

Mohammad Y. Chreif · Malak M. Dally

On the irreducibility of local representations of the Braid group B_n

Received: 9 May 2023 / Accepted: 22 March 2024 © The Author(s) 2024

Abstract We prove that any homogeneous local representation $\varphi : B_n \to GL_n(\mathbb{C})$ of type 1 or 2 of dimension $n \ge 6$ is reducible. Then, we prove that any representation $\varphi : B_n \to GL_n(\mathbb{C})$ of type 3 is equivalent to a complex specialization of the standard representation τ_n . Also, we study the irreducibility of all local linear representations of the braid group B_3 of degree 3. We prove that any local representation of type 1 of B_3 is reducible to a Burau type representation and that any local representation of type 2 of B_3 is equivalent to a complex specialization of the standard representation. Moreover, we construct a representation of B_3 of degree 6 using the tensor product of local representations of type 2. Let u_i , i = 1, 2, be non-zero complex numbers on the unit circle. We determine a necessary and sufficient condition that guarantees the irreducibility of the obtained representation.

Mathematics Subject Classification 20F36

1 Introduction

The braid group B_n is represented, due to Artin, in the group Aut(F_n) of automorphisms of the free group F_n generated by x_1, \ldots, x_n . To attack the linearity of the braid group B_n , the faithfulness of the braid group representations was studied. One of these representations is the Burau representation which was, for a long time, a candidate to answer the question of faithfulness of the braid group B_n . It was proved that the Burau representation is faithful for $n \leq 3$ and not faithful for $n \geq 5$. For n = 4, the question of faithfulness of the Burau representation has not been answered yet. For more details, see [2] and [3].

In addition to the linearity of the braid group B_n , the classification of irreducible complex representations of B_n was of great concern. In [4], Formanek found a necessary and sufficient condition for the specialization of the reduced Burau representation to be irreducible. Moreover, Formanek classified all irreducible complex representations of the braid group B_n of degree at most n-1 for $n \ge 7$. In [7], Sysoeva extended this classification to representations of degree n for $n \ge 9$. For n = 5, 6, 7 and 8, the classification was completed by Formanek, Lee, Sysoeva and Vazirani. For more details, see [5]. For $n \ge 10$, Sysoeva proved, in [8], that there are no irreducible representations of B_n of dimension n + 1.

The local representations of the braid group B_3 were studied by Mikhalchishina who proved that any local representation of the braid group B_3 into $GL_3(\mathbb{C})$ is of type 1 or 2. In addition, Mikhalchishina studied the

M. M. Dally Department of Business Economics, Lebanese International University, Rayak, Lebanon E-mail: malak.dally@liu.edu.lb

M. Y. Chreif

Department of Mathematics, Lebanese International University, Ravak, Lebanon E-mail: mohamad.chreif@liu.edu.lb

n-dimensional homogeneous local representations φ of the braid group B_n and proved that φ coincides with one of the three representations φ_1 , φ_2 and φ_3 which were defined. For more details, see [6].

In our work, first we study the irreducibility of the local homogeneous multi-parameter representations of types 1 and 2 of degree *n* of the braid group B_n . We prove that, for $n \ge 6$, any homogeneous local representation of type 1 or 2 is reducible.

Next, we consider the case of homogeneous local representations of type 3 of degree *n* of the braid group B_n . We prove that any homogeneous local representation of type 3 is equivalent to a complex specialization of the standard representation. Consequently, any multi-parameter homogeneous local representation of type 3 is irreducible if and only if $bc \neq 1$.

Then, we study the irreducibility of all local representations of the braid group B_3 . We prove that any threedimensional local representation of type 1 is reducible to a representation of Burau type. Also, we prove that any three-dimensional local representation of type 2 is equivalent to a complex specialization of the standard representation. Due to this equivalence, any local representation of type 2 is irreducible if and only if $bc \neq 1$.

Finally, we find the tensor product of two complex specializations of the standard representations of B_3 . We prove that the obtained nine-dimensional multi-parameter representation is a direct sum of a complex specialization of the standard representation and a six-dimensional representation φ . We consider the case when the complex numbers $u'_i s$ are on the unit circle. Then, we prove that φ is irreducible if and only if $\sqrt{u_1} \neq \pm \sqrt{u_2}$.

2 Preliminaries

Definition 2.1 [1] The braid group, B_n , is an abstract group generated by $\sigma_1, \sigma_2, \ldots, \sigma_{n-1}$ with the following relations

$$\sigma_i \sigma_j = \sigma_j \sigma_i$$
, for all $i, j = 1, \dots, n-1$ with $|i-j| \ge 2$,

and

$$\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}$$
, for $i = 1, \ldots, n-2$.

Definition 2.2 [7, Definition 2] The corank of the representation $\rho : B_n \to GL_r(\mathbb{C})$ is $rank(\rho(\sigma_i) - 1)$, where the σ_i are the standard generators of the group B_n .

Definition 2.3 [6] A representation $\varphi : B_n \longrightarrow GL_n(\mathbb{C})$ is called local if

$$\varphi(\sigma_i) = \begin{pmatrix} I_{i-1} & 0 & 0 \\ 0 & R_i & 0 \\ \hline 0 & 0 & I_{n-i-1} \end{pmatrix}, \quad i = 1, 2, \dots, n-1,$$

where I_m is the identity matrix of order m and R_i is a matrix of order 2. A local representation is called homogeneous if $R_1 = R_2 = \cdots = R_{n-1}$.

Theorem 2.4 [6, Theorem 1] If $\varphi : B_3 \to GL_3(\mathbb{C})$ is a local representation then φ has one of the two types:

(1)
$$\varphi(\sigma_1) = \begin{pmatrix} \alpha(1-d) & \frac{(1-d)(1-\alpha+d\alpha)}{c} & | 0 \\ 0 & 0 & | 1 \end{pmatrix}, \varphi(\sigma_2) = \begin{pmatrix} \frac{1}{0} & 0 & 0 \\ 0 & \alpha & \frac{(1-\alpha)(1-d+d\alpha)}{\gamma} \\ 0 & \gamma & d(1-\alpha) \end{pmatrix}$$

where $d, \alpha \neq 1$ and $c, \gamma \neq 0$;
(2) $\varphi(\sigma_1) = \begin{pmatrix} 0 & b | 0 \\ c & 0 & 0 \\ 0 & 0 & | 1 \end{pmatrix}, \varphi(\sigma_2) = \begin{pmatrix} \frac{1}{0} & 0 & 0 \\ 0 & 0 & \frac{bc}{\gamma} \\ 0 & \gamma & 0 \end{pmatrix}$, where $bc, \gamma \neq 0$.

Corollary 2.5 [6, Corollary to Theorem 1] If $\varphi : B_n \longrightarrow GL_n(\mathbb{C})$, $n \ge 3$, is a homogeneous local representation, then φ coincides with one of the representations φ_1 , φ_2 and φ_3 defined as follows:

$$\varphi_j: B_n \longrightarrow GL_n(\mathbb{C}),$$

Springer

$$(1) \quad \varphi_{1}(\sigma_{i}) = \begin{pmatrix} \frac{I_{i-1} \mid 0 \quad 0 \mid 0}{0 \mid \alpha \quad \frac{1-\alpha}{\gamma} \mid 0} \\ 0 \mid \gamma \quad 0 \mid 0 \\ \hline 0 \mid 0 \quad 0 \quad 0 \mid I_{n-i-1} \end{pmatrix}, \quad \gamma \neq 0, i = 1, 2, \dots, n-1.$$

$$(2) \quad \varphi_{2}(\sigma_{i}) = \begin{pmatrix} \frac{I_{i-1} \mid 0 \quad 0 \mid 0}{0 \mid 0 \quad \frac{1-d}{c} \mid 0} \\ 0 \mid c \quad d \mid 0 \\ \hline 0 \mid 0 \quad 0 \mid I_{n-i-1} \end{pmatrix}, \quad c \neq 0, i = 1, 2, \dots, n-1.$$

$$(3) \quad \varphi_{3}(\sigma_{i}) = \begin{pmatrix} \frac{I_{i-1} \mid 0 \quad 0 \mid 0}{0 \mid 0 \mid 0} \\ \hline 0 \mid 0 \quad 0 \mid I_{n-i-1} \\ \hline 0 \mid 0 \quad 0 \mid I_{n-i-1} \end{pmatrix}, \quad bc \neq 0, i = 1, 2, \dots, n-1.$$

Definition 2.6 [7, Definition 6] The standard representation is the representation

$$\tau_n: B_n \to GL_n(\mathbb{Z}[t^{\pm 1}])$$

defined by

$$\tau_n(\sigma_i) = \begin{pmatrix} I_{i-1} | 0 & 0 | 0 \\ 0 & 0 & t | 0 \\ 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 0 | I_{n-i-1} \end{pmatrix},$$

for i = 1, 2, ..., n - 1, where I_k is the $k \times k$ identity matrix.

Definition 2.7 [7] The complex specialization of the standard representation is defined by

$$\tau_n(u): B_n \to GL_n(\mathbb{C}),$$

$$\tau_n(u)(\sigma_i) = \begin{pmatrix} I_{i-1} \begin{vmatrix} 0 & 0 & 0 \\ 0 & 0 & u & 0 \\ 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 0 & |I_{n-i-1} \end{pmatrix},$$

for i = 1, 2, ..., n - 1, where I_k is the $k \times k$ identity matrix, and $u \in \mathbb{C}^*$.

Lemma 2.8 [7, Lemma 5.3] If u = 1, then $\tau_n(u)$ is reducible.

Lemma 2.9 [7, Lemma 5.4] If $u \neq 1$, then $\tau_n(u)$ is irreducible.

Theorem 2.10 [7, Theorem 5.5] Let $\rho : B_n :\to GL_r(\mathbb{C})$ be an irreducible representation of B_n for $n \ge 6$. Let $r \ge n$, and let $\rho(\sigma_1) = 1 + A_1$ with $rank(A_1) = 2$. Then r = n and ρ is equivalent to the representation $\tau_n(u)$, where $u \in \mathbb{C}^*$ and $u \neq 1$.

Definition 2.11 [4] The complex specialization of the reduced Burau representation $\beta_3(z)$ is defined by:

$$\beta_3(z): B_3 \to GL_2(\mathbb{C}),$$

$$\beta_3(z)(\sigma_1) = \begin{pmatrix} -z & 0\\ -1 & 1 \end{pmatrix}$$
 and $\beta_3(z)(\sigma_2) = \begin{pmatrix} 1 & -z\\ 0 & -z \end{pmatrix}$.

Theorem 2.12 [4, Theorem 11] Let $\rho : B_3 \to GL_2(\mathbb{C})$ be an irreducible representation. Then ρ is equivalent to $\chi(y) \otimes \beta_3(z)$ for some $y, z \in \mathbb{C}^*$, where z is not a root of the polynomial $t^2 + t + 1$. Here $\chi(y)$ is the one dimensional representation and $\beta_3(z)$ is the reduced Burau representation. We say that ρ is of Burau type.

Definition 2.13 The principal square root function is the function defined as follows: For all $z \in \mathbb{C}, z =$ $(\rho, \alpha), \rho \ge 0, \sqrt{z} = \sqrt{\rho} e^{i\frac{\tilde{\alpha}}{2}}, \text{ where } -\pi < \alpha \le \pi.$

3 Irreduciblility of homogeneous local representations of B_n for $n \ge 6$

Mikhalchishina proved, in [6, Proposition, p. 672], that type 1 and type 2 representations are not equivalent when $d \neq \alpha$. In this section, we prove that any homogeneous local representation of type 1 or 2 of dimension $n \ge 6$ is reducible. Then, we prove that any homogeneous local representation of type 3 is equivalent to a complex specialization of the standard representation τ_n .

Theorem 3.1 The homogeneous local representations of types 1 and 2 are reducible for $n \ge 6$.

Proof Let φ_1 and φ_2 be two homogeneous local representations of B_n of types 1 and 2 respectively with $n \ge 6$. Consider the matrices P_1 and P_2 defined as

$$P_1 = Diag\left(\frac{1}{\gamma^{n-1}}, \cdots, \frac{1}{\gamma}, 1\right)$$
 and $P_2 = Diag\left(\frac{1}{c^{n-1}}, \frac{1}{c^{n-2}}, \cdots, \frac{1}{c}, 1\right)$,

where $Diag(a_1, a_2, ..., a_n)$ is a diagonal $n \times n$ matrix, with $a_{ii} = a_i$.

By direct computations, we get

$$P_1^{-1}\varphi_1(\sigma_i)P_1 = \tilde{\varphi_1}(\sigma_i) \text{ and } P_2^{-1}\varphi_2(\sigma_i)P_2 = \tilde{\varphi_2}(\sigma_i)$$

where,

$$\tilde{\varphi_1}(\sigma_i) = \begin{pmatrix} I_{i-1} & 0 & 0 & 0\\ 0 & \alpha & 1-\alpha & 0\\ 0 & 1 & 0 & 0\\ \hline 0 & 0 & 0 & I_{n-i-1} \end{pmatrix}$$

and

$$\tilde{\varphi_2}(\sigma_i) = \begin{pmatrix} I_{i-1} & 0 & 0 & 0 \\ \hline 0 & 0 & 1-d & 0 \\ 0 & 1 & d & 0 \\ \hline 0 & 0 & 0 & 0 & I_{n-i-1} \end{pmatrix}$$

for i = 1, 2, ..., n - 1.

This implies that the representations φ_1 and φ_2 are equivalent to the representations $\tilde{\varphi_1}$ and $\tilde{\varphi_2}$ respectively. Thus, we can verify that the corank of the representations φ_1 and φ_2 is 1. This implies that the representations φ_1 and φ_2 are reducible. (See [4], Theorem 10)

Now, we prove that any representation $\varphi_3 : B_n \to GL_n(\mathbb{C})$ of type 3 is equivalent to a complex specialization of the standard representation τ_n .

Theorem 3.2 Let $\varphi_3 : B_n \to GL_n(\mathbb{C})$ be a homogeneous local representation of type 3. Then, the representation φ_3 is equivalent to a complex specialization the standard representation τ_n .

Proof Let $\varphi_3 : B_n \to GL_n(\mathbb{C})$ be a homogeneous local representation of type 3. Consider the matrix *P* defined by

$$P = Diag\left(\frac{1}{c^{n-1}}, \frac{1}{c^{n-2}}, \dots, \frac{1}{c}, 1\right),\,$$

where $Diag(a_1, a_2, ..., a_n)$ is a diagonal $n \times n$ matrix with $a_{ii} = a_i$.

Direct computations show that

$$P^{-1}\sigma_i P = \begin{pmatrix} I_{i-1} & 0 & 0 & 0\\ 0 & 0 & bc & 0\\ 0 & 1 & 0 & 0\\ \hline 0 & 0 & 0 & I_{n-i-1} \end{pmatrix}.$$

D Springer

By letting u = bc, we find that this representation is equivalent to a complex specialization of the standard representation τ_n .

By Lemmas 2.8 and 2.9, the standard representation is irreducible if and only if $u \neq 1$. This implies that φ_3 is irreducible if and only if $bc \neq 1$.

Thus, we state the following theorem:

Theorem 3.3 Let $\varphi_3 : B_n \to GL_n(\mathbb{C})$ be a homogeneous local representation of type 3. Then, the representation φ_3 is irreducible if and only if $bc \neq 1$.

4 Irreducibility of local representations of B_3

In this section, we consider all the local representations of B_3 . We prove that any local representation of type 1 of B_3 is reducible to a Burau type representation. Then, we prove that any local representation of type 2 of B_3 is equivalent to a complex specialization of the standard representation.

Theorem 4.1 Let $\varphi : B_3 \to GL_3(\mathbb{C})$ be a local representation of type 1. Then, φ is reducible to a representation of Burau type.

Proof Let φ : $B_3 \to GL_3(\mathbb{C})$ be a representation of type 1, then

$$\varphi(\sigma_1) = \begin{pmatrix} \alpha(1-d) & \frac{(1-d)(1-\alpha+d\alpha)}{c} & 0\\ \frac{c}{0} & \frac{d}{0} & 0\\ \hline 0 & 0 & 1 \end{pmatrix}, \varphi(\sigma_2) = \begin{pmatrix} \frac{1}{0} & 0\\ 0 & \frac{(1-\alpha)(1-d+d\alpha)}{\gamma}\\ 0 & \gamma & d(1-\alpha) \end{pmatrix}.$$

where $d, \alpha \neq 1$ and $c, \gamma \neq 0$.

We scale the basis using the matrix

$$P = Diag\left(\frac{1}{c}, 1, \gamma\right).$$

Thus, we get

$$P^{-1}\varphi(\sigma_1)P = \begin{pmatrix} \alpha(1-d) & (1-d)(1-\alpha+\alpha d) & 0\\ 1 & d & 0\\ 0 & 0 & 1 \end{pmatrix}$$

and

$$P^{-1}\varphi(\sigma_2)P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \alpha & (1-\alpha)(1-d+\alpha d) \\ 0 & 1 & (1-\alpha)d \end{pmatrix}.$$

We have the following two cases:

Case 1. $\alpha(1 - d) = 1$. In this case, we have

$$\varphi(\sigma_1) = \begin{pmatrix} 1 & 0 & 0\\ 1 & d & 0\\ 0 & 0 & 1 \end{pmatrix} \text{ and } \varphi(\sigma_2) = \begin{pmatrix} 1 & 0 & 0\\ 0 & \frac{1}{1-d} & \frac{-d(1-d+d^2)}{(-1+d)^2}\\ 0 & 1 & \frac{d^2}{-1+d} \end{pmatrix}$$

It is clear that the proper subspace $S = \langle e_2, e_3 \rangle$ is invariant. Consequently, the above representation φ is reducible.

Restricting φ to *S*, we obtain:

$$\varphi'(\sigma_1) = \begin{pmatrix} d & 0\\ 0 & 1 \end{pmatrix}$$
 and $\varphi'(\sigma_2) = \begin{pmatrix} \frac{1}{1-d} & \frac{-d(1-d+d^2)}{(-1+d)^2}\\ 1 & \frac{d^2}{-1+d} \end{pmatrix}$.

This formula is well defined since $d - 1 \neq 0$.

By direct computations, there is no proper invariant subspace of dimension one if $d \neq 0$ and $d^2 - d + 1 \neq 0$. Therefore, the representation φ' is irreducible. Consequently, it is a representation of Burau type.

Since the representation φ' is of Burau type, thus, by Theorem 3, it is equivalent to $\chi(y) \otimes \beta_3(z)$ for some $y, z \in \mathbb{C}^*$. This implies that φ' and $\chi(y) \otimes \beta_3(z)$ have the same eigenvalues which are (1, d) and (y, -yz) respectively. Thus, these representations are equivalent for

$$(y, z) = \left(d, -\frac{1}{d}\right)$$
 and $(y, z) = (1, -d)$.

On the other hand, if $d^2 - d + 1 = 0$, then the subspace $\langle (0, 1) \rangle$ is invariant. This implies that the representation is reduced to a one dimensional representation.

Case 2. $\alpha(1 - d) \neq 1$.

Consider the subspace $S = \langle u, v \rangle$ where

$$u = e_1 + \frac{1}{-1 + \alpha - \alpha d} e_2$$
 and $v = e_1 + \frac{\alpha}{-1 + \alpha - \alpha d} e_2 + \frac{1}{-1 + \alpha - \alpha d} e_3$.

By direct computations, we have

- $\varphi(\sigma_1)(u) = (-1 + \alpha + d \alpha d)u$,
- $\varphi(\sigma_1)(v) = -u + v$,
- $\varphi(\sigma_2)(u) = v$ and
- $\varphi(\sigma_2)(v) = (-1 \alpha d + \alpha d)u + (\alpha + d \alpha d)v.$

Thus, the proper subspace S is invariant. Therefore, the representation φ is reducible.

By restricting φ to S, we obtain the representation φ' defined as follows:

$$\varphi'(\sigma_1) = \begin{pmatrix} -1 + \alpha + d - \alpha d & -1 \\ 0 & 1 \end{pmatrix} \text{ and } \varphi'(\sigma_2) = \begin{pmatrix} 0 & 1 - \alpha - d + \alpha d \\ 1 & \alpha + d - \alpha d \end{pmatrix}.$$

Let $t = -1 + \alpha + d - \alpha d$. The representation φ' is reducible if and only if the matrices $\varphi'(\sigma_1)$ and $\varphi'(\sigma_2)$ have a common eigenvector. Direct computations show that the representation φ' is irreducible if and only if $t^3 \neq \pm 1$.

Therefore, any representation of type 1 is reduced to a Burau type representation (See Theorem 2.12).

Also, the representation φ' is of Burau type, thus, by Theorem 3, it is equivalent to $\chi(y) \otimes \beta_3(z)$ for some $y, z \in \mathbb{C}^*$. Using the same argument of case 1, these representations are equivalent for:

$$(y,z) = \left(-1 + \alpha + d - \alpha d, \frac{1}{1 - \alpha - d + \alpha d}\right)$$
 and $(y,z) = (1, 1 - \alpha - d + \alpha d).$

Proposition 4.2 Let φ : $B_3 \to GL_3(\mathbb{C})$ be a local representation of type 2 of B_3 , then φ is equivalent to a complex specialization of the standard representation.

D Springer

Proof Let $\varphi : B_3 \to GL_3(\mathbb{C})$ be a local representation of type 2 of B_3 . We scale the basis using the matrix

$$P = Diag\left(\frac{1}{c}, 1, \gamma\right).$$

Thus, we get

$$P^{-1}\varphi(\sigma_1)P = \begin{pmatrix} 0 & bc & 0\\ 1 & 0 & 0\\ 0 & 0 & 1 \end{pmatrix} \quad and \quad P^{-1}\varphi(\sigma_2)P = \begin{pmatrix} 1 & 0 & 0\\ 0 & 0 & bc\\ 0 & 1 & 0 \end{pmatrix}.$$

By letting u = bc, we notice that the representation φ is equivalent to a complex specialization of the standard representation.

Now, we state the following theorem:

Theorem 4.3 Let $\varphi : B_3 \to GL_3(\mathbb{C})$ be a local representation of type 2 of B_3 , then φ is irreducible if and only if $bc \neq 1$.

5 Representations of dimension 6 of B₃

In this section, we study the irreducibility of the tensor product of two irreducible local representations of type 2 of *B*₃.

Consider two irreducible local representations $\rho_1 = \varphi(b_1, c_1, \gamma_1)$ and $\rho_2 = \varphi(b_2, c_2, \gamma_2)$ of type 2 of the braid group B_3 .

These representations are defined as:

$$\rho_1(\sigma_1) = \begin{pmatrix} 0 & b_1 | 0 \\ c_1 & 0 | 0 \\ \hline 0 & 0 & 1 \end{pmatrix}, \rho_1(\sigma_2) = \begin{pmatrix} 1 & 0 & 0 \\ \hline 0 & 0 & \frac{b_1 c_1}{\gamma_1} \\ 0 & \gamma_1 & 0 \end{pmatrix}$$

and

$$\rho_2(\sigma_1) = \begin{pmatrix} 0 & b_2 | 0 \\ c_2 & 0 | 0 \\ \hline 0 & 0 | 1 \end{pmatrix}, \, \rho_2(\sigma_2) = \begin{pmatrix} 1 & 0 & 0 \\ \hline 0 & 0 & \frac{b_2 c_2}{\gamma_2} \\ 0 | \gamma_2 & 0 \end{pmatrix},$$

where $b_1c_1 \neq 0$, $b_2c_2 \neq 0$, $\gamma_1 \neq 0$ and $\gamma_2 \neq 0$.

By Proposition 4.2, the representations ρ_1 and ρ_2 are equivalent to the standard representations τ_1 and τ_2 defined by:

$$\tau_1(\sigma_1) = \begin{pmatrix} 0 & u_1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \ \tau_1(\sigma_2) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & u_1 \\ 0 & 1 & 0 \end{pmatrix}$$

and

$$\tau_2(\sigma_1) = \begin{pmatrix} 0 & u_2 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \ \tau_2(\sigma_2) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & u_2 \\ 0 & 1 & 0 \end{pmatrix}.$$

where $u_1 = b_1c_1$, $u_2 = b_2c_2$, $u_1 \neq 1$ and $u_2 \neq 1$.

Definition 5.1 Consider the tensor product $\tau_1 \otimes \tau_2$ defined by $(\tau_1 \otimes \tau_2)(\sigma_i) = \tau_1(\sigma_i) \otimes \tau_2(\sigma_i)$, i = 1, 2. We get the following matrices:

and

For simplicity, we denote $(\tau_1 \otimes \tau_2)$ by ρ .

We now show that the representation ρ is reducible.

Proposition 5.2 *The representation* ρ *is reducible.*

Proof By choosing a different basis for \mathbb{C}^9 , namely $\{e_1, e_5, e_9, e_2, e_3, e_4, e_6, e_7, e_8\}$, the representation ρ is equivalent to the representation ψ whose matrices are given by:

and

It is clear from the form of the martices of the generators σ_1 and σ_2 that the representation ψ is a direct sum of a standard representation and a representation φ of dimension 6.

Definition 5.3 We define the representation $\varphi : B_3 \to GL_6(\mathbb{C})$ of B_3 of dimension 6 by:

$$\varphi(\sigma_1) = \begin{pmatrix} 0 & 0 & u_1 & 0 & 0 & 0 \\ 0 & 0 & 0 & u_1 & 0 & 0 \\ u_2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & u_2 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

and

$$\varphi(\sigma_2) = \begin{pmatrix} 0 & u_2 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & u_1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & u_2 & 0 & 0 \end{pmatrix}.$$

We diagonalize the matrix corresponding to $\varphi(\sigma_1)$ by an invertible matrix, say T, and conjugate the matrix $\varphi(\sigma_2)$ by the same matrix T.

The invertible matrix T is given by

$$T = \begin{pmatrix} 0 & 0 & 0 & 0 & -\frac{\sqrt{u_1}}{\sqrt{u_2}} & \frac{\sqrt{u_1}}{\sqrt{u_2}} \\ -\sqrt{u_1} & \sqrt{u_1} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & -\sqrt{u_2} & \sqrt{u_2} & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \end{pmatrix}.$$

In fact, computations show that

$$T^{-1}\sigma_1 T = \begin{pmatrix} -\sqrt{u_1} & 0 & 0 & 0 & 0 & 0 \\ 0 & \sqrt{u_1} & 0 & 0 & 0 & 0 \\ 0 & 0 & -\sqrt{u_2} & 0 & 0 & 0 \\ 0 & 0 & 0 & \sqrt{u_2} & 0 & 0 \\ 0 & 0 & 0 & 0 & -\sqrt{u_1}\sqrt{u_2} & 0 \\ 0 & 0 & 0 & 0 & 0 & \sqrt{u_1}\sqrt{u_2} \end{pmatrix}$$

After conjugation, we get

$$T^{-1}\sigma_2 T = \begin{pmatrix} 0 & 0 & \frac{u_1}{2} & \frac{u_1}{2} & \frac{1}{2\sqrt{u_2}} & -\frac{1}{2\sqrt{u_2}} \\ 0 & 0 & \frac{u_1}{2} & \frac{u_1}{2} & -\frac{1}{2\sqrt{u_2}} & \frac{1}{2\sqrt{u_2}} \\ \frac{u_2}{2} & \frac{u_2}{2} & 0 & 0 & -\frac{1}{2\sqrt{u_2}} & -\frac{1}{2\sqrt{u_2}} \\ \frac{u_2}{2} & \frac{u_2}{2} & 0 & 0 & \frac{1}{2\sqrt{u_2}} & \frac{1}{2\sqrt{u_2}} \\ \frac{u_2\sqrt{u_2}}{2} & -\frac{u_2\sqrt{u_2}}{2} & -\frac{u_1\sqrt{u_2}}{2} & \frac{u_1\sqrt{u_2}}{2} & 0 & 0 \\ -\frac{u_2\sqrt{u_2}}{2} & \frac{u_2\sqrt{u_2}}{2} & -\frac{u_1\sqrt{u_2}}{2} & \frac{u_1\sqrt{u_2}}{2} & 0 & 0 \end{pmatrix}.$$

For simplicity, we denote $T^{-1}\sigma_1 T$ by σ_1 and $T^{-1}\sigma_2 T$ by σ_2 .

Assume that u_i , i = 1, 2, are non-zero complex numbers on the unit circle. We determine a sufficient condition for the irreducibility of the representation φ of B_3 of dimension 6.

Lemma 5.4 Let u_i , i = 1, 2, be non-zero complex numbers on the unit circle. The representation $\varphi : B_3 \rightarrow GL_6(\mathbb{C})$ is irreducible if $\sqrt{u_1} \neq \pm \sqrt{u_2}$.

.

Proof Direct computations show that $\sigma_i \sigma_i^* = I_6$, where i = 1, 2, * denotes the complex conjugate transpose, and I_6 denotes the 6 \times 6 identity matrix.

Therefore, the representation is unitary. Consequently, if S is an invariant subspace then the orthogonal complement of S is also invariant.

Thus, it is sufficient to prove that there is no possible proper invariant subspace of dimensions 1,2,3.

Since the representations ρ_1 and ρ_2 are irreducible, then $u_1 \neq 1$ and $u_2 \neq 1$ (Lemmas 1 and 2). This implies that $\sqrt{u_1}\sqrt{u_2} \neq \pm \sqrt{u_1}$ and $\sqrt{u_1}\sqrt{u_2} \neq \pm \sqrt{u_2}$.

Let S be an invariant subspace of dimension < 3.

We have the following cases:

Case 1. $S = \langle e_i \rangle, i = 1, ..., 6.$ **Case 2.** $S = \langle e_i, e_j \rangle, i, j = 1, ..., 6, i \neq j$. **Case 3.** $S = \langle e_i, e_j, e_k \rangle, i, j, k = 1, ..., 6, i \neq j \neq k$.

In all the above cases, it is clear that $e_i \in S$ for some $1 \le i \le 6$. As S is invariant, this implies that $\sigma_2(e_i) \in S$.

On the other hand, by direct computations, we have the following:

- $\sigma_2(e_1) = \frac{u_2}{2}(e_3 + e_4) + \frac{u_2\sqrt{u_2}}{2}(e_5 e_6)$
- $\sigma_2(e_2) = \frac{\overline{u_2}}{2}(e_3 + e_4) + \frac{u_2\sqrt{u_2}}{2}(-e_5 + e_6)$
- $\sigma_2(e_3) = \frac{\bar{u_1}}{2}(e_1 + e_2) \frac{\bar{u_1}\sqrt{u_2}}{2}(e_5 + e_6)$
- $\sigma_2(e_4) = \frac{\overline{u_1}}{2}(e_1 + e_2) + \frac{u_1\sqrt{u_2}}{2}(e_5 + e_6)$
- $\sigma_2(e_5) = \frac{1}{2\sqrt{u_2}}(e_1 + e_2 e_3 + e_4)$ $\sigma_2(e_6) = \frac{1}{2\sqrt{u_2}}(-e_1 + e_2 e_3 + e_4)$

In all the above cases, $\sigma_2(e_i) \notin S$ for all $1 \le i \le 6$. This gives a contradiction.

Therefore, there is no possible invariant subspace of dimension < 3. Thus, the representation $\varphi: B_3 \to GL_6(\mathbb{C})$ is irreducible if $\sqrt{u_1} \neq \pm \sqrt{u_2}$.

Now, we determine a necessary condition for irreducibility of the representation $\varphi: B_3 \to GL_6(\mathbb{C})$.

Lemma 5.5 Let u_i , i = 1, 2, be non-zero complex numbers on the unit circle. If $\sqrt{u_1} = \pm \sqrt{u_2}$, then the representation $\varphi : B_3 \to GL_6(\mathbb{C})$ is reducible.

Proof We consider the following cases:

Case 1:
$$\sqrt{u_1} = \sqrt{u_2}$$
.

Let $S = \langle e_5, u, v \rangle$ where $u = e_1 - e_3$ and $v = e_2 - e_4$.

Direct computations show that:

- $\sigma_1(e_5) = -u_1 e_5$ $\sigma_2(e_5) = \frac{1}{2\sqrt{u_1}}(u-v)$

•
$$\sigma_1(u) = -\sqrt{u_1}$$

- $\sigma_1(u) = -\sqrt{u_1 u}$ $\sigma_2(u) = -\frac{u_1}{2}u \frac{u_1}{2}v + u_1\sqrt{u_1}e_5$ $\sigma_1(v) = \sqrt{u_1 v}$ $\sigma_2(v) = -\frac{u_1}{2}u \frac{u_1}{2}v u_1\sqrt{u_1}e_5$

Thus, the subspace S is invariant.

Case 2: $\sqrt{u_1} = -\sqrt{u_2}$

🖉 Springei

Let $S = \langle e_5, u, v \rangle$ where $u = e_1 + e_4$ and $v = e_2 + e_3$.

Direct computations show that:

- $\sigma_1(e_5) = u_1 e_5$ $\sigma_2(e_5) = -\frac{1}{2\sqrt{u_1}}(u-v)$
- $\sigma_1(u) = -\sqrt{u_1 u}$ $\sigma_2(u) = \frac{u_1}{2}u + \frac{u_1}{2}v u_1\sqrt{u_1}e_5$ $\sigma_1(v) = \sqrt{u_1}v$ $\sigma_2(v) = \frac{u_1}{2}u + \frac{u_1}{2}v + u_1\sqrt{u_1}e_5$

Thus, the subspace S is invariant.

Therefore, the representation $\varphi: B_3 \to GL_6(\mathbb{C})$ is reducible if $\sqrt{u_1} = \pm \sqrt{u_2}$.

We state now the theorem of irreducibility of the considered representation.

Theorem 5.6 Let u_i , i = 1, 2, be non-zero complex numbers on the unit circle. The representation $\varphi : B_3 \rightarrow \Phi$ $GL_6(\mathbb{C})$ is irreducible if and only if $\sqrt{u_1} \neq \pm \sqrt{u_2}$.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Funding Not applicable.

Availability of data and material Not applicable.

Declarations

Conflict of interest The authors declare no conflict of interest.

Informed consent Not applicable.

References

- 1. Artin, E.: The Collected Papers of Emil Artin. Addison-Wesley Publishing Company Inc., Reading (1965)
- 2. Birman, J.: Braids, Links and Mapping Class Groups, vol. 82. Annals of Mathematical Studies. Princeton University Press, Princeton (1975)
- 3. Chreif, M.; Abdulrahim, M.: Attacks on the faithfulness of the burau representation of the braid group B_4 . J. Math. Res. 8(1), 5(2016)
- 4. Formanek, E.: Braid group representations of low degree. Proc. Lond. Math. Soc. 73, 279-322 (1996)
- 5. Formanek, E.; Lee, W.; Sysoeva, I.; Vazirani, M.: The irreducible complex representations of the braid group on n strings of degree ≤n. J. Algebra Appl. **02**(03), 317–333 (2003)
- 6. Mikhalchishina, Y.: Local representations of braid groups. Sib. Math. J. 54(4), 666–678 (2013)
- 7. Sysoeva, I.: Dimension n representations of the braid group on n strings. J. Algebra 243, 518–538 (2001)
- 8. Sysoeva, I.: Irreducible representations of braid group B_n of dimension n + 1. J. Group Theory 24(1), 39–78 (2021)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

