert u' \Vert _{C_T C^\beta } \end{aligned}$$

and

$$\begin{aligned} \big \Vert Q_i S_{i - 1} \nabla u' \big \Vert _{C_T L^{\infty }} \lesssim 2^{- (\beta - 1) i} \Vert u' \Vert _{C_T C^\beta }. \end{aligned}$$

Altogether, this gives

$$\begin{aligned}&\big \Vert \Delta (\overline{\Pi }_{u'}X) - \overline{\Pi }_{u'} (\Delta X) \big \Vert _{C_T C^{\alpha + \beta - 2}}\nonumber \\&= \Vert \overline{\Pi }_{\Delta u} (X) - 2 \overline{\Pi }_{\nabla u'} (\nabla X) \Vert _{C_T C^{\alpha + \beta - 2}} \lesssim \Vert u' \Vert _{\mathcal {C}^\beta } \Vert X \Vert _{C^\alpha }, \end{aligned}$$
(14)

so we deduce from (13) and (14) that

$$\begin{aligned}&\Big \Vert \mathscr {L}^0 \big (\overline{\Pi }_{u'} (X)\big ) - a \big (u^T_0\big ) \overline{\Pi }_{u'} (-\Delta X) \Big \Vert _{C_T C^{\alpha + \beta - 2}} \\&\quad = \Big \Vert \partial _t \big (\overline{\Pi }_{u'}X\big ) - a \big (u^T_0\big ) \Big \{\Delta (\overline{\Pi }_{u'} (X)) - \overline{\Pi }_{u'} (\Delta X)\Big \} \Big \Vert _{C_T C^{\alpha + \beta - 2}} \\&\quad \lesssim \big (1 + \Vert a \big (u^T_0\big ) \Vert _{C^\beta }\big ) \Vert u' \Vert _{\mathcal {C}^\beta } \Vert X \Vert _{C^\alpha }, \end{aligned}$$

which concludes the proof.\(\square \)

Lemma 13

Given \(f \in \mathcal {C}^\beta \) and \(g \in C^\alpha \), we have

$$\begin{aligned} \big \Vert \overline{\Pi }_fg \big \Vert _{\mathcal {C}^\alpha } \lesssim \Vert f \Vert _{\mathcal {C}^\beta } \Vert g \Vert _{C^\alpha }. \end{aligned}$$

Proof

Let work here with the canonical heat operator \(\mathscr {L} := \partial _t - \Delta \). We have from the classical Schauder estimates

$$\begin{aligned} \big \Vert \overline{\Pi }_fg\big \Vert _{\mathcal {C}^\alpha } \lesssim \big \Vert \overline{\Pi }_{f(0)}g\big \Vert _{C^\alpha } + \big \Vert \mathscr {L}\big (\overline{\Pi }_fg\big )\big \Vert _{C_T C^{\alpha - 2}}, \end{aligned}$$

and the rough bound \(\big \Vert \overline{\Pi }_{f(0)}g\big \Vert _{C^\alpha } \le \Vert f\Vert _{C_T L^{\infty }} \Vert g\Vert _{C^\alpha }\). Next, we write, with \(\mathscr {L}g = -\Delta g\),

$$\begin{aligned} \mathscr {L} \big (\overline{\Pi }_fg\big ) = \Big \{\mathscr {L}\big (\overline{\Pi }_fg\big ) - \overline{\Pi }_f (-\Delta g)\Big \} - \overline{\Pi }_f (\Delta g), \end{aligned}$$

and use commutator Lemma 5.1 of [11] to get

$$\begin{aligned} \Big \Vert \mathscr {L}\big (\overline{\Pi }_fg\big ) - \overline{\Pi }_f (-\Delta g) \Big \Vert _{C_T\mathcal {C}^{\beta + \alpha - 2}} \lesssim \Vert f \Vert _{\mathcal {C}^\beta }\Vert g \Vert _{C^\alpha }, \end{aligned}$$

and

$$\begin{aligned} \Big \Vert \overline{\Pi }_f (-\Delta g)\Big \Vert _{C_T C^{\alpha - 2}} \lesssim \Vert f \Vert _{C_T L^{\infty }} \Vert g \Vert _{C^\alpha }. \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bailleul, I., Debussche, A. & Hofmanová, M. Quasilinear generalized parabolic Anderson model equation. Stoch PDE: Anal Comp 7, 40–63 (2019). https://doi.org/10.1007/s40072-018-0121-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40072-018-0121-1

Keywords

Navigation