Arabian Journal of Mathematics

, Volume 6, Issue 2, pp 109–122 | Cite as

Positive solutions and persistence of mass for a nonautonomous equation with fractional diffusion

Open Access


In this paper, we study the partial differential equation
$$\begin{aligned} \begin{aligned} \partial _tu&= k(t)\Delta _\alpha u - h(t)\varphi (u),\\ u(0)&= u_0. \end{aligned} \end{aligned}$$
Here \(\Delta _\alpha =-(-\Delta )^{\alpha /2}\), \(0<\alpha <2\), is the fractional Laplacian, \(k,h:[0,\infty )\rightarrow [0,\infty )\) are continuous functions and \(\varphi :\mathbb {R}\rightarrow [0,\infty )\) is a convex differentiable function. If \(0\le u_0\in C_b(\mathbb {R}^d)\cap L^1(\mathbb {R}^d)\) we prove that (1) has a non-negative classical global solution. Imposing some restrictions on the parameters we prove that the mass \(M(t)=\int _{\mathbb {R}^d}u(t,x)\mathrm{d}x\), \(t>0\), of the system u does not vanish in finite time, moreover we see that \(\lim _{t\rightarrow \infty }M(t)>0\), under the restriction \(\int _0^\infty h(s)\mathrm{d}s<\infty \). A comparison result is also obtained for non-negative solutions, and as an application we get a better condition when \(\varphi \) is a power function.

Mathematics Subject Classification

35K55 35K45 35B40 35K20 


  1. 1.
    Amour, L.; Ben-Artzi, M.: Global existence and decay for viscous Hamilton–Jacobi equations. Nonlinear Anal. 31, 621–628 (1998)CrossRefMATHGoogle Scholar
  2. 2.
    Andrade-González, A.; Villa-Morales, J.: Existence of mild solutions for a system of partial differential equations with time-dependent generators. Con. Ana. App. Math. 2, l61–l77 (2014)MATHGoogle Scholar
  3. 3.
    Andrade-González, A.; Villa-Morales, J.: Critical dimension for a system of partial differential equations with time-dependent generators. Math. Methods Appl. Sci. 38, 2517–2526 (2015)CrossRefMATHGoogle Scholar
  4. 4.
    Clavin, P.: Instabilities and nonlinear patterns of overdriving detonations in gases. In: Berestycki, H., Pomeau, Y. (eds.) Nonlinear PDE’s in Condensed Matter and Reactive Flows, pp. 49–97. Kluwer, New York (2002)CrossRefGoogle Scholar
  5. 5.
    Droniou, J.; Imbert, C.: Fractal first order partial differential equations. Arch. Ration. Mech. Anal. l82, 299–331 (2006)CrossRefMATHGoogle Scholar
  6. 6.
    Droniou, J.; Gallouët, T.; Vovelle, J.: Global solution and smoothing effect for a non-local regularization of an hyperbolic equation. J. Evol. Equ. 3, 499–521 (2003)CrossRefMATHGoogle Scholar
  7. 7.
    Ethier, S.N.; Kurtz, T.G.: Markov Processes: Characterization and Convergence. Wiley, New York (1986)CrossRefMATHGoogle Scholar
  8. 8.
    Fino, A.; Karch, G.: Decay of mass for nonlinear equation with fractional Laplacian. J. Monatsh. Math. l60, 375–384 (2010)CrossRefMATHGoogle Scholar
  9. 9.
    Folland, G.B.: Real Analysis. Wiley, New York (1999)MATHGoogle Scholar
  10. 10.
    Guedda, M.; Kirane, M.: A note on nonexistence of global solutions to a nonlinear integral equation. Bull. Belg. Math. Soc. Simon Stevin 6, 491–497 (1999)MATHGoogle Scholar
  11. 11.
    Jleli, M.; Samet, B.: The decay of mass for a nonlinear fractional reaction-diffusion equation. Math. Methods Appl. Sci. 38, 1369–1378 (2015)CrossRefMATHGoogle Scholar
  12. 12.
    Kakehi, T.; Oshita, Y.: Blowup and global existence of a solution to a semilinear reaction–diffusion system with fractional Laolacian. Math. J. Okayama Univ. 59, 175218 (2017)MATHGoogle Scholar
  13. 13.
    Mann Jr., J.A.; Woyczynski, W.A.: Growing fractal interfaces in the presence of self-similar hopping surface diffusion. Phys. A. 291, 154–183 (2001)MATHGoogle Scholar
  14. 14.
    Pérez, A.; Villa, J.: Blow-up for a system with time-dependent generators. Alea 7, 207–215 (2010)MATHGoogle Scholar
  15. 15.
    Pinsky, R.G.: Decay of mass for the equation \(u_t=\Delta u-a(x)u^p|\nabla u|^q\). J. Differ. Equ. l65, 1–23 (2000)CrossRefMATHGoogle Scholar
  16. 16.
    Rudin, W.: Principles of Mathematical Analysis, 3rd edn. McGraw-Hill, New York (1976)MATHGoogle Scholar
  17. 17.
    Shlesinger, M.F.; Zaslavsky, G.M.; Frish, U. (eds.): Lévy Flights and Related Topics in Physics, Lecture Notes in Physics, vol. 450. Springer, Berlin (1995)Google Scholar
  18. 18.
    Sugitani, S.: On nonexistence of global solutions for some nonlinear integral equations. Osaka J. Math. l2, 45–51 (1975)MATHGoogle Scholar
  19. 19.
    Woyczyński, W.A.: Lévy Process in the Physical Sciences. Lévy Processes. Birkhäuser, Boston (2001)MATHGoogle Scholar
  20. 20.
    Yeh, J.: Real Analysis: Theory of Measure and Integration. World Scientific, Singapore (2006)CrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2017

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Departamento de Matemáticas y Física AguascalientesUniversidad Autónoma de AguascalientesAguascalientesMexico

Personalised recommendations