1 Introduction

Let X (and also Y) be a connected and simply connected finite CW complex with \(\dim \pi _*(X)_{{\mathbb {Q}}}<\infty \) (\(G_{{\mathbb {Q}}}=G\otimes {\mathbb {Q}}\)) and \(\mathrm{Baut}_1X\) be the Dold–Lashof classifying space of orientable fibrations [5]. Here \(\mathrm{aut}_1X=\mathrm{map}(X,X;id_X)\) is the identity component of the space \(\mathrm{aut}X\) of self-equivalences of X. Then any orientable fibration \(\xi \) with fibre X over a base space B is the pull-back of a universal fibration \(X\rightarrow E_{\infty }^X\rightarrow \mathrm{Baut}_1X\) by a map \(h:B\rightarrow \mathrm{Baut}_1X\) and equivalence classes of \(\xi \) are classified by their homotopy classes [2, 5, 23]. The Sullivan minimal model M(X) [24] determines the rational homotopy type of X, the homotopy type of the rationalization \(X_0\) [14] of X. Notice that \((\mathrm{Baut}_1X)_0\simeq \mathrm{Baut}_1(X_0)\) [17]. The differential graded Lie algebra (DGL) \(\mathrm{Der}M(X) \), the negative derivations of M(X) (see §2), gives rise to the DGL model for \(\mathrm{Baut}_1X\) due to Sullivan [24] (cf.[10, 25]), i.e., the spatial realization \(||\mathrm{Der}M(X)||\) is \((\mathrm{Baut}_1X)_0\). Therefore, we obtain a map \( (\mathrm{Baut}_1X)_0\rightarrow (\mathrm{Baut}_1Y)_0\) if there is a DGL-map \(\mathrm{Der} M(X)\rightarrow \mathrm{Der}M(Y) \). However, it does not exist in general.

Let \(f:X\rightarrow Y\) be a map whose homotopy fibration \(\xi _f: F_f\rightarrow X\rightarrow Y\) is given by the relative model (Koszul–Sullivan extension)

$$\begin{aligned} M(Y)=(\Lambda V,d)\overset{i}{\hookrightarrow } (\Lambda V\otimes \Lambda W,D)\simeq M(X) \end{aligned}$$

for a certain differential D with \(D\mid _{\Lambda V}=d\), where \(M(F_f)\cong ( \Lambda W,\overline{D})\) for the homotopy fiber \(F_f\) of f [7]. In this paper, we propose

Question 1.1

When is the restriction map given by \(b_f (\sigma )=\mathrm{proj}_V\circ \sigma \circ i \)

$$\begin{aligned} b_f:\mathrm{Der} (\Lambda V\otimes \Lambda W,D)\rightarrow \mathrm{Der}(\Lambda V,d) \end{aligned}$$

a DGL-map ?

Here \(\mathrm{proj}_V:\Lambda V\otimes \Lambda W\rightarrow \Lambda V\) is the algebra map with \(\mathrm{proj}_V(w)=0\) for \(w\in W\) and \(\mathrm{proj}_V\mid _{\Lambda V}=id_{\Lambda V}\).

Definition 1.2

We say that a \({\mathbb {Q}}\)-w.t. map \(f:X\rightarrow Y\) strictly induces the map

$$\begin{aligned} a_f: (\mathrm{Baut}_1X)_0\rightarrow (\mathrm{Baut}_1Y)_0 \end{aligned}$$

if its DGL model is given by the DGL-map \(b_f:\mathrm{Der} (\Lambda V\otimes \Lambda W,D)\rightarrow \mathrm{Der}(\Lambda V,d) \) with \(||b_f||= a_f\).

Let \(\min \pi _*(S)_{{\mathbb {Q}}}{:=}\min \{ i>0\mid \pi _i(S)_{{\mathbb {Q}}}\ne 0\}\) and \(\max \pi _*(S)_{{\mathbb {Q}}}{:=}\max \{ i\ge 0\mid \pi _i(S)_{{\mathbb {Q}}}\ne 0\}\) for a space S. In particular, \(\min \pi _*(S)_{{\mathbb {Q}}}{:=}\infty \) when S is the one point space.

Definition 1.3

A fibration \(\xi _f :F_f\rightarrow X\overset{f}{\rightarrow } Y\) or a map \(f:X\rightarrow Y\) with homotopy fiber \(F_f\) is said to be \(\pi _{{\mathbb {Q}}}\)-separable if \(\min \pi _*(F_f)_{{\mathbb {Q}}}\ge \max \pi _*(Y)_{{\mathbb {Q}}}.\)

We say a map is rationally weakly trivial (abbr., \({\mathbb {Q}}\)-w.t.) if \(\xi _f\) is rationally weakly trivial, i.e., \(\pi _*(X)_{{\mathbb {Q}}}=\pi _*(F_f)_{{\mathbb {Q}}}\oplus \pi _*(Y)_{{\mathbb {Q}}}\). Then \((\Lambda V\otimes \Lambda W,D)\) is just the minimal model M(X) of X. If a map \(f:X\rightarrow Y\) is \(\pi _{{\mathbb {Q}}}\)-separable, it is \({\mathbb {Q}}\)-w.t. The condition to be \(\pi _{{\mathbb {Q}}}\)-separable is equivalent to the condition that \(\min W=\min \{ i>0\mid W^i\ne 0\}\ge \max V=\max \{ i>0\mid V^i\ne 0\}\) in the relative minimal model \(M(Y)=(\Lambda V,d)\rightarrow (\Lambda V\otimes \Lambda W,D)\) of \(\xi _f\).

Proposition 1.4

For a \({\mathbb {Q}}\)-w.t. map \(f:X\rightarrow Y\) with relative model \(M(Y)=(\Lambda V,d)\rightarrow (\Lambda V\otimes \Lambda W,D)\), the restriction \(b_f: \mathrm{Der} (\Lambda V\otimes \Lambda W,D)\rightarrow \mathrm{Der}(\Lambda V,d) \) is a DGL-map if and only if f is \(\pi _{{\mathbb {Q}}}\)-separable.

That means

Theorem 1.5

A \({\mathbb {Q}}\)-w.t. map \(f:X\rightarrow Y\) strictly induces \(a_f: (\mathrm{Baut}_1X)_0\rightarrow (\mathrm{Baut}_1Y)_0\) if and only if f is \(\pi _{{\mathbb {Q}}}\)-separable.

In §2, we give the proofs under some preparations of models of [7] and [25]. In this paper, we consider only \({\mathbb {Q}}\)-w.t. maps. For example, we do not consider the inclusion map \(i_X:X\rightarrow X\times Y\), which is not \({\mathbb {Q}}\)-w.t. However \(i_X\) induces the monoid map \(\psi :\mathrm{aut}_1X\rightarrow \mathrm{aut}_1(X\times Y) \) by \(\psi (g)=g\times 1_Y\) and, therefore, there exists the induced map \(B\psi :\mathrm{Baut}_1X\rightarrow B \mathrm{aut}_1(X\times Y) \) without rationalization. The DGL model is given by the natural inclusion \(\mathrm{Der} M(X)\rightarrow \mathrm{Der} (M(X)\otimes M(Y))\), which is a DGL-map.

In §3, we give some conditions that the strictly induced map \(a_f: (\mathrm{Baut}_1X)_0\rightarrow (\mathrm{Baut}_1Y)_0\) admits a section. Some results are obtained by Proposition 3.1 induced from [25, VI .1.(3) Proposition] that the DGL-model of the homotopy fibration \(\chi _f: \ F_{a_f}\overset{}{\rightarrow } (\mathrm{Baut}_1X)_0\overset{a_f}{\rightarrow } (\mathrm{Baut}_1Y)_0\) is given by

$$\begin{aligned} \mathrm{Der} ( \Lambda W, \Lambda V\otimes \Lambda W)\rightarrow \mathrm{Der} (\Lambda V\otimes \Lambda W)\overset{b_f}{\rightarrow }\mathrm{Der} (\Lambda V). \end{aligned}$$

Let \(\mathrm{aut}_1f\) be the identity component of the space of all fibre-homotopy self-equivalences of f, i.e., \(\{ g:X\rightarrow X\mid f\circ g=f \ \}\) and \(\mathrm{Baut}_1f\) be the classifying space of this topological monoid. It is known that \(\mathrm{Baut}_1f\simeq \widetilde{\mathrm{map}}(Y,\mathrm{Baut}_1(F_f);h)\), where \(h:Y\rightarrow \mathrm{Baut}_1(F_f)\) is the classifying map of the fibration \(F_f\rightarrow X\overset{f}{\rightarrow } Y\) and \( \widetilde{\mathrm{map}}\) denotes the universal cover of the function space [3]. Notice that

$$\begin{aligned} \mathrm{Der} ( \Lambda W, \Lambda V\otimes \Lambda W)=\mathrm{Der}_{\Lambda V} ( \Lambda V\otimes \Lambda W), \end{aligned}$$

where \(\mathrm{Der}_{\Lambda V} ( \Lambda V\otimes \Lambda W)\) is the sub DGL of \(\mathrm{Der} ( \Lambda V\otimes \Lambda W)\) sending the elements of \(\Lambda V\) to zero and it is a DGL model of \(\mathrm{Baut}_1f\) when Y and \(F_f\) are finite [4, Theorem 1], [8]. Thus, we note

Theorem 1.6

If the homotopy fiber \(F_f\) is finite for a \(\pi _{{\mathbb {Q}}}\)-separable map f, the fiber of \(\chi _f\) has the rational homotopy type of \(\mathrm{Baut}_1f\).

A space X is said to be elliptic if the dimensions of the rational cohomology algebra and homotopy group are both finite [7]. An elliptic space X is said to be pure if \(dM(X)^\mathrm{even}=0\) and \(dM(X)^\mathrm{odd}\subset M(X)^{'rm even}\). A pure space is said to be an \(F_0\)-space (or positively elliptic) if \(\dim \pi _\mathrm{even}(X)\otimes {\mathbb {Q}}=\dim \pi _\mathrm{odd}(X)\otimes {\mathbb {Q}}\) and \(H^\mathrm{odd}(X;{\mathbb {Q}})=0\). Then it is equivalent to \( H^*(X;{\mathbb {Q}})\cong {\mathbb {Q}}[x_1,\ldots ,x_n]/(f_1,\ldots ,f_n),\) in which \(|x_i|\), the degree of \(x_i\), is even and \(f_1,\ldots ,f_n\) forms a regular sequence in the \({\mathbb {Q}}\)-polynomial algebra \( {\mathbb {Q}}[x_1,\ldots ,x_n]\), where \(M(X)=( {\mathbb {Q}}[x_1,\ldots ,x_n]\otimes \Lambda (y_1, \ldots ,y_n),d)\) with \(dx_i=0\) and \(dy_i=f_i\). In 1976, S. Halperin [12] conjectured that the Serre spectral sequences of all fibrations \(X\rightarrow E\rightarrow B\) of simply connected CW complexes collapse at the \(E_2\)-terms for any \(F_0\)-space X [7]. For compact connected Lie groups G and H where H is a subgroup of G, when \(\mathrm{rank}\ G=\mathrm{rank}\ H\), the homogeneous space G/H satisfies the Halperin conjecture [21]. Also the Halperin conjecture is true when \(n\le 3\) [16]. Finally, we note some relations with the Halperin conjecture [7, §39] due to Meier [18] as

Theorem 1.7

Let Y be an \(F_0\)-space. Then the fibration \(\chi _f\) is fibre-trivial for any \(\pi _{{\mathbb {Q}}}\)-separable map \(f:X\rightarrow Y\) if and only if Y satisfies the Halperin’s conjecture.

In §4, we observe the cellular obstruction for the lifting \({\tilde{h}}\) for a map \(h:B\rightarrow (\mathrm{Baut}_1Y)_0\) for a simply connected CW complex B of finite type:

for a \(\pi _{{\mathbb {Q}}}\)-separable map \(f:X\rightarrow Y\). Of course, it is sufficient to define as \( \tilde{h}=s\circ h\) if \(a_f\) admits a section s. Specifically, for a \(\pi _{{\mathbb {Q}}}\)-separable map \(f:X\rightarrow Y\), let

be a commutative diagram. Then, from Proposition 1.6, we define an obstruction class by derivations in Theorem 4.1 so that

Theorem 1.8

Let \(f:X\rightarrow Y\) be a \(\pi _{{\mathbb {Q}}}\)-separable map with Y and \(F_f\) finite. There is a lift h such that

is commutative if and only if \({\mathcal O}_{\alpha }(h_X, h_Y)=0\) in \(\pi _{N-1}(\mathrm{Baut}_1f)_{{\mathbb {Q}}}\).

In §5, we consider an application to lifting actions. Let G be a topological group and acts on a CW complex Y. Recall the problem of lifting (up to homotopy) of Gottlieb [11]:

Problem 1.9

When is a fibration \(F_f\rightarrow X\overset{f}{\rightarrow } Y\) fibre homotopy equivalent to a G-fibration? i.e., when is there a fibration \(f':X'\rightarrow Y\) such that \(f'\) is fibre homotopy equivalent to f and there is a G-action on \(X'\) such that \(f'\) is equivariant?

Suppose that G is a compact connected Lie group. Since \(H^*(BG;{\mathbb {Q}})\) is evenly graded, the obstruction classes of Theorem 1.8 are contained in \(\pi _\mathrm{odd}(\mathrm{Baut}_1f)_{{\mathbb {Q}}}\) when \(B=BG\). If \(\pi _\mathrm{odd}(\mathrm{Baut}_1f)_{{\mathbb {Q}}}=0\), they vanish and there exists a lift \(h:BG\rightarrow (\mathrm{Baut}_1X)_0\). Then from Theorem 2.6 in the case that \(B=B'=BG\) and \(g=(id_{BG})_0\), we obtain using Theorem 5.1 of D. H. Gottlieb.

Theorem 1.10

Let \(f:X\rightarrow Y\) be a \(\pi _{{\mathbb {Q}}}\)-separable map with Y and \(F_f\) finite. Suppose that a compact Lie group G acts on Y. If \(\pi _\mathrm{odd}(\mathrm{Baut}_1f)_{{\mathbb {Q}}}=0\), the action on Y is rationally lifted to X, i.e., f is rationally fibre homotopy equivalent to a G-equivariant map \(f':X'\rightarrow Y\) for a G-space \(X'\).

Due to Theorem 1.7 and the result of Shiga and Tezuka [21], we have

Corollary 1.11

Let \(f:X\rightarrow Y\) be a \(\pi _{{\mathbb {Q}}}\)-separable map such that Y is a homogeneous space G/H with \({\mathrm{rank}}\ G={\mathrm{rank}}\ H\). Then any group action on Y is rationally lifted to X. In particular, the natural G-action on Y is rationally lifted to X.

Furthermore, we apply the obstruction argument to a rational homotopical invariant: let \( r_0(X)\) be the rational toral rank of a simply connected complex X of \(\dim H^*(X;{\mathbb {Q}})<\infty \), i.e., the largest integer r such that an r-torus \(T^r=S^1 \times \dots \times S^1\)(r-factors) can act continuously on a CW-complex \(X'\) in the rational homotopy type of X with all its isotropy subgroups finite (almost free action) [1, 9, 13]. It is very difficult to calculate \(r_0(\ \ )\) in general. From the definition, we have the inequality \(r_0(X\times Y)\ge r_0(X)+r_0(Y)\). Notice that it may sometimes be a strict inequality since there is an example that \(r_0(X\times S^{12})>0\) even though \(r_0(X)=r_0(S^{12})=0\) [15, Example 3.3]. For a map \(f:X\rightarrow Y\), we see \(r_0(Y)\le r_0(X)\) when \(X= F\times Y\) for any space F and f is the projection \(F\times Y\rightarrow Y\). In general, when does a map \(f:X\rightarrow Y\) induce \(r_0(Y)\le r_0(X)\) ?

Corollary 1.12

Let \(f:X\rightarrow Y\) be a \(\pi _{{\mathbb {Q}}}\)-separable map with Y and \(F_f\) finite. If \(\pi _\mathrm{odd}(\mathrm{Baut}_1f)_{{\mathbb {Q}}}=0\), we have \(r_0(Y)\le r_0(X)\).

2 Sullivan models and derivations

Let \(M(X)=(\Lambda {V},d)\) be the Sullivan minimal model of simply connected CW complex X of finite type [24]. It is a free \({\mathbb {Q}}\)-commutative differential graded algebra (DGA) with a \({\mathbb {Q}}\)-graded vector space \(V=\bigoplus _{i\ge 1}V^i\) where \(\dim V^i<\infty \) and a decomposable differential, i.e., \(d(V^i) \subset (\Lambda ^+{V} \cdot \Lambda ^+{V})^{i+1}\) and \(d \circ d=0\). Here \(\Lambda ^+{V}\) is the ideal of \(\Lambda {V}\) generated by elements of positive degree. The degree of a homogeneous element x of a graded algebra is denoted as |x|. Then \(xy=(-1)^{|{x}||{y}|}yx\) and \(d(xy)=d(x)y+(-1)^{|{x}|}xd(y)\). Note that M(X) determines the rational homotopy type of X, namely the spatial realization is given as \(||M(X)||\simeq X_0\). In particular,

$$\begin{aligned} V^n\cong \mathrm{Hom}(\pi _n(X),{\mathbb {Q}}) \text{ and } H^*(\Lambda {V},d)\cong H^*(X;{\mathbb {Q}}). \end{aligned}$$

Here the second is an isomorphism as graded algebras. Refer to [7] for detail.

Let \(\mathrm{Der}_i M(X)\) be the set of \({\mathbb {Q}}\)-derivations of M(X) decreasing the degree by i with \(\sigma (xy)=\sigma (x)y+(-1)^{i\cdot |x|}x\sigma (y)\) for \(x,y\in M(X)\). The boundary operator \(\partial : \mathrm{Der}_i M(X)\rightarrow \mathrm{Der}_{i-1} M(X)\) is defined by

$$\begin{aligned} \partial (\sigma )=d\circ \sigma -(-1)^i\sigma \circ d \end{aligned}$$

for \(\sigma \in \mathrm{Der}_iM(X)\). We denote \(\oplus _{i>0} \mathrm{Der}_iM(X)\) by \(\mathrm{Der}M(X)\) in which \(\mathrm{Der}_1M(X)\) is \(\partial \)-cycles. Then \(\mathrm{Der}M(X)\) is a (non-free) DGL by the Lie bracket

$$\begin{aligned} {[}\sigma ,\tau ]{:=}\sigma \circ \tau -(-1)^{|\sigma ||\tau |} \tau \circ \sigma . \end{aligned}$$

Note that \(H_*(\mathrm{Der}M)=H_*(\mathrm{Der} N)\) when free DGAs M and N are quasi-isomorphic [20]. Furthermore, recall the definition of Tanré [25, p. 25]: let \((L,\partial )\) be a DGL of finite type with positive degree. Then \(C^*(L,\partial )=(\Lambda s^{-1}\sharp L, D=d_1+d_2) \) with

$$\begin{aligned} \langle d_1s^{-1}z; sx\rangle =-\langle z;\partial x\rangle \text{ and } \langle d_2s^{-1}z; sx_1,sx_2\rangle =(-1)^{|x_1|}\langle z;[x_1,x_2]\rangle , \end{aligned}$$

where \(\langle s^{-1}z;sx\rangle =(-1)^{|z|}\langle z;x\rangle \) and \(\sharp L\) is the dual space of L.

Theorem 2.1

[24, §11],[10, 25] For a Sullivan model M(X) of X, \(\mathrm{Der} M(X) \) is a DGL-model of \(\mathrm{Baut}_1X\). In particular, there is an isomorphism of graded Lie algebras \(H_*(\mathrm{Der} M(X))\cong \pi _*(\Omega \mathrm{Baut}_1X)_{{\mathbb {Q}}}\) where the right hand has the Samelson bracket. Furthermore, \(C^*(\mathrm{Der} M(X) )\) is a DGA-model of \(\mathrm{Baut}_1X\).

Two fibrations \(\xi _{f_1}\) and \(\xi _{f_2}\) are fibre homotopy equivalent if there is a diagram:

where \(\psi \circ i_2\simeq i_1\circ \overline{\psi }\) and \(f_1\circ \psi =f_2\). Then its Sullivan model is given as

where the left square is DGA-commutative and the right square is DGA-homotopy commutative.

Lemma 2.2

Suppose that two maps \(f_1\) and \(f_2\) strictly induce \(a_{f_1}\) and \(a_{f_2}\), respectively. If \(\xi _{f_1}\) and \(\xi _{f_2}\) are fibre homotopy equivalent, there is a DGL-isomorphism \(\phi :\mathrm{Der} (\Lambda V\otimes \Lambda W,D_1)\cong \mathrm{Der} (\Lambda V\otimes \Lambda W,D_2)\) such that \(\phi (\sigma )=\psi \circ \sigma \circ \psi ^{-1}\) and \( b_{f_2}\circ \phi =b_{f_1}\). Thus, there is a homotopy equivalence map \(\phi : (\mathrm{Baut}_1X_1)_0\overset{\sim }{\rightarrow } (\mathrm{Baut}_1X_2)_0\) such that \(a_{f_2}\circ \phi =a_{f_1}\), i.e., \( a_{f_1}\) and \(a_{f_2}\) are fibre homotopy equivalent as fibrations.

Proof

Recall the DGA-diagram of §1. Then \(D_2=\psi \circ D_1\circ \psi ^{-1}\). Therefore, there is a DGL-isomorphism \(\phi \) given by \(\phi (\sigma )=\psi \circ \sigma \circ \psi ^{-1}\) and

is DGL-commutative since \(\psi |_{\Lambda V} =id_{\Lambda V}\). In particular, we can check \(\partial _2\circ \phi =\phi \circ \partial _1\) by

$$\begin{aligned} \partial _2 \phi (\sigma )= & {} D_2\psi \sigma \psi ^{-1}-(-1)^i(\psi \sigma \psi ^{-1})D_2=\psi D_1\sigma \psi ^{-1}-(-1)^i\psi \sigma D_1\psi ^{-1} \\= & {} \phi (D_1\sigma -(-1)^i\sigma D_1)=\phi \partial _1(\sigma ) \end{aligned}$$

for \(\sigma \in \mathrm{Der}_i (\Lambda V\otimes \Lambda W,D_1)\). Similarly, we have \(\phi ([\sigma ,\tau ])=[\phi (\sigma ),\phi (\tau )]\). \(\square \)

Convention. For a DGA-model \((\Lambda V,d)\) the symbol (vf) means the elementary derivation that takes a generator v of V to an element f of \(\Lambda V\) and the other generators to 0. Note that \(|(v,f)|=|v|-|f|\).

Proof of Proposition 1.4

Let \(M(Y)=(\Lambda V,d)\rightarrow (\Lambda V\otimes \Lambda W,D)\) be the model of f. Note that \(b_f(\sigma )\) is a derivation on \(\Lambda V\) for \(\sigma \in \mathrm{Der} (\Lambda V\otimes \Lambda W)\) since

$$\begin{aligned} b_f(\sigma )(a\cdot b)= & {} (\mathrm{proj}_V\circ \sigma \circ i)(a\cdot b) =\mathrm{proj}_V( \sigma (a)\cdot b+(-1)^{|\sigma ||a|}a\cdot \sigma (b)) \\= & {} (\mathrm{proj}_V\circ \sigma \circ i )(a)\cdot b+(-1)^{|\sigma ||a|}a\cdot (\mathrm{proj}_V\circ \sigma \circ i )(b) =b_f(\sigma )(a)\cdot b+(-1)^{|\sigma ||a|}a\cdot b_f(\sigma )(b) \end{aligned}$$

for \(a,b\in \Lambda V\). Thus, \(b_f\) is well defined.

(if) When \(\min W\ge \max V\), there is a decomposition of vector spaces

$$\begin{aligned} \mathrm{Der} (\Lambda V\otimes \Lambda W)=\mathrm{Der} (\Lambda V)\oplus \mathrm{Der} ( \Lambda W, \Lambda V\otimes \Lambda W) \end{aligned}$$

from degree arguments. Then there is a DGL-map \(b_f:\mathrm{Der} (\Lambda V\otimes \Lambda W,D)\rightarrow \mathrm{Der}(\Lambda V,d) \) by \(b_f(\sigma _1)=\sigma _1\) and \(b_f (\sigma _2 )=0\) for \(\sigma =\sigma _1+\sigma _2\) with \(\sigma _1\in \mathrm{Der} (\Lambda V)\) and \(\sigma _2\in \mathrm{Der} ( \Lambda W, \Lambda V\otimes \Lambda W)\). Then \(b_f\) is a Lie algebra map since

$$\begin{aligned} b_f([\sigma ,\tau ])= & {} b_f([\sigma _1+\sigma _2 ,\tau _1+\tau _2 ])=b_f([\sigma _1 ,\tau _1 ]) \\= & {} \mathrm{proj}_V\circ \sigma _1\circ \tau _1\circ i+(-1)^{|\sigma _1||\tau _1|} \mathrm{proj}_V\circ \tau _1 \circ \sigma _1\circ i \\= & {} (\mathrm{proj}_V\circ \sigma _1\circ i)\circ (\mathrm{proj}_V \circ \tau _1\circ i)+(-1)^{|\sigma _1||\tau _1|} (\mathrm{proj}_V\circ \tau _1\circ i)\circ (\mathrm{proj}_V\circ \sigma _1\circ i) \\= & {} [b_f(\sigma _1 ),b_f(\tau _1 )] =[b_f(\sigma ),b_f(\tau )] \end{aligned}$$

for \(\sigma ,\tau \in \mathrm{Der} (\Lambda V\otimes \Lambda W)\). Furthermore, it preserves the differential since

$$\begin{aligned} (b_f\circ \partial _X)(\sigma )= & {} b_f(\partial _X(\sigma _1+\sigma _2) )=b_f(\partial _X(\sigma _1) )=b_f(\partial _Y(\sigma _1) +\tau ) \\= & {} b_f(\partial _Y(\sigma _1))=\partial _Y(\sigma _1)=\partial _Y(b_f(\sigma _1 ))=\partial _Y(b_f(\sigma _1 +\sigma _2))=( \partial _Y\circ b_f)(\sigma ) \end{aligned}$$

for \(\sigma \in \mathrm{Der} (\Lambda V\otimes \Lambda W)\) with some \(\tau \in \mathrm{Der} ( \Lambda W, \Lambda V\otimes \Lambda W)\).

(only if) Suppose that \(\min W< \max V\). There are elements \(w\in W\) and \(v\in V\) with \(|w|<|v|\). Then \(b_f\) is not a DGL-map since \(b_f([(w,1),(v,w)])=b_f(v,1)\ne 0\) but \([b_f(w,1),b_f(v,w)]=[0,0]=0\) from the definition of \(b_f\). \(\square \)

Example 2.3

Consider the case that f is not \(\pi _{{\mathbb {Q}}}\)-separable (not \({\mathbb {Q}}\)-w.t.). Let \(f:S^7\rightarrow S^4\) be the Hopf map. Then the model is given by

$$\begin{aligned} M(S^4)=(\Lambda (x,y),d)\rightarrow (\Lambda (x,y,z),D)\simeq M(S^7) \end{aligned}$$

with \(|x|=4\), \(|y|=7\), \(|z|=3\), \(dx=Dx=0\), \(Dy=dy=x^2\), \(Dz=x\), \(Dy=x^2\). Then the bases of derivations are given as

n

\(\mathrm{Der}_n (\Lambda (x,y,z),D)\)

7

(y, 1)

4

(x, 1) (yz)

3

(yx) (z, 1)

1

(xz)

n

\(\mathrm{Der}_n (\Lambda (x,y),d)\)

7

(y, 1)

4

(x, 1)

3

(yx)

1

 

, where \(H_*(\mathrm{Der} (\Lambda (x,y))={\mathbb {Q}}\{ (y,1)\}\). By degree reason, any DGL-map

$$\begin{aligned} \psi :(\mathrm{Der} (\Lambda (x,y,z),D)\rightarrow (\mathrm{Der} (\Lambda (x,y),d) \end{aligned}$$

is given by \(\psi (y,1)=a_1(y,1)\), \(\psi (x,1)=a_2(x,1)\), \(\psi (y,z)=a_3(x,1)\), \(\psi (y,x)=a_4(y,x)\), \(\psi (z,1)=a_5(y,x)\) and \(\psi _f (x,z)=0\) for some \(a_i\in {\mathbb {Q}}\).

From \((x,1)=[(z,1),(x,z)]\) and \((y,z)=[(x,z),(y,x)]\) we have \(a_2=0\) and \(a_3=0\), respectively. Then from \(2(y,1)=[(z,1),(y,z)]+[(x,1),(y,x)]\), we obtain \(a_1=0\). Thus, \(||\psi ||\) is homotopic to the constant map.

Let \(f:X\rightarrow Y\) be a map with a section s, i.e., there is a map \(s:Y\rightarrow X\) with \(f\circ s\sim id_Y\). Then there is a map \(\psi _f :\mathrm{aut}_1X\rightarrow \mathrm{aut}_1Y\) with \(\psi _f(g){:=}f\circ g\circ s\) for \(g\in \mathrm{aut}_1X\). In general, this does not preserve the monoid structures.

Theorem 2.4

If a \(\pi _{{\mathbb {Q}}}\)-separable map f admits a section, there is a commutative diagram:

Proof

The map \(\pi _n(\psi _f):\pi _n(\mathrm{aut}_1X)\rightarrow \pi _n(\mathrm{aut}_1Y)\) is given by \(\pi _n(\psi _f)([\sigma ])=[\tau ]{:=}[f\circ \sigma \circ (s\times 1_{S^n})]\) in the following homotopy commutative diagram:

from adjointness. That is the pointed homotopy classes of maps \(S^n\rightarrow \mathrm{aut}_1X=\mathrm{map}(X,X;id_X)\) are in bijection with the homotopy classes of those maps \(X\times S^n\rightarrow X\) that composed with the inclusion \(i_X:X\rightarrow X\times S^n\) yield the identity [20, p. 43–44]. Let \(M(Y)=(\Lambda V,d)\overset{i}{ \rightarrow } (\Lambda V\otimes \Lambda W,D)\simeq M(X)\) be the model of f. We identify the rationalized map \(\sigma _0:(X\times S^n)_0\rightarrow X_0\) to an element of \(\mathrm{Der}_n(\Lambda V\otimes \Lambda W)\) [24, p. 313] (cf. [20, Proposition 11]). Then there is a chain map

$$\begin{aligned} c_f:\mathrm{Der} (\Lambda V\otimes \Lambda W,D)\rightarrow \mathrm{Der}(\Lambda V,d) \end{aligned}$$

given by \(c_f (\sigma _0 )=\mathrm{proj}_V\circ \sigma _0 \circ i\). It is well defined, i.e., \(\partial _Y\circ c_f=c_f\circ \partial _X\), from \(DW\subset \Lambda V\otimes \Lambda ^+W\) [26] since it admits a section. (However, \(c_f\) is not a DGL-map in general.) Notice that

$$\begin{aligned} \pi _n(\psi _f)_{{\mathbb {Q}}}([\sigma _0 ])\equiv H_n(c_f)([\sigma _0 ]). \end{aligned}$$

If f is a \(\pi _{{\mathbb {Q}}}\)-separable map, \(c_f\) is the DGL-map \(b_f\). \(\square \)

The following is obvious from the definition of \(b_f\) and useful:

Claim 2.5

For any \(\pi _{{\mathbb {Q}}}\)-separable map \(f:X\rightarrow Y\), we have \(b_f(C)=0\) and \(b_f\mid _{\mathrm{Der}(\Lambda V)}=id_{\mathrm{Der}(\Lambda V)}\) for \(\mathrm{Der} (\Lambda V\otimes \Lambda W)=C\oplus \mathrm{Der}(\Lambda V)\).

Theorem 2.6

For a \(\pi _{{\mathbb {Q}}}\)-separable map \(f:X\rightarrow Y\), let

be a commutative diagram. Then there exists a map between total spaces \(k :E\rightarrow E'\) in the diagram:

where \(k\circ i\simeq i'\circ f_0\) and \(g\circ p=p'\circ k\). Here \(p:E\rightarrow B_0\) and \(p':E'\rightarrow B'_0\) are induced by the rationalized classifying maps h and \(h'\), respectively.

Proof

Let \(X\rightarrow E_{\infty }^X\overset{p_{\infty }^X}{\rightarrow } \mathrm{Baut}_1X\) and \(Y\rightarrow E_{\infty }^Y\overset{p_{\infty }^Y}{\rightarrow } \mathrm{Baut}_1Y\) be the universal fibrations of X and Y, respectively. Let \(C^*(\mathrm{Der} (\Lambda V))\otimes \Lambda V,D_Y\) be the DGA-model of \(E_{\infty }^Y\) and \(C^*(\mathrm{Der} (\Lambda V\otimes \Lambda W)) \otimes \Lambda V\otimes \Lambda W,D_X\) be the DGA-model of \(E_{\infty }^X\). For a \(\pi _{{\mathbb {Q}}}\)-separable map \(f:X\rightarrow Y\), there exists a DGA-inclusion map \(\psi \) such that

is commutative from the universality. Indeed, \(C^*(\mathrm{Der} (\Lambda V))\otimes \Lambda V,D_Y\) is a sub-DGA of \(C^*(\mathrm{Der} (\Lambda V\otimes \Lambda W)) \otimes \Lambda V\otimes \Lambda W,D_X\) from Claim 2.5 and \(\max V\le \min W\). Thus, there is a map \(\tilde{a}_f{:=}|\psi |: (E_{\infty }^X)_0 \rightarrow (E_{\infty }^Y)_0\) such that \((p_{\infty }^Y)_0\circ \tilde{a}_f=a_f\circ (p_{\infty }^X)_0\). Since \(p'\) is the pull-back of \((p_{\infty }^Y)_0\) by \(h'\), there exists a map \(k:E\rightarrow E'\) such that

is commutative from the universality since \(h'\circ g\circ p=a_f\circ h\circ p=a_f\circ (p_{\infty }^X)_0\circ \tilde{h}=(p_{\infty }^Y)_0\circ \tilde{a}_f\circ \tilde{h}\). \(\square \)

Example 2.7

Let \(X=K({\mathbb {Q}},n)\times K({\mathbb {Q}}, 2n)\) and \(Y=K({\mathbb {Q}}, n)\) for some even integer n. Then \(M(X)=\Lambda (x,y),0\) and \(M(Y)=\Lambda (z),0\) with \(|x|=|z|=n\) and \(|y|=2n\). Let a map \(f:X\rightarrow Y\) be given by \(M(f):\Lambda (z)\rightarrow \Lambda (x,y)\) with \(M(f)(z)=x\). The homotopy fibration of any \(\pi _{{\mathbb {Q}}}\)-separable map is given by \(\Lambda (z),0\rightarrow \Lambda (z,y),0\cong \Lambda (x,y),0\) from the degree reason. Therefore, the DGL-map \(\psi :\mathrm{Der} \Lambda (x,y)\rightarrow \mathrm{Der} \Lambda (z)\) such that \(\psi ((y,x))=\psi ((x,1))=(z,1)\) is not DGL-homotopic to \(b_f\) from Claim 2.5.

Let \(h:S^{n+1}_0\rightarrow (\mathrm{Baut}_1X)_0\) and \(h':S^{n+1}_0\rightarrow (\mathrm{Baut}_1Y)_0\) be given by \(L(h): {\mathbb {L}}(u)\rightarrow \mathrm{Der} (\Lambda (x,y))\) with \(|u|=n\), \(L(h)(u)=(y,x)\) and \(L(h'): {\mathbb {L}}(u)\rightarrow \mathrm{Der} (\Lambda (z))\) with \(L(h')(u)=(z,1)\), respectively. Then the commutative diagram

does not induce a map between total spaces \(f':E\rightarrow E'\) such that

is homotopy commutative. Indeed, there does not exist a DGA-map \(h:\Lambda (v,z),D'\rightarrow \Lambda (v,x,y),D\) with \(D'z=v\), \(Dy=vx\) and \(Dx=0\) such that

where \(|v|=n+1\) is homotopy commutative since h cannot be a DGA-map from \(Dh(z)=0\) but \(hD'(z)=v\).

3 When does \(a_f\) admit a section?

Let \(f:X\rightarrow Y\) be a \(\pi _{{\mathbb {Q}}}\)-separable map with homotopy fiber \(F_f\) and \( \mathrm{Der} ( \Lambda W, \Lambda V\otimes \Lambda W)\) the sub-DGL of \(\mathrm{Der} (\Lambda V\otimes \Lambda W)\) restricted to derivations out of \(\Lambda W\).

Proposition 3.1

Let \(F_{a_f}\) be the homotopy fiber of \(a_f\). Then the DGL-model of the fibration \(\chi _f :F_{a_f}\overset{j}{\rightarrow } (\mathrm{Baut}_1X)_0\overset{a_f}{\rightarrow } (\mathrm{Baut}_1Y)_0\) is given by

$$\begin{aligned} \mathrm{Der} ( \Lambda W, \Lambda V\otimes \Lambda W)\overset{\mathrm{incl.}}{\rightarrow } \mathrm{Der} (\Lambda V\otimes \Lambda W)\overset{b_f}{\rightarrow }\mathrm{Der} (\Lambda V). \end{aligned}$$

Proof

Since \(b_f\) is surjective and \( \mathrm{Der} ( \Lambda W, \Lambda V\otimes \Lambda W)\) is \(\mathrm{Ker}\ b_f\), it follows from [25, VI .1.(3) Proposition]. \(\square \)

Let \(L(F)=\oplus _{i>0}L(F)_i\) be the degree decomposition of a DGL-model of a space F.

Theorem 3.2

\(L(F_{a_f})_n\cong \oplus _{i-j=n}\mathrm{Der}_i ( \Lambda W)\otimes H^j(\Lambda V)\).

Proof

A chain-map \(\rho :\mathrm{Der}_i ( \Lambda W)\otimes H^j(\Lambda V)\rightarrow \mathrm{Der}_i (\Lambda W, \Lambda W\otimes (\Lambda V)^j) \) is given by \(\rho (\sigma \otimes [f])(w){:=}(-1)^{|w|j}\sigma (w)\cdot f\) induced by an inclusion \(H^j(\Lambda V)\rightarrow (\Lambda V)^j\). It is quasi-isomorphic, i.e., there is a decomposition \(\mathrm{Der} (\Lambda W, \Lambda W\otimes \Lambda V)=(\mathrm{Der} ( \Lambda W)\otimes H^*(\Lambda V))\oplus C\) for a complex C of derivations with \({H}_*(C)=0\). \(\square \)

The rational homotopy exact sequence of the strictly induced fibration \(\chi _f\):

$$\begin{aligned}&\ \ \ \ \ \cdots \overset{j_{\sharp }}{\rightarrow } \pi _{n+2}(\mathrm{Baut}_1X)_{{\mathbb {Q}}}\overset{{a_f}_{\sharp }}{\rightarrow }\pi _{n+2}(\mathrm{Baut}_1Y)_{{\mathbb {Q}}} \overset{\delta _f}{\rightarrow } \\&\pi _{n+1}(F_{a_f})_{{\mathbb {Q}}}\overset{j_{\sharp }}{\rightarrow } \pi _{n+1}(\mathrm{Baut}_1X)_{{\mathbb {Q}}}\overset{{a_f}_{\sharp }}{\rightarrow }\pi _{n+1}(\mathrm{Baut}_1Y)_{{\mathbb {Q}}} \overset{\delta _f}{\rightarrow } \cdots \end{aligned}$$

is equivalent to the homology exact sequence:

$$\begin{aligned}&\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \cdots \rightarrow H_{n+1}(\mathrm{Der} (\Lambda V\otimes \Lambda W))\overset{{b_f}_*}{\rightarrow }H_{n+1}(\mathrm{Der} (\Lambda V)) \overset{\delta _f}{\rightarrow } \\&H_n(\mathrm{Der} ( \Lambda W, \Lambda V\otimes \Lambda W))\rightarrow H_n(\mathrm{Der} (\Lambda V\otimes \Lambda W))\overset{{b_f}_*}{\rightarrow }H_n(\mathrm{Der} (\Lambda V)) \overset{\delta _f}{\rightarrow } \cdots \end{aligned}$$

Then we have the following from an ordinary chain complex property:

Claim 3.3

The connecting map \(\delta _f\) is given by \(\delta _f ([\sigma ])=[\tau ]\) when \(\partial _X (\sigma )=\tau \) for a \(\partial _Y\)-cycle \(\sigma \) of \(\mathrm{Der} (\Lambda V)\) and a \(\partial _X\)-cycle \(\tau \) of \(\mathrm{Der} (\Lambda W, \Lambda V\otimes \Lambda W)\).

Recall that the following implications hold for a general fibration \(\chi : F\rightarrow E\overset{p}{\rightarrow } B\) of simply connected spaces:

$$\begin{aligned} \chi \text{ is } \text{ fibre-trivial } \Rightarrow \ p \text{ admits } \text{ a } \text{ section } \Rightarrow \ \chi \text{ is } \text{ weakly } \text{ trivial } \Leftrightarrow \ \delta =0 .\ \ \ \ \ (*) \end{aligned}$$

Here \(\delta :\pi _*(B)\rightarrow \pi _{*-1}(F)\) is the connecting map of the homotopy exact sequence for \(\chi \). The following may be a characteristic phenomenon in our fibration \(\chi _f\).

Proposition 3.4

\(a_f\) admits a section if and only if \(\delta _f =0\).

Proof

(if) Let the DGA-model of the fibration \(\chi _f:F_{a_f}\overset{j}{\rightarrow } (\mathrm{Baut}_1X)_0\overset{a_f}{\rightarrow } (\mathrm{Baut}_1Y)_0 \) be given as the commutative diagram:

where \(M(\mathrm{Baut}_1Y)\cong (\Lambda U,d)\) with \(U^{n+1}= H_n(\mathrm{Der} (\Lambda V))\) and \(M(F_{a_f})\cong ( \Lambda Z,\overline{D}_2)\) with \(Z^{n+1}= H_n(\mathrm{Der} ( \Lambda W, \Lambda V\otimes \Lambda W))\). Here

$$\begin{aligned} ({\Lambda U,d})\rightarrow (\Lambda U\otimes \Lambda Z,D_2)\rightarrow (\Lambda Z,\overline{D}_2) \end{aligned}$$

is the model of \(\chi _f\). From the assumption \(\chi _f\) is weakly equivalent, i.e., \(M(\mathrm{Baut}_1X)\cong (\Lambda U\otimes \Lambda Z,D_2)\) as a minimal model. Let \(D=d_1+d_2\) as in §2. Notice that a linear component of any bracket representation of \(\sigma \in \mathrm{Der}( \Lambda W, \Lambda V\otimes \Lambda W)\) is not contained in \( [\mathrm{Der} (\Lambda V),\mathrm{Der} (\Lambda V)]\), where \([\ ,\ ]\) is the Lie bracket. That means

$$\begin{aligned} d_2(s^{-1}\sigma ^*)\in I( C^*(\mathrm{Der}( \Lambda W, \Lambda V\otimes \Lambda W))) \ \ \ \ \ \ \ \ \ (**). \end{aligned}$$

Here I(S) is the ideal in \(C^*(\mathrm{Der}(\Lambda V\otimes \Lambda W))\) generated by a basis of a vector space S. Let \(\sigma \) be a non-exact \(\partial _X\)-cycle of \(\mathrm{Der}( \Lambda W, \Lambda V\otimes \Lambda W)\). Then

$$\begin{aligned} H^*( C^*(\mathrm{Der}( \Lambda W, \Lambda V\otimes \Lambda W)),d_1')/H^*\cdot H^*\cong Z\ni [s^{-1}\sigma ^* ] \end{aligned}$$

for \(D'=d_1'+d_2'\) as in §2. Since \( \rho _1(D_1([s^{-1}\sigma ^* ]))\) and \(d_2(s^{-1}\sigma ^*)\) are D-cohomologous in \(C^*(\mathrm{Der}(\Lambda V\otimes \Lambda W))\), we can put

$$\begin{aligned} D_1([s^{-1}\sigma ^* ])\in I(Z) \end{aligned}$$

from \((**)\), i.e., \(D_1(Z)\subset C^*(\mathrm{Der}\Lambda V)\otimes \Lambda ^+ Z\). By \(\rho _2\), \(D_2(Z)\subset \Lambda U\otimes \Lambda ^+ Z\). Then we have done from [26].

(only if) It holds from the above implications \((*)\). \(\square \)

Theorem 3.5

If a \(\pi _{{\mathbb {Q}}}\)-separable map \(f:X\rightarrow Y\) is rationally fibre-trivial (i.e., \(X_0\sim (F_f)_0\times Y_0\)), \(a_f\) admits a section.

Proof

From the assumption and Claim 3.3, we have \(\delta _f=0\). Then it holds from Proposition 3.4. \(\square \)

Refer [19, page 292] for related topics. Conversely, when Y is an odd-sphere,

Theorem 3.6

If a \(\pi _{{\mathbb {Q}}}\)-separable map \(f:X\rightarrow Y=S^{2n+1}\) is not rationally fibre-trivial, \(a_f\) does not admit a section. Furthermore, \({a_f}\sim *\)(the constant map).

Proof

Let \(M(S^{2n+1})=(\Lambda v,0)\). Since there exists an element \(w\in W\) such that \(Dw\in \Lambda v\otimes \Lambda ^+W\) from the assumption, \(\partial _X(v,1)=\pm (w,\partial Dw/\partial v)+\cdots \ne 0\) in \(\mathrm{Der} (\Lambda W)\). From Claim 3.3\(\delta _f\) is injective since \(\delta _f([(v,1)])=[\pm (w,\partial Dw/\partial v)+\cdots ]\ne 0\). Then the former holds from Proposition 3.4. Furthermore, from the homotopy exact sequence, we have \({a_f}_{\sharp }=0\). Thus, the latter holds. \(\square \)

Example 3.7

  1. (1)

    Let \(S^5\times S^7\rightarrow X\rightarrow Y=S^3\) be a non-(fibre-)trivial \(\pi _{{\mathbb {Q}}}\)-separable fibration given by the model

    $$\begin{aligned} (\Lambda (v_1),0)\rightarrow (\Lambda (v_1, w_1,w_2),D) \rightarrow (\Lambda (w_1,w_2),0) \end{aligned}$$

    with \(|v_1|=3\), \(|w_1|=5\), \(|w_2|=7\), \(Dw_1=0\) and \(Dw_2=v_1w_1\). Then \(a_f\) does not admit a section from Theorem 3.6. Indeed \(\delta _f:H_{3}(\mathrm{Der} (\Lambda v')) \overset{}{\rightarrow } H_2(\mathrm{Der}(\Lambda (w_1,w_2), \Lambda (v_1,w_1,w_2)))\) is non-trivial from \(\delta _f ([(v_1,1)])=[(w_2,w_1)]\ne 0\).

  2. (2)

    Let \(S^5\times S^7\rightarrow X'\rightarrow Y'\) be a non-(fibre-)trivial \(\pi _{{\mathbb {Q}}}\)-separable fibration given by the model

    $$\begin{aligned} (\Lambda (v_1,v_2,v_3),d_{Y'})\rightarrow (\Lambda (v_1,v_2,v_3, w_1,w_2),D') \rightarrow (\Lambda (w_1,w_2),0) \end{aligned}$$

    with \(|v_1|=|v_2|=3\), \(|v_3|=5\), \(|w_1|=7\), \(|w_2|=9\), \(d_{Y'}(v_1)=d_{Y'}(v_2)=0\), \(d_{Y'}(v_3)=v_1v_2\), \(D'w_1=0\) and \(D'w_2=v_1w_1\). Then \(a_f\) admits a section from Proposition 3.4 since \(\delta _f ([(v_3,1)])= 0\) for \(H_*(\mathrm{Der}(\Lambda (v_1,v_2,v_3)))={\mathbb {Q}}\{ [(v_3,1)]\}\). However, \(\chi _f\) is not trivial from \([(v_3,1),(w_2,v_2v_3)]=(w_2,v_2)\). Indeed, then

    $$\begin{aligned} {\mathcal {D}}(s^{-1}(w_2,v_2)^*)=d_2(s^{-1}(w_2,v_2)^*)=s^{-1}(v_3,1)^*\cdot s^{-1}(w_2,v_2v_3)^* \end{aligned}$$

    for \((C^*(\mathrm{Der}(\Lambda (v_1,v_2,v_3, w_1,w_2)),{\mathcal D})\) with \({\mathcal {D}}=d_1+d_2\). Refer the proof of Proposition 3.4.

Proof of Theorem 1.7

Let \(M(Y)=(\Lambda V,d)=( {\mathbb {Q}}[x_1,\ldots ,x_n]\otimes \Lambda (y_1, \ldots ,y_n),d)\) with \(dx_i=0\) and \(dy_i=f_i\) for \(i=1,..,n\).

(if) Let \(M(Y)=(\Lambda V,d)\rightarrow (\Lambda V\otimes \Lambda W,D)\) be the model of f. From the regularity of \(f_1,\ldots ,f_n\), \(Im D\subset {\mathbb {Q}}[x_1,\ldots ,x_n]\otimes \Lambda W\). Thus,

$$\begin{aligned} \partial _X(x_i,h_i)=\sum _{j=1}^n(y_j,(\partial f_j/\partial x_i)\cdot h_i)+\theta \ \ \text{ and } \ \ \partial _X(y_i,h_i)=0\ \ \ \ (i=1,\ldots ,n) \end{aligned}$$

for any \(h_i\in \Lambda V^\mathrm{even}={\mathbb {Q}}[x_1,\ldots ,x_n]\) with suitable degree and some \(\theta \in \mathrm{Der} ( \Lambda W, \Lambda V\otimes \Lambda W)\). Then we have \(\delta _f=0\) from Claim 3.3 since \(H_\mathrm{even}(\mathrm{Der}M(Y))=0\) [18] from the assumption. Then \(a_f\) admits a section from Proposition 3.4. Furthermore, from Theorem 3.2, we can suppose that the Lie bracket decomposition of an element of \( \mathrm{Der} ( \Lambda W, \Lambda V\otimes \Lambda W)\) does not have an element of \(\mathrm{Der} (\Lambda V)\) as a factor since \(\mathrm{Der} H^*(Y;{\mathbb {Q}})=0\) [18] again. Thus, we have

$$\begin{aligned} D_2=d\otimes 1\pm 1\otimes \overline{D}_2 \end{aligned}$$

for the Sullivan minimal model \((\Lambda U,d)\rightarrow (\Lambda U\otimes \Lambda Z,D_2)\rightarrow (\Lambda Z,\overline{D}_2)\) of \(\chi _f\) (in the proof of Proposition 3.4).

(only if) Suppose that Y does not satisfies the Halperin conjecture, i.e., there is a non-zero element \([\sum _{i}(x_i,h_i)+\sum _{j}(y_j,g_j) ]\in H_{2m}(\mathrm{Der}M(Y))\) for \(h_i\in {\mathbb {Q}}[x_1,\ldots ,x_n]\), \(g_j\in \Lambda V\) and some m [18]. Let \((S^a\times S^b\simeq _0 ) F\rightarrow X\overset{f}{\rightarrow } Y\) be a fibration of the model:

$$\begin{aligned} (\Lambda V,d)\rightarrow (\Lambda V\otimes \Lambda (w_1,w_2,w_3),D)\rightarrow (\Lambda (w_1,w_2,w_3),d_F), \end{aligned}$$

where \(|w_1|=a\) is even and \(|w_2|=b\) is odd with \(b-a=|x_k|-1\) for some k, \(d_Fw_1=d_Fw_2=0\), \(d_Fw_3=w_1^2\), \(Dw_1=0\) and \(Dw_2=x_kw_1\). When \(h_k\) is not \(d_Y\)-exact, the element \(h_kw_1\) is not D-exact. Then

$$\begin{aligned} \delta _f\left( \left[ \sum _{i}(x_i,h_i)+\sum _{j}(y_j,g_j) \right] \right) =[(w_2,h_kw_1)]\ne 0 \end{aligned}$$

for \(\delta _f:H_{2m}(\mathrm{Der} \Lambda V)\rightarrow H_{2m-1}(\mathrm{Der} (\Lambda (w_1,w_2,w_3), \Lambda V\otimes \Lambda (w_1,w_2,w_3))\) from Claim 3.3. In particular, \(\chi _f\) is not fibre-trivial. \(\square \)

Example 3.8

Let Y be the homogeneous space \(SU(6)/SU(3)\times SU(3)\). Then Y is a pure space but not an \(F_0\)-space since \({\mathrm{rank}}\ SU(6)=5>4={\mathrm{rank}}\ (SU(3)\times SU(3))\). Let \(\xi :(S^{11}\times S^{23}\simeq _0 ) F\rightarrow X\overset{f}{\rightarrow } Y\) be a fibration whose relative model is given as

$$\begin{aligned} (\Lambda (x_1,x_2,y_1,y_2,y_3),d_Y)\rightarrow (\Lambda (x_1,x_2,y_1,y_2,y_3)\otimes \Lambda (w_1,w_2),D)\rightarrow (\Lambda (w_1,w_2),0), \end{aligned}$$

where \(|x_1|=4\), \(|x_2|=6\), \(|y_1|=7\), \(|y_2|=9\), \(|y_3|=11\), \(|w_1|=11\), \(|w_2|=23\), \(d_Yy_1=x_1^2\), \(d_Yy_2=x_1x_2\), \(d_Yy_3=x_2^2\), \(Dw_1=0\) and \(Dw_2=(x_1y_2-x_2y_1)w_1\). Then \(\partial _X((y_1,1))=(w_2,x_2w_1)\), i.e., \(\delta _f [(y_1,1)]=[(w_2,x_2w_1)]\ne 0\) from Claim 3.3. In particular, \(\chi _f\) is not trivial. Refer [19, Example 1.14(2)] for the Sullivan minimal model of \(\mathrm{Baut}_1Y\).

4 The obstruction class for a lifting

Let \(L(B)=(L(B),\partial _B)\) be the Quillen model of a simply connected CW complex B of finite type. Then \(L(B\cup _{\alpha } e^N)\) is given by \(L(B)\coprod {\mathbb {L}}(u),\partial _{\alpha }\) where \(|u|=N-1\), \(\partial _{\alpha }\mid _{L (B)}=\partial _B\) and \(\partial _{\alpha }(u)\in L(B)\) [25, Proposition III.3.(6)].

Theorem 4.1

For a \(\pi _{{\mathbb {Q}}}\)-separable map \(f:X\rightarrow Y\), let

be a commutative diagram. Then there is a lift h such that

is commutative if and only if

$$\begin{aligned} {\mathcal O}_{\alpha }(h_X, h_Y){:=}[\tau (h_Y(u))-h''_X(\partial _{\alpha }(u)) ]=0 \end{aligned}$$

in \(H_{N-2}(\mathrm{Der} ( \Lambda W, \Lambda V\otimes \Lambda W))=\pi _{N-1}(F_{a_f})_{{\mathbb {Q}}}\) for the DGL-commutative diagram

with

  • \(\partial _X\mid _{ \mathrm{Der} (\Lambda V, \Lambda V\otimes \Lambda W)}=\partial _Y+\tau \) and \(\partial _X \mid _{ \mathrm{Der} (\Lambda W, \Lambda V\otimes \Lambda W)}=\tau \) for some \(\tau : \mathrm{Der}_*(\Lambda V\otimes \Lambda W)\rightarrow \mathrm{Der}_{*-1} (\Lambda W, \Lambda V\otimes \Lambda W)\) and

  • \(h_X=h_X'+h_X''\) where \(h_X'(b)\in \mathrm{Der} (\Lambda V)\) and \(h_X''(b)\in \mathrm{Der} (\Lambda W, \Lambda V\otimes \Lambda W)\) for \(b\in L(B)\).

Proof

Since \(b_f\circ h_X= h_Y\circ i\) and \(h_Y\) is a DGL-map,

$$\begin{aligned} h'_X\partial _{\alpha }(u)= h_Y\partial _{\alpha }(u)= \partial _{Y}h_Y(u) \end{aligned}$$
(1)

in \(\mathrm{Der} ( \Lambda V)\). Notice that the obstruction element \(\partial _X (h_Y(u))-h_X(\partial _{\alpha }(u))\) is a \(\partial _X\)-cycle in \(\mathrm{Der} ( \Lambda V\otimes \Lambda W)\). Therefore, \(\tau (h_Y(u))-h''_X(\partial _{\alpha }(u))\) is a \(\partial _X\)-cycle in \(\mathrm{Der} ( \Lambda W, \Lambda V\otimes \Lambda W)\) from (1).

(if) Suppose that \({\mathcal O}_{\alpha }(h_X, h_Y)=0\). Then there is an element \(q\in \mathrm{Der} ( \Lambda W, \Lambda V\otimes \Lambda W)\) such that

$$\begin{aligned} \partial _X(q)= \tau (h_Y(u))-h''_X(\partial _{\alpha }(u)). \end{aligned}$$
(2)

Let

$$\begin{aligned} h\mid _{L(B)} {:=}h_X \ \text{ and } \ \ h(u){:=}h_Y(u)-q. \end{aligned}$$

Then h is a DGL-map since

$$\begin{aligned} \partial _{X}(h(u))= & {} \partial _X(h_Y(u))-\partial _X(q) \\= & {} (h'_X\partial _{\alpha }(u)+\tau h_Y(u))- (\tau h_Y(u)-h''_X\partial _{\alpha }(u)) \\= & {} h'_X\partial _{\alpha }(u)+h''_X\partial _{\alpha }(u) =h_X(\partial _{\alpha }(u))=h(\partial _{\alpha }(u)) \end{aligned}$$

from (1) and (2). Furthermore,

is commutative since \(b_f(q)=0\). Thus, the (if)-part holds from the special realization of \((*)\).

(only if) Suppose that there exists a map h such that \((*)\) is commutative. Since h is a DGL-map,

$$\begin{aligned} \partial _X(h(u)) =h(\partial _{\alpha }(u)) \end{aligned}$$
(3)

in \(\mathrm{Der} ( \Lambda V\otimes \Lambda W)\) and

$$\begin{aligned} h_X''\partial _{\alpha }(u)= \tau h (u) \end{aligned}$$
(4)

from (1) and (3). Furthermore,

$$\begin{aligned} \tau h (u) \sim \tau h_Y(u) \end{aligned}$$
(5)

in \(\mathrm{Der} ( \Lambda W, \Lambda V\otimes \Lambda W)\). Here \(\sim \) means “homologous”. Indeed, (5) follows since

$$\begin{aligned} h(u)=h_Y(u)+x \end{aligned}$$

for some element \(x\in \mathrm{Der} ( \Lambda W, \Lambda V\otimes \Lambda W)\) from \(b_f\circ h= h_Y\) and then since

$$\begin{aligned} \tau h(u)=\tau (h_Y(u)+x)=\tau h_Y(u)+\partial _X( x). \end{aligned}$$

Thus, we obtain that \({\mathcal O}_{\alpha }(h_X, h_Y)=[\tau (h_Y(u))-h''_X(\partial _{\alpha }(u)) ]=0\) from (4) and (5). \(\square \)

From Theorem 3.2, we have

Corollary 4.2

If \(\pi _{\ge N-1}(\mathrm{Baut}_1F_f)_{{\mathbb {Q}}}=0\) for the homotopy fiber \(F_f\) of f, there exists a lift h for the pair \((h_X,h_Y)\) of above.

Example 4.3

Let \(B=S^2={\mathbb {C}}P^1\). Let \(S^3\times S^5\rightarrow X\overset{f}{\rightarrow } Y=S^3\) be the fibration given by the model

$$\begin{aligned} (\Lambda (v),0)\rightarrow (\Lambda (v,w_1,w_2),D)\rightarrow (\Lambda (w_1,w_2),0) \end{aligned}$$

with \(|v|=|w_1|=3\), \(|w_2|=5\), \(Dw_1=0\) and \(Dw_2=vw_1\). Let \(L({\mathbb {C}}P^2)=L (B\cup _{\alpha } e^4)=({\mathbb {L}}(u_1,u_2),\partial )\) with \(|u_1|=1\), \(|u_2|=3\), \(\partial u_1=0\) and \(\partial u_2=[u_1,u_1]\) [25]. Let

be a commutative diagram given by the DGL-model

by \(h_X(u_1)=h_Y(u_1)=0\) and \(h_Y(u_2)=(v,1)\). Then \({\mathcal O}_{\alpha }(h_X, h_Y)\ne 0\) in \(H_2(\mathrm{Der} (\Lambda (w_1,w_2), \Lambda (v,w_1,w_2))\) since

$$\begin{aligned} \tau h_Y(u_2)=\partial _X(v,1)=(w_2,w_1)\not \sim 0=h_X''([u_1,u_1])=h_X''(\partial _{\alpha }(u_2)). \end{aligned}$$

Thus \(h_Y:{\mathbb {C}}P^2\rightarrow (\mathrm{Baut}_1Y)_0\) cannot lift to \(h:{\mathbb {C}}P^2\rightarrow (\mathrm{Baut}_1X)_0\). Note that \(h_Y\) is extended to \({\mathbb {C}}P^{\infty }\rightarrow (\mathrm{Baut}_1Y)_0\). Since \(BS^1={\mathbb {C}}P^{\infty }\), we obtain that any free \(S^1\)-action on Y cannot lift to X.

5 An application to lifting actions

Let BG and EG be the classifying space and the universal space of a compact connected Lie group G of \({\mathrm{rank}}\ G=r\), respectively. If G acts on a space Y by \(\mu :G\times Y\rightarrow Y\), there is the Borel fibration

$$\begin{aligned} Y \overset{i}{\rightarrow } EG \times _{G}^{\mu } Y \rightarrow BG, \end{aligned}$$

where the Borel space \( EG \times _{G}^{\mu } Y \) (or simply \( EG \times _{G} Y \)) is the orbit space of the diagonal action \(g(e,y)=(eg^{-1},gy)\) on the product \( EG \times Y \). It is rationally given by the KS extension (model)

$$\begin{aligned} ({\mathbb {Q}}[t_1,\dots ,t_r],0) \rightarrow ({\mathbb {Q}}[t_1,\dots ,t_r] \otimes \Lambda {V},D_{\mu }) \rightarrow (\Lambda {V},d)=M(Y)\ \ \ \ (*), \end{aligned}$$

where \(|{t_i}|\) are even for \(i=1,\dots ,r\), \(D_{\mu }(t_i)=0\) and \(D_{\mu }(v) \equiv d(v)\) modulo the ideal \((t_1,\dots ,t_r)\) for \(v\in V\).

Recall the lifting theorem of D. H. Gottlieb:

Theorem 5.1

[11, Theorem 1] Let a topological group G acts on a space Y. A fibration \(X\overset{f}{\rightarrow } Y\) is fibre homotopy equivalent to a G-fibration if and only if it is fibre homotopy equivalent to the pull-back of a fibration over \(EG\times _GY\) induced by the inclusion \(i: Y\rightarrow EG\times _GY\).

Proof of Theorem 1.10

Let \(h_Y: BG\rightarrow (\mathrm{Baut}_1Y)_0\) be the rationalization of the classifying map of the Borel fibration \(Y\overset{i}{\rightarrow } EG \times _{G}^{\mu } Y \rightarrow BG\) of the action \(\mu : G\times Y\rightarrow Y\). Let \(B^n\) be the n-skeleton of a CW complex B. From Theorem 1.8, there is a lift \(h_X^{\alpha }\) such that

is commutative for all n and attaching \(\alpha \) since \({\mathcal O}_{\alpha }(h_X^n, h_Y^{\alpha })=0\). Indeed, \(\pi _\mathrm{odd}(\mathrm{Baut}_1f)_{{\mathbb {Q}}}=0\) and L(BG) is oddly graded since \(H^*(BG;{\mathbb {Q}})\) is evenly graded. Thus, we have the commutative diagram:

From Theorem 2.6, there is a commutative diagram:

for some space E. Let \(g':E'\rightarrow EG\times _GY\) be the pull-back of g by the rationalization \(l_0\) and \(f':X'\rightarrow Y\) be the pull-back of \(g'\) by i

Notice that the model is given by the DGA-commutative diagram:

for \(R{:=}H^*(BG;{\mathbb {Q}})={\mathbb {Q}}[t_1,\ldots ,t_r]\). Notice that the third square is given by the push-out [7, Proposition 15.8]. Thus, from Theorem 5.1, we obtain the commutative diagram

since \(M(X')\cong \Lambda V\otimes \Lambda W=M(X)\). \(\square \)

If the r-torus \(T^r\) acts on a space Y, \(|t_1|=\cdots =|t_r|=2\) in \((*)\).

Proposition 5.2

[13, Proposition 4.2] Suppose that Y is a simply connected CW-complex with \(\dim H^*(Y;{\mathbb {Q}})<\infty \). Put \(M(Y)=(\Lambda V,d)\). Then \(r_0(Y) \ge r\) if and only if there is a KS extension \((*)\) satisfying \(\dim H^*({\mathbb {Q}}[t_1,\dots ,t_r] \otimes \wedge {V},D)<\infty \). Moreover, if \(r_0(Y) \ge r\), then \(T^r\) acts freely on a finite complex \(Y'\) that has the same rational homotopy type as Y and \(M(ET^r\times _{T^r}Y')\cong ({\mathbb {Q}}[t_1,\dots ,t_r] \otimes \wedge {V},D)\).

Proof of Corollary 1.12

Let \(r_0(Y)=r\). Notice that \(L(BT^r)\) is oddly generated since \(H^*(BT^r;{\mathbb {Q}})={\mathbb {Q}}[t_1,\ldots ,t_r]\). Since \(\pi _\mathrm{odd}(\mathrm{Baut}_1f)_{{\mathbb {Q}}}=0\), there exists a lift \((BT^r)_0\rightarrow (\mathrm{Baut}_1X)_0\) from Theorem 1.8. Then we have the homotopy commutative diagram:

from Theorem 2.6. Here \(\bullet \) is the one point space. We have \(\dim H^*(\tilde{E};{\mathbb {Q}})<\infty \) since \(\dim H^*(F_g;{\mathbb {Q}})<\infty \) and \(\dim H^*(E;{\mathbb {Q}})=\dim H^*(ET^r\times _{T^r}Y;{\mathbb {Q}})<\infty \) for the fibration \(F_g\rightarrow \tilde{E}\rightarrow E\). Thus there is a free \(T^r\)-action on \(X'\) with \(X'_0\simeq X_0\) and \(\tilde{E}\simeq (ET^r\times _{T^r}X')_0\) from Proposition 5.2. Thus, we have \(r_0(X)\ge r\). \(\square \)

Example 5.3

Let \(S^5\rightarrow X\overset{f}{\rightarrow } Y\) be a rationally non-trivial fibration given by the model

$$\begin{aligned} (\Lambda V,d_Y)=(\Lambda (v_1,v_2,v_3,v_4,v_5),d_Y)\rightarrow (\Lambda (v_1,v_2,v_3,v_4,v_5,w),D) \end{aligned}$$

with \(|v_1|=|v_2|=2\), \(|v_3|=|v_4|=|v_5|=|w|=5\), \(d_Y(v_1)=d_Y(v_2)=0\), \(d_Y(v_3)=v_1^3\), \(d_Y(v_4)=v_1^2v_2\), \(d_Y(v_5)=v_2^3\) and \(D(w)=v_1v_2^2\). Then

$$\begin{aligned} \pi _\mathrm{odd} (\mathrm{Baut}_1f)_{{\mathbb {Q}}}\cong H_\mathrm{even}(\mathrm{Der}_{\Lambda V}(\Lambda V\otimes \Lambda (w)))=0 \end{aligned}$$

since there is no element of odd-degree \(<5\) in \(\Lambda V\). Therefore, \(r_0(Y)\le r_0(X)\). Indeed, we can directly check that \(r_0(Y)=1\) and \(r_0(X)=2\).

On the other hand, let \(S^5\rightarrow X\overset{f}{\rightarrow } Y=S^3\times S^3\) be a rationally non-trivial fibration. Then the model is given by

$$\begin{aligned} (\Lambda (v_1,v_2),0)\rightarrow (\Lambda (v_1,v_2,w),D) \end{aligned}$$

with \(|v_1|=|v_2|=3\), \(|w|=5\), and \(D(w)=v_1v_2\). Then

$$\begin{aligned} \pi _{3} (\mathrm{Baut}_1f)_{{\mathbb {Q}}}\cong H_{2}(\mathrm{Der}_{\Lambda V}(\Lambda V\otimes \Lambda (w)))={\mathbb {Q}}\{ (w,v_1)\} \oplus {\mathbb {Q}}\{ (w,v_2)\} \ne 0 \end{aligned}$$

and \(r_0(Y)=2>1= r_0(X)\).