1 Introduction

The braid group \(B_n\) is represented, due to Artin, in the group Aut(\(F_n\)) of automorphisms of the free group \(F_n\) generated by \(x_1, \ldots , x_n\). To attack the linearity of the braid group \(B_n\), the faithfulness of the braid group representations was studied. One of these represenations is the Burau representation which was, for a long time, a candidate to answer the question of faithfulness of the braid group \(B_n\). It was proved that the Burau representation is faithful for \(n\le 3\) and not faithful for \(n\ge 5\). For \(n=4\), the question of faithfulness of the Burau representation has not been answered yet. For more details, see [2] and [3].

In addition to the linearity of the braid group \(B_n\), the classification of irreducible complex representations of \(B_n\) was of great concern. In [4], Formanek found a necessary and sufficient condition for the specialization of the reduced Burau representation to be irreducible. Moreover, Formanek classified all irreducible complex representations of the braid group \(B_n\) of degree at most \(n-1\) for \(n\ge 7\). In [7], Sysoeva extended this classification to representations of degree n for \(n\ge 9\). For \(n=5, 6, 7\) and 8, the classification was completed by Formanek, Lee, Sysoeva and Vazirani. For more details, see [5]. For \(n \ge 10\), Sysoeva proved, in [8], that there are no irreducible representations of \(B_n\) of dimension \(n+1\).

The local representations of the braid group \(B_3\) were studied by Mikhalchishina who proved that any local representation of the braid group \(B_3\) into \(GL_3(\mathbb {C})\) is of type 1 or 2. In addition, Mikhalchishina studied the n-dimensional homogeneous local representations \(\varphi \) of the braid group \(B_n\) and proved that \(\varphi \) coincides with one of the three representations \(\varphi _1\), \(\varphi _2\) and \(\varphi _3\) which were defined. For more details, see [6].

In our work, first we study the irreducibility of the local homogeneous multi-parameter representations of types 1 and 2 of degree n of the braid group \(B_n\). We prove that, for \(n\ge 6\), any homogeneous local representation of type 1 or 2 is reducible.

Next, we consider the case of homogeneous local representations of type 3 of degree n of the braid group \(B_n\). We prove that any homogeneous local representation of type 3 is equivalent to a complex specialization of the standard representation. Consequently, any multi-parameter homogeneous local representation of type 3 is irreducible if and only if \(bc\ne 1\).

Then, we study the irreducibility of all local representations of the braid group \(B_3\). We prove that any three-dimensional local representation of type 1 is reducible to a representation of Burau type. Also, we prove that any three-dimensional local representation of type 2 is equivalent to a complex specialization of the standard representation. Due to this equivalence, any local representation of type 2 is irrreducible if and only if \(bc\ne 1\).

Finally, we find the tensor product of two complex specializations of the standard representations of \(B_3\). We prove that the obtained nine-dimensional multi-parameter representation is a direct sum of a complex specialization of the standard representation and a six-dimensional representation \(\varphi \). We consider the case when the complex numbers \(u_i's\) are on the unit circle. Then, we prove that \(\varphi \) is irreducible if and only if \(\sqrt{u_1} \ne \pm \sqrt{u_2}\).

2 Preliminaries

Definition 2.1

[1] The braid group, \(B_n\), is an abstract group generated by \(\sigma _1, \sigma _2, \ldots , \sigma _{n-1}\) with the following relations

$$\begin{aligned} \sigma _i\sigma _j=\sigma _j\sigma _i,\hbox { for all }i,j=1,\ldots ,n-1\hbox { with }|i-j|\ge 2, \end{aligned}$$

and

$$\begin{aligned} \sigma _i\sigma _{i+1}\sigma _i=\sigma _{i+1}\sigma _i\sigma _{i+1},\hbox { for }i=1,\ldots ,n-2. \end{aligned}$$

Definition 2.2

[7, Definition 2] The corank of the representation \(\rho : B_n\rightarrow GL_r(\mathbb {C})\) is \(rank(\rho (\sigma _i)-1)\), where the \(\sigma _i\) are the standard generators of the group \(B_n\).

Definition 2.3

[6] A representation \(\varphi : B_n \longrightarrow GL_n(\mathbb {C})\) is called local if

$$\begin{aligned} \varphi (\sigma _i)= \left( \begin{array}{c|c|c} I_{i-1} &{} 0 &{} 0 \\ \hline 0 &{} R_i &{} 0 \\ \hline 0 &{} 0 &{} I_{n-i-1} \end{array} \right) , \quad i= 1, 2,\ldots , n-1, \end{aligned}$$

where \(I_m\) is the identity matrix of order m and \(R_i\) is a matrix of order 2. A local representation is called homogeneous if \(R_1=R_2=\cdots =R_{n-1}\).

Theorem 2.4

[6, Theorem 1] If \(\varphi : B_3 \rightarrow GL_3(\mathbb {C})\) is a local representation then \(\varphi \) has one of the two types:

  1. (1)

    \(\varphi (\sigma _1) = \left( \begin{array}{cc|cc} \alpha (1-d) &{} \frac{(1-d)(1-\alpha +d\alpha )}{c} &{} 0 \\ c &{} d &{} 0 \\ \hline 0 &{} 0 &{} 1 \\ \end{array} \right) \), \(\varphi (\sigma _2) = \left( \begin{array}{c|cc} 1 &{} 0 &{} 0 \\ \hline 0 &{} \alpha &{} \frac{(1-\alpha )(1-d +d\alpha )}{\gamma } \\ 0 &{} \gamma &{} d(1-\alpha ) \\ \end{array} \right) \),

    where \(d, \alpha \ne 1\) and \(c, \gamma \ne 0\);

  2. (2)

    \(\varphi (\sigma _1) = \left( \begin{array}{cc|cc} 0 &{} b &{} 0 \\ c &{} 0 &{} 0 \\ \hline 0 &{} 0 &{} 1 \\ \end{array} \right) \), \(\varphi (\sigma _2) = \left( \begin{array}{c|cc} 1 &{} 0 &{} 0 \\ \hline 0 &{} 0 &{} \frac{bc}{\gamma } \\ 0 &{} \gamma &{} 0 \\ \end{array} \right) \), where \(bc, \gamma \ne 0\).

Corollary 2.5

[6, Corollary to Theorem 1] If \(\varphi : B_n \longrightarrow GL_n(\mathbb {C})\), \(n\ge 3\), is a homogeneous local representation, then \(\varphi \) coincides with one of the representations \(\varphi _1\), \(\varphi _2\) and \(\varphi _3\) defined as follows:

$$\begin{aligned} \varphi _j: B_n \longrightarrow GL_n(\mathbb {C}), \end{aligned}$$
$$\begin{aligned} (1)\hspace{7.22743pt}\varphi _1(\sigma _i)= \left( \begin{array}{c|c|c} I_{i-1} &{} 0 \hspace{14.45377pt}0 &{} 0 \\ \hline 0 &{} \alpha \hspace{14.45377pt}\frac{1-\alpha }{\gamma } &{} 0 \\ 0 &{} \gamma \hspace{14.45377pt}0 &{} 0 \\ \hline 0 &{} 0 \hspace{14.45377pt}0 &{} I_{n-i-1} \end{array} \right) , \quad \gamma \ne 0, i= 1, 2,\ldots , n-1.\\ (2)\hspace{7.22743pt}\varphi _2(\sigma _i)= \left( \begin{array}{c|c|c} I_{i-1} &{} 0 \hspace{14.45377pt}0 &{} 0 \\ \hline 0 &{} 0 \hspace{14.45377pt}\frac{1-d}{c} &{} 0 \\ 0 &{} c \hspace{14.45377pt}d &{} 0 \\ \hline 0 &{} 0 \hspace{14.45377pt}0 &{} I_{n-i-1} \end{array} \right) , \quad c \ne 0, i= 1, 2,\ldots , n-1.\\ (3)\hspace{7.22743pt}\varphi _3(\sigma _i)= \left( \begin{array}{c|c|c} I_{i-1} &{} 0 \hspace{14.45377pt}0 &{} 0 \\ \hline 0 &{} 0 \hspace{14.45377pt}b &{} 0 \\ 0 &{} c \hspace{14.45377pt}0 &{} 0 \\ \hline 0 &{} 0 \hspace{14.45377pt}0 &{} I_{n-i-1} \end{array} \right) , \quad bc\ne 0, i= 1, 2,\ldots , n-1. \end{aligned}$$

Definition 2.6

[7, Definition 6] The standard representation is the representation

$$\begin{aligned} \tau _n: B_n \rightarrow GL_n(\mathbb {Z}[t^{\pm 1}]) \end{aligned}$$

defined by

$$\begin{aligned} \tau _n(\sigma _i)= \left( \begin{array}{c|c|c} I_{i-1} &{} 0 \hspace{14.45377pt}0 &{} 0 \\ \hline 0 &{} 0 \hspace{14.45377pt}t &{} 0 \\ 0 &{} 1 \hspace{14.45377pt}0 &{} 0 \\ \hline 0 &{} 0 \hspace{14.45377pt}0 &{} I_{n-i-1} \end{array} \right) , \end{aligned}$$

for \(i=1,2, \ldots , n-1\), where \(I_k\) is the \(k \times k\) identity matrix.

Definition 2.7

[7] The complex specialization of the standard representation is defined by

$$\begin{aligned} \tau _n(u): B_n \rightarrow GL_n(\mathbb {C}), \end{aligned}$$
$$\begin{aligned} \tau _n(u)(\sigma _i)= \left( \begin{array}{c|c|c} I_{i-1} &{} 0 \hspace{14.45377pt}0 &{} 0 \\ \hline 0 &{} 0 \hspace{14.45377pt}u &{} 0 \\ 0 &{} 1 \hspace{14.45377pt}0 &{} 0 \\ \hline 0 &{} 0 \hspace{14.45377pt}0 &{} I_{n-i-1} \end{array} \right) , \end{aligned}$$

for \(i=1,2,\ldots , n-1\), where \(I_k\) is the \(k \times k\) identity matrix, and u \(\in \mathbb {C}^*\).

Lemma 2.8

[7, Lemma 5.3] If \(u=1\), then \(\tau _n(u)\) is reducible.

Lemma 2.9

[7, Lemma 5.4] If \(u\ne 1\), then \(\tau _n(u)\) is irreducible.

Theorem 2.10

[7, Theorem 5.5] Let \(\rho : B_n:\rightarrow GL_r(\mathbb {C})\) be an irreducible representation of \(B_n\) for \(n\ge 6\). Let \(r\ge n\), and let \(\rho (\sigma _1)=1+A_1\) with \(rank(A_1)=2\). Then \(r=n\) and \(\rho \) is equivalent to the representation \(\tau _n(u)\), where u \(\in \mathbb {C}^*\) and \(u \ne 1\).

Definition 2.11

[4] The complex specialization of the reduced Burau representation \(\beta _3(z)\) is defined by:

$$\begin{aligned} \beta _3(z): B_3 \rightarrow GL_2(\mathbb {C}), \end{aligned}$$
$$\begin{aligned} \begin{aligned} \beta _3(z)(\sigma _1) = \left( \begin{array}{cc} -z &{}{} 0 \\ -1 &{}{} 1 \\ \end{array} \right) \text{ and } \beta _3(z)(\sigma _2) = \left( \begin{array}{cc} 1 &{}{} -z \\ 0 &{}{} -z \\ \end{array} \right) . \end{aligned} \end{aligned}$$

Theorem 2.12

[4, Theorem 11] Let \(\rho :B_3 \rightarrow GL_2(\mathbb {C})\) be an irreducible representation. Then \(\rho \) is equivalent to \(\chi (y)\otimes \beta _3(z)\) for some \(y, z \in \mathbb {C}^*\), where z is not a root of the polynomial \(t^2+t+1\). Here \(\chi (y)\) is the one dimentional representation and \(\beta _3(z)\) is the reduced Burau representation. We say that \(\rho \) is of Burau type.

Definition 2.13

The principal square root function is the function defined as follows: For all \(z\in \mathbb {C}, z=(\rho , \alpha ), \rho \ge 0\). \(\sqrt{z}=\sqrt{\rho }e^{i\frac{\alpha }{2}}\), where \(-\pi <\alpha \le \pi .\)

3 Irreduciblility of homogeneous local representations of \(B_n\) for \(n\ge 6\)

Mikhalchishina proved, in [6, Proposition, p. 672], that type 1 and type 2 representations are not equivalent when \(d\ne \alpha \). In this section, we prove that any homogeneous local representation of type 1 or 2 of dimension \(n\ge 6\) is reducible. Then, we prove that any homogeneous local representation of type 3 is equivalent to a complex specialization of the standard representation \(\tau _n\).

Theorem 3.1

The homogeneous local representations of types 1 and 2 are reducible for \(n\ge 6\).

Proof

Let \(\varphi _1\) and \(\varphi _2\) be two homogeneous local representations of \(B_n\) of types 1 and 2 respectiveley with \(n\ge 6\). Consider the matrices \(P_1\) and \(P_2\) defined as

$$\begin{aligned} P_1=Diag\left( \frac{1}{\gamma ^{n-1}}, \cdots , \frac{1}{\gamma }, 1\right) \hbox { and } P_2=Diag\left( \frac{1}{c^{n-1}}, \frac{1}{c^{n-2}}, \cdots , \frac{1}{c}, 1\right) , \end{aligned}$$

where \(Diag(a_1, a_2, \ldots , a_n)\) is a diagonal \(n\times n\) matrix, with \(a_{ii}=a_i\).

By direct computations, we get

$$\begin{aligned} P_1^{-1}\varphi _1(\sigma _i)P_1=\tilde{\varphi _1}(\sigma _i) \hbox { and } P_2^{-1}\varphi _2(\sigma _i)P_2=\tilde{\varphi _2}(\sigma _i) \end{aligned}$$

where,

$$\begin{aligned} \tilde{\varphi _1}(\sigma _i)= \left( \begin{array}{c|c|c} I_{i-1} &{} 0 \hspace{28.90755pt}0 &{} 0 \\ \hline 0 &{} \alpha \hspace{14.45377pt}1-\alpha &{} 0 \\ 0 &{} 1 \hspace{28.90755pt}0 &{} 0 \\ \hline 0 &{} 0 \hspace{28.90755pt}0 &{} I_{n-i-1} \end{array} \right) \end{aligned}$$

and

$$\begin{aligned} \tilde{\varphi _2}(\sigma _i)= \left( \begin{array}{c|c|c} I_{i-1} &{} 0 \hspace{28.90755pt}0 &{} 0 \\ \hline 0 &{} 0 \hspace{14.45377pt}1-d &{} 0 \\ 0 &{} 1 \hspace{28.90755pt}d &{} 0 \\ \hline 0 &{} 0 \hspace{28.90755pt}0 &{} I_{n-i-1} \end{array} \right) \end{aligned}$$

for \(i=1, 2, \ldots , n-1\).

This implies that the representations \(\varphi _1\) and \(\varphi _2\) are equivalent to the representations \(\tilde{\varphi _1}\) and \(\tilde{\varphi _2}\) respectively. Thus, we can verify that the corank of the representations \(\varphi _1\) and \(\varphi _2\) is 1. This implies that the representations \(\varphi _1\) and \(\varphi _2\) are reducible. (See [4], Theorem 10) \(\square \)

Now, we prove that any representation \(\varphi _3:B_n \rightarrow GL_n(\mathbb {C})\) of type 3 is equivalent to a complex specialization of the standard representation \(\tau _n\).

Theorem 3.2

Let \(\varphi _3:B_n \rightarrow GL_n(\mathbb {C})\) be a homogeneous local representation of type 3. Then, the representation \(\varphi _3\) is equivalent to a complex specialization the standard representation \(\tau _n\).

Proof

Let \(\varphi _3:B_n \rightarrow GL_n(\mathbb {C})\) be a homogeneous local representation of type 3. Consider the matrix \(P\) defined by

$$\begin{aligned} P=Diag\left( \frac{1}{c^{n-1}}, \frac{1}{c^{n-2}}, \ldots , \frac{1}{c}, 1\right) , \end{aligned}$$

where \(Diag(a_1, a_2, \ldots , a_n)\) is a diagonal \(n\times n\) matrix with \(a_{ii}=a_i\).

Direct computations show that

$$\begin{aligned} P^{-1}\sigma _iP =\left( \begin{array}{c|c|c} I_{i-1} &{} 0 \hspace{14.45377pt}0 &{} 0 \\ \hline 0 &{} 0 \hspace{14.45377pt}bc &{} 0 \\ 0 &{} 1 \hspace{14.45377pt}0 &{} 0 \\ \hline 0 &{} 0 \hspace{14.45377pt}0 &{} I_{n-i-1} \end{array} \right) . \end{aligned}$$

By letting \(u=bc\), we find that this representation is equivalent to a complex specialization of the standard representation \(\tau _n\).

By Lemmas 2.8 and 2.9, the standard representation is irreducible if and only if \(u\ne 1\). This implies that \(\varphi _3 \) is irreducible if and only if \(bc\ne 1\). \(\square \)

Thus, we state the following theorem:

Theorem 3.3

Let \(\varphi _3:B_n \rightarrow GL_n(\mathbb {C})\) be a homogeneous local representation of type 3. Then, the representation \(\varphi _3\) is irreducible if and only if \(bc\ne 1\).

4 Irreducibility of local representations of \(B_3\)

In this section, we consider all the local representations of \(B_3\). We prove that any local representation of type 1 of \(B_3\) is reducible to a Burau type representation. Then, we prove that any local representation of type 2 of \(B_3\) is equivalent to a complex specialization of the standard representation.

Theorem 4.1

Let \(\varphi : B_3 \rightarrow GL_3(\mathbb {C})\) be a local representation of type 1. Then, \(\varphi \) is reducible to a representation of Burau type.

Proof

Let \(\varphi : B_3 \rightarrow GL_3(\mathbb {C})\) be a representation of type 1, then

$$\begin{aligned} \varphi (\sigma _1) = \left( \begin{array}{cc|cc} \alpha (1-d) &{} \frac{(1-d)(1-\alpha +d\alpha )}{c} &{} 0 \\ c &{} d &{} 0 \\ \hline 0 &{} 0 &{} 1 \\ \end{array} \right) , \varphi (\sigma _2) = \left( \begin{array}{c|cc} 1 &{} 0 &{} 0 \\ \hline 0 &{} \alpha &{} \frac{(1-\alpha )(1-d +d\alpha )}{\gamma } \\ 0 &{} \gamma &{} d(1-\alpha ) \\ \end{array} \right) , \end{aligned}$$

where \(d, \alpha \ne 1\) and \(c, \gamma \ne 0\).

We scale the basis using the matrix

$$\begin{aligned} P=Diag\left( \frac{1}{c}, 1, \gamma \right) . \end{aligned}$$

Thus, we get

$$\begin{aligned} P^{-1}\varphi (\sigma _1)P= \left( \begin{array}{ccc} \alpha (1-d) &{} (1-d)(1-\alpha +\alpha d) &{} 0 \\ 1 &{} d &{} 0 \\ 0 &{} 0&{} 1 \\ \end{array} \right) \end{aligned}$$

and

$$\begin{aligned} P^{-1}\varphi (\sigma _2)P= \left( \begin{array}{ccc} 1 &{} 0 &{} 0 \\ 0 &{} \alpha &{} (1-\alpha )(1-d+\alpha d) \\ 0 &{} 1&{} (1-\alpha )d\\ \end{array} \right) . \end{aligned}$$

We have the following two cases:

Case 1. \(\alpha (1-d)=1\). In this case, we have

$$\begin{aligned} \varphi (\sigma _1) = \left( \begin{array}{ccc} 1 &{} 0 &{} 0 \\ 1 &{} d &{} 0 \\ 0 &{} 0 &{} 1 \\ \end{array} \right) \hbox { and } \varphi (\sigma _2) = \left( \begin{array}{ccc} 1 &{} 0 &{} 0 \\ 0 &{} \frac{1}{1-d} &{} \frac{-d(1-d+d^2)}{(-1+d)^2} \\ 0 &{} 1 &{} \frac{d^2}{-1+d} \\ \end{array} \right) . \end{aligned}$$

It is clear that the proper subspace \(S=<e_2, e_3>\) is invariant. Consequently, the above representation \(\varphi \) is reducible.

Restricting \(\varphi \) to \(S\), we obtain:

$$\begin{aligned} \varphi '(\sigma _1) = \left( \begin{array}{cc} d &{} 0 \\ 0 &{} 1 \\ \end{array} \right) \hbox { and } \varphi '(\sigma _2) = \left( \begin{array}{cc} \frac{1}{1-d} &{} \frac{-d(1-d+d^2)}{(-1+d)^2} \\ 1 &{} \frac{d^2}{-1+d} \\ \end{array} \right) . \end{aligned}$$

This formula is well defined since \(d-1\ne 0\).

By direct computations, there is no proper invariant subspace of dimension one if \(d \ne 0\) and \(d^2-d+1 \ne 0\).

Therefore, the representation \(\varphi '\) is irreducible. Consequently, it is a representation of Burau type.

Since the representation \(\varphi '\) is of Burau type, thus, by Theorem 3, it is equivalent to \(\chi (y)\otimes \beta _3(z)\) for some \(y, z \in \mathbb {C}^*\). This implies that \(\varphi '\) and \(\chi (y)\otimes \beta _3(z)\) have the same eigenvalues which are \((1, d)\) and \((y, -yz)\) respectively. Thus, these representations are equivalent for

$$\begin{aligned} (y, z)=\left( d, -\frac{1}{d}\right) \hbox { and }(y, z)=(1, -d). \end{aligned}$$

On the other hand, if \(d^2-d+1=0\), then the subspace \(<(0, 1)>\) is invariant. This implies that the representation is reduced to a one dimensional representation.

Case 2. \(\alpha (1-d)\ne 1\).

Consider the subspace \(S=<u, v>\) where

$$\begin{aligned} u=e_1+\frac{1}{-1+\alpha -\alpha d}e_2 \hbox { and } v=e_1+\frac{\alpha }{-1+\alpha -\alpha d}e_2+\frac{1}{-1+\alpha -\alpha d}e_3. \end{aligned}$$

By direct computations, we have

  • \(\varphi (\sigma _1)(u)=(-1+\alpha +d-\alpha d)u\),

  • \(\varphi (\sigma _1)(v)=-u+v\),

  • \(\varphi (\sigma _2)(u)=v\) and

  • \(\varphi (\sigma _2)(v)=(-1-\alpha -d+\alpha d)u+(\alpha +d-\alpha d)v\).

Thus, the proper subspace S is invariant. Therefore, the representation \(\varphi \) is reducible.

By restricting \(\varphi \) to \(S\), we obtain the representation \(\varphi '\) defined as follows:

$$\begin{aligned} \varphi '(\sigma _1) = \left( \begin{array}{cc} -1+\alpha +d-\alpha d &{} -1 \\ 0 &{} 1 \\ \end{array} \right) \,\hbox { and } \varphi '(\sigma _2) = \left( \begin{array}{cc} 0 &{} 1-\alpha -d+\alpha d \\ 1 &{} \alpha +d-\alpha d \\ \end{array} \right) . \end{aligned}$$

Let \(t=-1+\alpha +d-\alpha d\). The representation \(\varphi '\) is reducible if and only if the matrices \(\varphi '(\sigma _1) \) and \(\varphi '(\sigma _2) \) have a common eigenvector. Direct computations show that the representation \(\varphi '\) is irreducible if and only if \(t^3\ne \pm 1\).

Therefore, any representation of type 1 is reduced to a Burau type representation (See Theorem 2.12).

Also, the representation \(\varphi '\) is of Burau type, thus, by Theorem 3, it is equivalent to \(\chi (y)\otimes \beta _3(z)\) for some \(y, z \in \mathbb {C}^*\). Using the same argument of case 1, these representations are equivalent for:

$$\begin{aligned} (y, z)=\left( -1+\alpha +d-\alpha d, \frac{1}{1-\alpha -d+\alpha d}\right) \hbox { and }(y, z)=(1, 1-\alpha -d+\alpha d). \end{aligned}$$

\(\square \)

Proposition 4.2

Let \(\varphi : B_3 \rightarrow GL_3(\mathbb {C})\) be a local representation of type 2 of \(B_3\), then \(\varphi \) is equivalent to a complex specialization of the standard representation.

Proof

Let \(\varphi : B_3 \rightarrow GL_3(\mathbb {C})\) be a local representation of type 2 of \(B_3\). We scale the basis using the matrix

$$\begin{aligned} P=Diag\left( \frac{1}{c}, 1, \gamma \right) . \end{aligned}$$

Thus, we get

$$\begin{aligned} P^{-1}\varphi (\sigma _1)P= \left( \begin{array}{ccc} 0 &{} bc &{} 0 \\ 1 &{} 0 &{} 0 \\ 0 &{} 0&{} 1 \\ \end{array} \right) \quad and \quad P^{-1}\varphi (\sigma _2)P= \left( \begin{array}{ccc} 1 &{} 0 &{} 0 \\ 0 &{} 0 &{} bc \\ 0 &{} 1&{} 0\\ \end{array} \right) . \end{aligned}$$

By letting \(u=bc\), we notice that the representation \(\varphi \) is equivalent to a complex specialization of the standard representation. \(\square \)

Now, we state the following theorem:

Theorem 4.3

Let \(\varphi : B_3 \rightarrow GL_3(\mathbb {C})\) be a local representation of type 2 of \(B_3\), then \(\varphi \) is irreducible if and only if \(bc \ne 1\).

5 Representations of dimension 6 of \(B_3\)

In this section, we study the irreducibility of the tensor product of two irreducible local representations of type 2 of \(B_3\).

Consider two irreducible local representations \(\rho _1=\varphi (b_1, c_1, \gamma _1)\) and \(\rho _2=\varphi (b_2, c_2, \gamma _2)\) of type 2 of the braid group \(B_3\).

These representations are defined as:

$$\begin{aligned} \rho _1(\sigma _1) = \left( \begin{array}{cc|cc} 0 &{} b_1 &{} 0 \\ c_1 &{} 0 &{} 0 \\ \hline 0 &{} 0 &{} 1 \\ \end{array} \right) , \rho _1(\sigma _2) = \left( \begin{array}{c|cc} 1 &{} 0 &{} 0 \\ \hline 0 &{} 0 &{} \frac{b_1c_1}{\gamma _1} \\ 0 &{} \gamma _1 &{} 0 \\ \end{array} \right) \end{aligned}$$

and

$$\begin{aligned} \rho _2(\sigma _1) = \left( \begin{array}{cc|cc} 0 &{} b_2 &{} 0 \\ c_2 &{} 0 &{} 0 \\ \hline 0 &{} 0 &{} 1 \\ \end{array} \right) , \rho _2(\sigma _2) = \left( \begin{array}{c|cc} 1 &{} 0 &{} 0 \\ \hline 0 &{} 0 &{} \frac{b_2c_2}{\gamma _2} \\ 0 &{} \gamma _2 &{} 0 \\ \end{array} \right) , \end{aligned}$$

where \(b_1c_1\ne 0, b_2c_2\ne 0, \gamma _1\ne 0\) and \(\gamma _2\ne 0\).

By Proposition 4.2, the representations \(\rho _1\) and \(\rho _2\) are equivalent to the standard representations \(\tau _1\) and \(\tau _2\) defined by:

$$\begin{aligned} \tau _1(\sigma _1)= \left( \begin{array}{ccc} 0 &{} u_1 &{} 0 \\ 1 &{} 0 &{} 0 \\ 0 &{} 0&{} 1 \\ \end{array} \right) , \tau _1(\sigma _2)= \left( \begin{array}{ccc} 1 &{} 0 &{} 0 \\ 0 &{} 0 &{} u_1 \\ 0 &{} 1&{} 0\\ \end{array} \right) \end{aligned}$$

and

$$\begin{aligned} \tau _2(\sigma _1)= \left( \begin{array}{ccc} 0 &{} u_2 &{} 0 \\ 1 &{} 0 &{} 0 \\ 0 &{} 0&{} 1 \\ \end{array} \right) , \tau _2(\sigma _2)= \left( \begin{array}{ccc} 1 &{} 0 &{} 0 \\ 0 &{} 0 &{} u_2 \\ 0 &{} 1&{} 0\\ \end{array} \right) . \end{aligned}$$

where \(u_1=b_1c_1\), \(u_2=b_2c_2\), \(u_1\ne 1\) and \(u_2\ne 1\).

Definition 5.1

Consider the tensor product \(\tau _1\otimes \tau _2\) defined by \((\tau _1\otimes \tau _2)(\sigma _i)=\tau _1(\sigma _i)\otimes \tau _2(\sigma _i), i=1, 2\). We get the following matrices:

$$\begin{aligned} (\tau _1\otimes \tau _2)(\sigma _1) = \left( \begin{array}{ccccccccc} 0&{}0&{}0&{}0&{} u_1u_2&{}0&{}0&{}0&{}0 \\ 0 &{} 0 &{} 0&{}u_1&{}0 &{} 0 &{} 0&{}0&{}0 \\ 0 &{} 0 &{} 0&{}0&{}0 &{}u_1 &{} 0&{}0&{}0 \\ 0 &{} u_2 &{} 0&{}0&{}0 &{} 0 &{} 0&{}0&{}0 \\ 1 &{} 0 &{} 0&{}0&{}0 &{} 0 &{} 0&{}0&{}0 \\ 0 &{} 0 &{} 1&{}0&{}0 &{} 0 &{} 0&{}0&{}0 \\ 0 &{} 0 &{} 0&{}0&{}0 &{} 0 &{} 0&{}u_2&{}0 \\ 0 &{} 0 &{} 0&{}0&{}0 &{} 0 &{}1&{}0&{}0 \\ 0 &{} 0 &{} 0&{}0&{}0 &{} 0 &{} 0&{}0&{} 1 \\ \end{array} \right) \end{aligned}$$

and

$$\begin{aligned} (\tau _1\otimes \tau _2)(\sigma _2) = \left( \begin{array}{ccccccccc} 1&{}0&{}0&{}0&{} 0 &{} 0&{}0&{}0&{}0 \\ 0 &{} 0 &{}u_2 &{}0&{}0 &{} 0 &{} 0&{}0&{}0 \\ 0 &{} 1 &{}0 &{}0&{}0 &{}0 &{} 0&{}0&{}0 \\ 0 &{} 0 &{} 0&{}0&{}0 &{} 0 &{} u_1&{}0&{}0 \\ 0 &{} 0 &{} 0&{}0&{}0 &{} 0 &{} 0&{}0&{} u_1u_2 \\ 0 &{} 0 &{} 0&{}0&{}0 &{} 0 &{} 0&{}u_1&{}0 \\ 0 &{} 0 &{} 0&{}1&{}0 &{} 0 &{} 0&{}0&{}0 \\ 0 &{} 0 &{} 0&{}0&{}0 &{} u_2 &{}0&{}0&{}0 \\ 0 &{} 0 &{} 0&{}0&{}1 &{} 0 &{} 0&{}0&{}0 \\ \end{array} \right) \end{aligned}$$

For simplicity, we denote \((\tau _1\otimes \tau _2)\) by \(\rho \).

We now show that the representation \(\rho \) is reducible.

Proposition 5.2

The representation \(\rho \) is reducible.

Proof

By choosing a different basis for \(\mathbb {C}^9\), namely \(\{e_1, e_5, e_9, e_2, e_3, e_4, e_6, e_7, e_8\}\), the representation \(\rho \) is equivalent to the representation \(\psi \) whose matrices are given by:

$$\begin{aligned} \psi (\sigma _1) = \left( \begin{array}{ccccccccc} 0&{}u_1u_2&{}0&{}0&{} 0 &{} 0&{}0&{}0&{}0 \\ 1 &{} 0 &{} 0&{}0&{}0 &{} 0 &{} 0&{}0&{}0 \\ 0 &{} 0 &{} 1&{}0&{}0 &{}0 &{} 0&{}0&{}0 \\ 0 &{} 0 &{} 0&{}0&{}0 &{} u_1&{} 0&{}0&{}0 \\ 0 &{} 0 &{} 0&{}0&{}0 &{} 0 &{} u_1&{}0&{}0 \\ 0 &{} 0 &{} 0&{}u_2&{}0 &{} 0 &{} 0&{}0&{}0 \\ 0 &{} 0 &{} 0&{}0&{}1 &{} 0 &{} 0&{}0&{}0 \\ 0 &{} 0 &{} 0&{}0&{}0 &{} 0 &{}0&{}0&{}u_2 \\ 0 &{} 0 &{} 0&{}0&{}0 &{} 0 &{} 0&{}1&{}0 \\ \end{array} \right) \end{aligned}$$

and

$$\begin{aligned} \psi (\sigma _2) = \left( \begin{array}{ccccccccc} 1&{}0&{}0&{}0&{} 0 &{} 0&{}0&{}0&{}0 \\ 0 &{} 0 &{}u_1u_2&{}0&{}0 &{} 0 &{} 0&{}0&{}0 \\ 0 &{}1 &{}0 &{}0&{}0 &{}0 &{} 0&{}0&{}0 \\ 0 &{} 0 &{} 0&{}0&{}u_2 &{} 0 &{} 0&{}0&{}0 \\ 0 &{} 0 &{} 0&{}1&{}0 &{} 0&{} 0&{}0&{} 0 \\ 0 &{} 0 &{} 0&{}0&{}0 &{} 0 &{} 0&{}u_1&{}0 \\ 0 &{} 0 &{} 0&{} 0 &{}0 &{} 0 &{} 0&{}0&{} u_1 \\ 0 &{} 0 &{} 0&{}0&{}0 &{} 1&{}0&{}0&{}0 \\ 0 &{} 0 &{} 0&{}0&{}0&{} 0 &{} u_2&{}0&{}0 \\ \end{array} \right) . \end{aligned}$$

It is clear from the form of the martices of the generators \(\sigma _1\) and \(\sigma _2\) that the representation \(\psi \) is a direct sum of a standard representation and a representation \(\varphi \) of dimension 6. \(\square \)

Definition 5.3

We define the representation \(\varphi : B_3 \rightarrow GL_6(\mathbb {C})\) of \(B_3\) of dimension 6 by:

$$\begin{aligned} \varphi (\sigma _1) = \left( \begin{array}{cccccc} 0&{}0 &{} u_1&{} 0&{}0&{}0 \\ 0&{}0 &{} 0 &{} u_1&{}0&{}0 \\ u_2&{}0 &{} 0 &{} 0&{}0&{}0 \\ 0&{}1 &{} 0 &{} 0&{}0&{}0 \\ 0&{}0 &{} 0 &{}0&{}0&{}u_2 \\ 0&{}0 &{} 0 &{} 0&{}1&{}0 \\ \end{array} \right) \end{aligned}$$

and

$$\begin{aligned} \varphi (\sigma _2) = \left( \begin{array}{cccccc} 0&{}u_2 &{} 0 &{} 0&{}0&{}0 \\ 1&{}0 &{} 0&{} 0&{}0&{} 0 \\ 0&{}0 &{} 0 &{} 0&{}u_1&{}0 \\ 0&{}0 &{} 0 &{} 0&{}0&{} u_1 \\ 0&{}0 &{} 1&{}0&{}0&{}0 \\ 0&{}0&{} 0 &{} u_2&{}0&{}0 \\ \end{array} \right) . \end{aligned}$$

We diagonalize the matrix corresponding to \(\varphi (\sigma _1)\) by an invertible matrix, say T, and conjugate the matrix \(\varphi (\sigma _2)\) by the same matrix T.

The invertible matrix T is given by

$$\begin{aligned} T= \left( \begin{array}{cccccc} 0&{}0 &{} 0 &{} 0&{}-\frac{\sqrt{u_1}}{\sqrt{u_2}}&{}\frac{\sqrt{u_1}}{\sqrt{u_2}} \\ -\sqrt{u_1}&{} \sqrt{u_1}&{} 0&{} 0&{}0&{} 0 \\ 0&{}0 &{} 0 &{} 0&{}1&{}1 \\ 1&{}1 &{} 0 &{} 0&{}0&{} 0 \\ 0&{}0 &{} -\sqrt{u_2}&{}\sqrt{u_2}&{}0&{}0 \\ 0&{}0&{} 1 &{} 1&{}0&{}0 \\ \end{array} \right) . \end{aligned}$$

In fact, computations show that

$$\begin{aligned} T^{-1}\sigma _1T= \left( \begin{array}{cccccc} -\sqrt{u_1}&{}0&{}0 &{} 0 &{} 0&{}0 \\ 0&{} \sqrt{u_1}&{} 0&{} 0&{}0&{} 0 \\ 0&{}0 &{} -\sqrt{u_2}&{}0&{}0&{}0 \\ 0&{}0 &{} 0 &{}\sqrt{u_2} &{}0&{} 0 \\ 0&{}0 &{} 0&{}0&{}-\sqrt{u_1}\sqrt{u_2}&{}0 \\ 0&{}0&{} 0 &{} 0&{}0&{}\sqrt{u_1}\sqrt{u_2} \\ \end{array} \right) . \end{aligned}$$

After conjugation, we get

$$\begin{aligned} T^{-1}\sigma _2T= \left( \begin{array}{cccccc} 0&{}0&{}\frac{u_1}{2} &{} \frac{u_1}{2} &{}\frac{1}{2\sqrt{u_2}}&{}-\frac{1}{2\sqrt{u_2}} \\ 0&{}0&{}\frac{u_1}{2} &{} \frac{u_1}{2} &{}-\frac{1}{2\sqrt{u_2}}&{}\frac{1}{2\sqrt{u_2}} \\ \frac{u_2}{2}&{}\frac{u_2}{2}&{}0 &{} 0 &{}-\frac{1}{2\sqrt{u_2}}&{}-\frac{1}{2\sqrt{u_2}} \\ \frac{u_2}{2}&{}\frac{u_2}{2}&{}0 &{} 0 &{}\frac{1}{2\sqrt{u_2}}&{}\frac{1}{2\sqrt{u_2}}\\ \frac{u_2\sqrt{u_2}}{2}&{}-\frac{u_2\sqrt{u_2}}{2}&{}-\frac{u_1\sqrt{u_2}}{2} &{} \frac{u_1\sqrt{u_2}}{2} &{}0&{}0 \\ -\frac{u_2\sqrt{u_2}}{2}&{}\frac{u_2\sqrt{u_2}}{2}&{}-\frac{u_1\sqrt{u_2}}{2} &{} \frac{u_1\sqrt{u_2}}{2} &{}0&{}0 \\ \end{array} \right) . \end{aligned}$$

For simplicity, we denote \(T^{-1}\sigma _1T\) by \(\sigma _1\) and \(T^{-1}\sigma _2T\) by \(\sigma _2\).

Assume that \(u_i\), \(i=1,2\), are non-zero complex numbers on the unit circle. We determine a sufficient condition for the irreducibility of the representation \(\varphi \) of \(B_3\) of dimension 6.

Lemma 5.4

Let \(u_i\), \(i=1,2\), be non-zero complex numbers on the unit circle. The representation \(\varphi :B_3 \rightarrow GL_6(\mathbb {C})\) is irreducible if \(\sqrt{u_1} \ne \pm \sqrt{u_2}\).

Proof

Direct computations show that \(\sigma _i \sigma _i^*=I_6\), where \(i=1,2\), * denotes the complex conjugate transpose, and \(I_6\) denotes the \(6 \times 6\) identity matrix.

Therefore, the representation is unitary. Consequently, if S is an invariant subspace then the orthogonal complement of S is also invariant.

Thus, it is sufficient to prove that there is no possible proper invariant subspace of dimensions 1,2,3.

Since the representations \(\rho _1\) and \(\rho _2\) are irreducible, then \(u_1\ne 1\) and \(u_2\ne 1\) (Lemmas 1 and 2). This implies that \(\sqrt{u_1}\sqrt{u_2}\ne \pm \sqrt{u_1}\) and \(\sqrt{u_1}\sqrt{u_2}\ne \pm \sqrt{u_2}\).

Let S be an invariant subspace of dimension \(\le 3\).

We have the following cases:

Case 1. \(S=<e_i>\), \(i=1,...,6\).

Case 2. \(S=<e_i, e_j>\), \(i,j=1,...,6\), \(i \ne j\).

Case 3. \(S=<e_i, e_j, e_k>\), \(i,j,k=1,...,6\), \(i \ne j \ne k\).

In all the above cases, it is clear that \(e_i \in S\) for some \(1 \le i \le 6\).

As S is invariant, this implies that \(\sigma _2(e_i) \in S\).

On the other hand, by direct computations, we have the following:

  • \(\sigma _2(e_1)= \frac{u_2}{2} (e_3+e_4) + \frac{u_2\sqrt{u_2}}{2}(e_5-e_6)\)

  • \(\sigma _2(e_2)=\frac{u_2}{2} (e_3+e_4) + \frac{u_2\sqrt{u_2}}{2}(-e_5+e_6)\)

  • \(\sigma _2(e_3)=\frac{u_1}{2} (e_1+e_2) - \frac{u_1\sqrt{u_2}}{2}(e_5+e_6)\)

  • \(\sigma _2(e_4)=\frac{u_1}{2} (e_1+e_2) + \frac{u_1\sqrt{u_2}}{2}(e_5+e_6)\)

  • \(\sigma _2(e_5)=\frac{1}{2\sqrt{u_2}} (e_1-e_2-e_3+e_4)\)

  • \(\sigma _2(e_6)=\frac{1}{2\sqrt{u_2}} (-e_1+e_2 -e_3+e_4)\)

In all the above cases, \(\sigma _2(e_i) \notin S\) for all \(1 \le i \le 6\). This gives a contradiction.

Therefore, there is no possible invariant subspace of dimension \(\le 3\).

Thus, the representation \(\varphi : B_3 \rightarrow GL_6(\mathbb {C})\) is irreducible if \(\sqrt{u_1} \ne \pm \sqrt{u_2}\). \(\square \)

Now, we determine a necessary condition for irreducibility of the representation \(\varphi : B_3 \rightarrow GL_6(\mathbb {C})\).

Lemma 5.5

Let \(u_i\), \(i=1,2\), be non-zero complex numbers on the unit circle. If \(\sqrt{u_1} = \pm \sqrt{u_2} \), then the representation \(\varphi : B_3 \rightarrow GL_6(\mathbb {C})\) is reducible.

Proof

We consider the following cases:

Case 1: \(\sqrt{u_1} = \sqrt{u_2} \).

Let \(S=\) \(<e_5,u,v>\) where \(u=e_1-e_3\) and \(v= e_2-e_4\).

Direct computations show that:

  • \(\sigma _1(e_5)=-u_1e_5\)

  • \(\sigma _2(e_5)=\frac{1}{2\sqrt{u_1}}(u - v)\)

  • \(\sigma _1(u)=-\sqrt{u_1}u\)

  • \(\sigma _2(u)=-\frac{u_1}{2}u-\frac{u_1}{2}v+u_1\sqrt{u_1}e_5 \)

  • \(\sigma _1(v)=\sqrt{u_1}v\)

  • \(\sigma _2(v)=-\frac{u_1}{2}u-\frac{u_1}{2}v-u_1\sqrt{u_1}e_5 \)

Thus, the subspace S is invariant.

Case 2: \(\sqrt{u_1} = - \sqrt{u_2}\)

Let \(S=\) \(<e_5,u,v>\) where \(u=e_1+e_4\) and \(v= e_2+e_3\).

Direct computations show that:

  • \(\sigma _1(e_5)=u_1e_5\)

  • \(\sigma _2(e_5)=-\frac{1}{2\sqrt{u_1}}(u - v)\)

  • \(\sigma _1(u)=-\sqrt{u_1}u\)

  • \(\sigma _2(u)=\frac{u_1}{2}u+\frac{u_1}{2}v-u_1\sqrt{u_1}e_5 \)

  • \(\sigma _1(v)=\sqrt{u_1}v\)

  • \(\sigma _2(v)=\frac{u_1}{2}u+\frac{u_1}{2}v+u_1\sqrt{u_1}e_5 \)

Thus, the subspace S is invariant.

Therefore, the representation \(\varphi : B_3 \rightarrow GL_6(\mathbb {C})\) is reducible if \(\sqrt{u_1} = \pm \sqrt{u_2} \). \(\square \)

We state now the theorem of irreducibility of the considered representation.

Theorem 5.6

Let \(u_i\), \(i=1,2\), be non-zero complex numbers on the unit circle. The representation \(\varphi : B_3 \rightarrow GL_6(\mathbb {C})\) is irreducible if and only if \(\sqrt{u_1} \ne \pm \sqrt{u_2} \).