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Abstract In this paper, we study the partial differential equation

∂t u = k(t)�αu − h(t)ϕ(u),

u(0) = u0.
(1)

Here �α = −(−�)α/2, 0 < α < 2, is the fractional Laplacian, k, h : [0, ∞) → [0, ∞) are continuous
functions and ϕ : R → [0,∞) is a convex differentiable function. If 0 ≤ u0 ∈ Cb(R

d) ∩ L1(Rd) we prove
that (1) has a non-negative classical global solution. Imposing some restrictions on the parameters we prove
that the mass M(t) = ∫

Rd u(t, x)dx , t > 0, of the system u does not vanish in finite time, moreover we
see that limt→∞ M(t) > 0, under the restriction

∫ ∞
0 h(s)ds < ∞. A comparison result is also obtained for

non-negative solutions, and as an application we get a better condition when ϕ is a power function.
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ملخصال

ندرس في هذه الورقة المعادلة التفاضلية الجزئية

2(∆−)−:∆حيث  , 0 < > ,اللابلاسيان الكسري، و2َ ℎ: [0,∞) → :φدالتان متصلتان، وَ(∞,0] ℝ → قابلةدالة محدبة (∞,0]
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∞
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1 Introduction and statement of results

In this paper, we study the asymptotic behavior of the solutions to the nonlinear partial differential equation

∂t u(t, x) = k(t)�αu(t, x) − h(t)ϕ (u(t, x)) , (t, x) ∈ (0,∞) × R
d ,

u(0, x) = u0(x), x ∈ R
d , (2)

where �α = −(−�)α/2, 0 < α < 2, is the α-Laplacian (or fractional Laplacian).
The study of partial differential equations (PDE) with fractional diffusion begins with the work of Sugitani

[18]. He studied the explosive behavior of the solutions to the equation

∂t u = �αu + ϕ(u),

u(0, x) = u0(x), x ∈ R
d . (3)

Since Sugitani’s work there have been many generalizations of (3). In fact, in some case, the reaction term
is multiplicative perturbed by a time-dependent function or furthermore if the parameter α is changed then
some systems of fractional PDE are considered, see for example [3,10,12,14] and the references therein.

On the other hand, the importance of modeling phenomena using fractional Laplacian is increasing. For
example, they arise in fields like mathematical finance, molecular biology, hydrodynamics, statistical physics
[17], also they arise in anomalous growth of certain fractal interfaces [13], overdriven detonations in gases [4]
or anomalous diffusion in semiconductors growth [19].

Therefore, our first concern is to demonstrate the existence of classical solutions of (2).

Theorem 1.1 Let us assume the following hypotheses:

(a) ϕ : R → [0, ∞) is a convex differentiable function, ϕ(0) = 0 and ϕ(x) > 0 if x �= 0.
(b) h : [0,∞) → [0,∞) is a continuous function with h(x) > 0 if x �= 0.
(c) k : [0,∞) → [0,∞) is a continuous function with k(x) > 0 if x �= 0.

(d) supt∈[0,T ]
∫ t
0

(∫ t
s k(r)dr

)−1/α
ds < ∞, ∀T > 0.

(e) u0 ∈ Cb(R
d) ∩ L1(Rd).

Under these conditions there exists a unique solution u ∈ C1,2
b

(
(0, T ∗) × R

d
)
of (2), for some T ∗ > 0.

Moreover, if u0 ≥ 0 then u ∈ C1,2
b

(
(0,∞) × R

d
)
and u ≥ 0.

The following example includes some of the results reported in the literature.

Example 1.2 Suppose that

k(t) = a1t
σ1 + b1e

γ1t , a1 ≥ 0, σ1 ≥ 0, γ1 ∈ R,

h(t) = a2t
σ2 + b2e

γ2t , a2 ≥ 0, σ2 ≥ 0, γ2 ∈ R,

ϕ(x) = a3|x |σ3eγ3x , a3 ≥ 0, σ3 > 1, γ3 ∈ R.

In this case we have

sup
t∈[0,T ]

∫ t

0

(∫ t

s
k(r)dr

)−1/α

ds ≤ sup
t∈[0,T ]

∫ t

0

(∫ t

s
(a1r

σ1 + b1e
γ1r )dr

)−1/α

ds

≤ sup
t∈[0,T ]

∫ t

0

(∫ t

s
a1r

σ1dr

)−1/α

ds

= cB

(
1

1 + σ1
, 1 − 1

α

)

sup
[0,T ]

t1−(1+σ1)/α,

where B is the beta function. If α ≥ σ1 + 1 then the Eq. (2) has a unique solution.
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Since the fractional Laplacian �α is an integral operator (see Sect. 2) most of the solutions of (2) are
interpreted in a weak sense (the solution is not necessarily differentiable). Thanks to an integral representation
of �α , given in [5], it is possible to extend the domain of �α . Using such extension it is proved in [5] that
certain Hamilton-Jacobi equation, perturbed by �α , has solutions in C2

b

(
(0,∞) × R

d
)
, when α ∈ (1, 2) and

in viscosity sense when α ∈ (0, 1]. In our context the regularity of the solutions is mainly attributed to the
above conditions (a) and (d). In particular, when h ≡ 1 and k ≡ 1 we obtain the same condition as in [5].

Using the corresponding Duhamel equation associated with (2) we prove the existence of local solutions
to (2), through the Banach contraction principle (see step one in the proof of Theorem 1.1). Then we show that
such local solution can be extended (this is a usual way to get a global solution, see [1]).

Otherwise, we are interested in the asymptotic behavior of solutions of (2) when the initial datum is non-
negative. Here the main ingredient in the proof of the positivity of the solutions is a reverse maximum principle
obtained in [5]. The difficulty in the application of such principle is that the extremes have to be global, non
local as in the classical case. To deal with this problem is proved first that for fixed times the solution vanish
at infinity (see (29)).

Theorem 1.3 Let us assume the hypotheses of Theorem 1.1. Let u be the solution of (2) with u0 ≥ 0 and
||u0||1 > 0. For each t ≥ 0 we set

M(t) =
∫

Rd
u(t, x)dx .

Then

M(t) ≥ ||u0||1 exp
{

−ϕ(||u0||u)
||u0||u

∫ t

0
h(s)ds

}

, ∀t ≥ 0. (4)

Moreover, the limit limt→∞ M(t) = M(∞) exists and M(∞) > 0 if
∫ ∞
0 h(s)ds < ∞.

We interpret M(t) as the total mass of the system u at time t ≥ 0. If
∫ ∞
0 h(s)ds < ∞, then h vanishes

at infinity (limt→∞ h(t) = 0). This means that the contribution of the reaction term in (2) is very small for
large time, in such a way that the solution u does not vanish, almost everywhere, at finite time. In fact, this is
because the solution is positive and the contribution of the negative term is small. Moreover the system persists
at infinity. As we will see the proof of Theorem 1.3 uses strongly the convexity of ϕ.

By K (t), t ≥ 0, we mean the integral
∫ t
0 k(s)ds. Imposing an additional condition on the multiplicative

noise of the fractional diffusion term of (2), we have the rate of convergence in L p norm of the system u(t),
as t → ∞:

Theorem 1.4 Assume the hypotheses of Theorem 1.3 are satisfied. If
∫ ∞
1 k(s)ds = ∞, then

lim
t→∞ K (t)

d
α

(
1− 1

p

)

||u(t) − M(∞)p(K (t))||p = 0,

for each p ≥ 1.

As we already mentioned most of the works in the literature deal with weak solutions of (2). For example,
[8] deals with the decay of mass of Eq. (2) in the case k ≡ 1, h ≡ 1 and ϕ(x) = xβ , β > 1. More generally,
in [11] is studied the decay of mass when k(t) = tσ , σ ≥ 0, h : [0,∞) → [0, ∞) is continuous and
ϕ(x) = xβ, β > 1. In both works the existence, in the mild sense, of the respective solutions is assumed. A
basic ingredient in their proof of mass decay is the positivity of the solutions, as we could not find a specific
reference for such result we include a proof in Theorem 1.1. The positivity property of the solutions of (2),
when the initial datum is non-negative, is closely related to the maximum principle, and such principle is
commonly applied for classical solutions (see for example [1] or [15]). This is one of the reasons we need
classical solutions of (2) instead of mild solutions to ensure the positivity of such solutions.

If u and v are the solutions of (2) with initial conditions u0 and v0, respectively, then v0 ≥ u0 implies
v ≥ u (see Theorem 3.1 below). As a consequence of this comparison result, and assuming that ϕ is a power
function, we can weaken the condition

∫ ∞
0 h(s)ds < ∞ in Theorem 1.3. The precise condition is given in:

Theorem 1.5 Let us assume the hypotheses of Theorem 1.1. Let u be the solution of (2) with u0 ≥ 0 and
||u||1 > 0. If ϕ(x) = |x |β , β > 1, and

∫ ∞

1
h(s)K (s)−

d
α (β−1)ds < ∞,

then there exists M(∞) ∈ (0,∞) such that limt→∞ M(t) = M(∞).
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The previous result is a generalization of Theorem 3.1 in [11], since the continuity of h : [0,∞) → [0,∞)

implies
∫ 1
0 h(s)ds < ∞, an hypothesis required in [11].

Notice that K increasing implies
∫ ∞

1
h(s)K (s)−

d
α (β−1)ds ≤ K (1)−

d
α (β−1)

∫ ∞

1
h(s)ds.

On the other hand, if we take h ≡ 1 and

k(t) = et , ∀t > 0,

then
∫ ∞
0 h(t)dt = ∞, and

∫ ∞

1
h(s)K (s)−

d
α (β−1)ds =

∫ ∞

1
(es − 1)−

d
α (β−1)ds < ∞.

This means that in the particular case ϕ(x) = |x |β , β > 1, we have a better condition for the convergence of
limt→∞ M(t) = M(∞).

The paper is organized as follows. In Sect. 2 we introduce the fractional Laplacian,�α , and the fundamental
solution p(t, x) of ∂t u = �αu, some of their properties are also stated. In Sect. 3 we give the proof of the
theorems.

2 Preliminary results

Some important estimates depend on the properties of the fundamental solution {p(t, x) : t > 0} of ∂t u = �αu,
which is the transition density of a symmetricα-stable process. Another analytical way of defining the functions
p(t, x) is through their Fourier transform

∫

Rd
ez·xi p(t, x)dx = e−t ||z||α , ∀t > 0, z ∈ R

d , (5)

where · and || · || are the inner product and Euclidean norm in R
d , respectively.

Moreover p(t, x) has the following helpful properties.

Proposition 2.1 Let p(t, x) be defined by (5).

(a) For each t > 0, ∫

Rd
p(t, x)dx = 1. (6)

(b) For each t, t̃ > 0,
p(t + t̃) = p(t) ∗ p(t̃). (7)

(c) For each μ ≥ 1 there exists a constant c = c(α, μ) > 0 such that

||p(t)||μ ≤ c t
− d

α

(
1− 1

μ

)

, ∀t > 0. (8)

(d) The function (0, ∞) � t 
→ p(t, ·) ∈ L1(R
d) is continuous.

(e) The function (t, x) 
→ p(t, x) is in C∞ (
(0,∞) × R

d
)
.

(f) For each t > 0 there exists a constant c = c(α) > 0 such that

||∂x p(t)||1 ≤ c t−1/α, (9)

and
||∂2x p(t)||1 ≤ c t−2/α. (10)

(g) For every f ∈ L1(Rd), we have

lim
t→∞ ||p(t) ∗ f − Mp(t)||1 = 0,

where M = ∫
Rd f (x)dx.
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Proof For the proof of (a), (b), (e) and (f) see [6]. The statement (d) is in [5], (c) and (g) are proved in [2,11],
respectively. ��

The stochastic process X induces a strongly continuous semigroup {Tt : t ≥ 0} whose infinitesimal
generator is the closed operator �α (see [7]).

In what follows we denote by Br the ball of Rd centered at the origin and of radius r > 0 and by S(Rd)
the Schwartz space on Rd .

An integral representation for�α , 0 < α < 2, is given in [5]: For all f ∈ S(Rd), all x ∈ R
d and all r > 0,

�α f (x) = −c
(∫

Br
f (x+z)− f (x)−∇ f (x)·z

||z||d+α dz + ∫
Rd\Br

f (x+z)− f (x)
||z||d+α d

)
, (11)

where c = c(α, d) > 0 is a constant.
The expression (11) for�α allows to define�α f ∈ Cb(R

d) for each f ∈ C2
b (R

d), moreover this extension
is continuous, see [5].

Proposition 2.2 Let �α , 0 < α < 2, be the α-Laplacian with domain C2
b (R

d).

(a) If f ∈ C2
b (R

d) and x̃ is a global minimum of f , then

�α f (x̃) ≤ 0. (12)

(b) If f ∈ C2
b (R

d), then
∂t (p(t) ∗ f (x)) = �α (p(t) ∗ f ) (x), ∀t > 0. (13)

Proof The statement (a) is a trivial consequence of Theorem 2 in [5]. The formula (13) is proved in [6] when
d = 1. When f ∈ S(Rd) the expression (11) implies (13), the general case is proved using a density argument
(as in the proof of Proposition 1 in [5]). ��

3 Proof of the results

In this section, we will give the proof of the main results stated in Sect. 1.
By B([0, T ] × R

d) we denote the space of all real-valued bounded measurable functions defined on
[0, T ] × R

d . It is a Banach space with the norm

|||u||| = sup
{
|u(t, x)| : (t, x) ∈ [0, T ] × R

d
}

.

The subspace of continuous bounded functionswill be denoted byCb([0, T ]×R
d). In particular, if u ∈ Cb(R

d)
we denote, the uniform norm, by ||u||u .

In what follows we denote by c a positive constant whose specific value is unimportant and it may change
from place to place. Given the continuous functions h, k : [0,∞) → [0, ∞), for each t ≥ 0 we set

H(t) =
∫ t

0
h(r)dr, K (t) =

∫ t

0
k(r)dr.

The Duhamel equation associated to (2) is

u(t, x) = p(K (t)) ∗ u0(x) −
∫ t

0
h(s)p(K (s, t)) ∗ ϕ(u(s))(x)ds, (14)

where

K (s, t) =
∫ t

s
k(r)dr, 0 < s < t.

Proof of Theorem 1.1 The proof will be given in several steps.
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Step one (existence of a local mild solution): Let us define the function F : B([0, T ]×R
d) → B([0, T ]×R

d),
as

(Fu)(t, x) = p(K (t)) ∗ u0(x) −
∫ t

0
h(s)p(K (s, t)) ∗ ϕ(u(s))(x)ds.

If u ∈ {
v ∈ B

([0, T ] × R
d
) : |||v||| ≤ R

}
, R > 0, then (6) implies

|(Fu)(t, x)| ≤
∫

Rd
p(K (t), y − x)||u0||udy +

∫ t

0
h(s)

∫

Rd
p(K (s, t), y − x)ϕ(|||u|||)dyds

≤ ||u0||u + ϕ(R)

∫ t

0
h(s)ds.

Therefore
|||Fu||| ≤ ||u0||u + ϕ(R)H(T ). (15)

On the other hand, if u, ũ ∈ {
v ∈ B

([0, T ] × R
d
) : |||v||| ≤ R

}
, then

|(Fu)(t, x) − (Fũ)(t, x)| ≤
∫ t

0
h(s)p(K (s, t)) ∗ |ϕ(u(s)) − ϕ(ũ(s))|(x)ds.

The convexity of ϕ implies (see Theorem 14.5 in [20])

ϕ(b) − ϕ(a)

b − a
≤ (Dlϕ)(b), if a < b,

where Dl is the left hand side derivative of ϕ. Using this and u(s, x), ũ(s, x) ≤ R, we get

|ϕ(u(s, x)) − ϕ(ũ(s, x))| ≤ (Dlϕ)(R)|u(s, x) − ũ(s, x)|.
Hence

|||Fu − Fũ||| ≤ (Dlϕ)(R)H(T )|||u − ũ|||. (16)

If we take R	 = ||u0||u + 1 and

T 	 < H−1
(

1

1 + ϕ(R	) + (Dlϕ)(R	)

)

, (17)

we see that (15) and (16) verify the hypotheses of the Banach contraction principle. Therefore there exists a
unique solution u ∈ B([0, T ] × R

d) of (14).

Step two (continuity of u): Now we will see that u0 ∈ Cb(R
d) implies u ∈ Cb((0, T 	] × R

d). The first thing
we are going to do is proving that u is continuous uniformly in x . To this end we use the integral representation
(14) of u. The continuity in t uniformly in x of the first term in the right hand side of equality (14) is an
immediate consequence of (d) in Proposition 2.1. Now let us study the function

(t, x) 
→
∫ t

0
h(s)p(K (s, t)) ∗ ϕ(u(s))(x)ds. (18)

Choose an arbitrary and fixed point t̃ ∈ [0, T 	]. Let η ∈ R be such that 0 ≤ t̃ + η ≤ T 	,
∣
∣
∣
∣
∣

∫ t̃+η

0
h(s)p(K (s, t̃ + η) ∗ ϕ(u(s))(x)ds −

∫ t̃

0
h(s)p(K (s, t̃)) ∗ ϕ(u(s))(x)ds

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣

∫ t̃+η

0
h(s)p(K (s, t̃ + η)) ∗ ϕ(u(s))(x)ds −

∫ t̃+η

0
h(s)p(K (s, t̃)) ∗ ϕ(u(s))(x)ds

∣
∣
∣
∣
∣

+
∣
∣
∣
∣
∣

∫ t̃+η

0
h(s)p(K (s, t̃)) ∗ ϕ(u(s))(x)ds −

∫ t̃

0
h(s)p(K (s, t̃)) ∗ ϕ(u(s))(x)ds

∣
∣
∣
∣
∣

≤ ϕ(|||u|||)
{∫ t̃+|η|

t̃−|η|
h(s)ds +

∫ T 	

0
h(s)||p(K (s, t̃ + η)) − p(K (s, t̃))||1ds

}

. (19)
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Using (d) of Proposition 2.1 we deduce

t 
→ p(t, ·) ∈ L1(Rd)

is uniformly continuous on [0, K (T 	)]. This implies the right hand side of (19) goes to 0, when η → 0. Hence
we have the continuity of u uniformly in x .

Fix an arbitrary point (t̃, x̃) ∈ (0, T 	] × R
d . The properties of the convolution operator implies

x 
→ p(K (t̃)) ∗ u0(x),

is a continuous function, and from the dominated convergence theorem we deduce that the function

x 
→
∫ t̃

0
h(s)p(K (s, t̃)) ∗ ϕ(u(s))(x)ds

is continuous. From (14) we get

|u(t, x) − u(t̃, x̃)|
≤ |p(K (t)) ∗ u0(x) − p(K (t̃)) ∗ u0(x)|

+
∣
∣
∣
∣
∣

∫ t

0
h(s)p(K (s, t)) ∗ ϕ(u(s))(x)ds −

∫ t̃

0
h(s)p(K (s, t̃)) ∗ ϕ(u(s))(x)ds

∣
∣
∣
∣
∣

+|p(K (t̃)) ∗ u0(x) − p(K (t̃)) ∗ u0(x̃)|

+
∣
∣
∣
∣
∣

∫ t̃

0
h(s)p(K (s, t̃)) ∗ ϕ(u(s))(x)ds −

∫ t̃

0
h(s)p(K (s, t̃)) ∗ ϕ(u(s))(x̃)ds

∣
∣
∣
∣
∣
.

The previous observation and the continuity of u in t uniformly in x implies that the right hand side of the
above inequality goes to 0, when (t, x) → (t̃, x̃).

Step three (spatial regularity of u): If u0 ∈ C2
b (R

d) we will see that u(t) ∈ C2
b (R

d), t > 0. If u were
differentiable we would have, by (14),

∂xu(t, x) = ∂x p(K (t)) ∗ u0(x) − ∂x

∫ t

0
h(s)p(K (s, t)) ∗ ϕ(u(s))(x)ds.

We are going to see that each term, in the above expression, is in fact differentiable. The differentiability of
p(K (t)) ∗ u0(·) follows from (e) of Proposition 2.1 and Lemma 2 in [5]. To prove the differentiability of the
second term we consider the function

x 
→
∫ t−δ

0
h(s)p(K (s, t)) ∗ ϕ(u(s))(x)ds,

where δ > 0. The convolution operator properties and (9) yields

|∂x (p(K (s, t)) ∗ ϕ(u(s))) (x)| ≤ ϕ(|||u|||)K (t − δ, t)−1/α.

Therefore, see Theorem 2.27 in [9],

∂x

∫ t−δ

0
h(s)p(K (s, t)) ∗ ϕ(u(s))(x)ds =

∫ t−δ

0
h(s)(∂x p(K (s, t))) ∗ ϕ(u(s))(x)ds. (20)

Using a classical result on uniform convergence (see Theorem 7.17 in [16]) we have the right hand side of
(20) converges uniformly on Rd to the function

x 
→
∫ t

0
h(s)(∂x (p(K (s, t)))) ∗ ϕ(u(s))(x)ds.

The property (9) of p implies that such function is well defined because our hypotheses implies
∫ t

0
h(s)K (s, t)−1/αds < ∞, t > 0.
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Inasmuch as

∂x

∫ t

0
h(s)p(K (s, t)) ∗ ϕ(u(s))(x)ds = lim

δ↓0 ∂x

∫ t−δ

0
h(s)p(K (s, t)) ∗ ϕ(u(s))(x)ds

= lim
δ↓0

∫ t−δ

0
h(s)(∂x p(K (s, t))) ∗ ϕ(u(s))(x)ds

=
∫ t

0
h(s)(∂x p(K (s, t))) ∗ ϕ(u(s))(x)ds.

In this way we get, for 0 < t ≤ T 	,

∂xu(t, x) = (∂x p(K (t))) ∗ u0(x) −
∫ t

0
h(s)(∂x p(K (s, t))) ∗ ϕ(u(s))(x)ds, (21)

with

|||∂xu(t)||| ≤ c||u0||uK (t)−1/α + cϕ(|||u|||)
∫ t

0
h(s)K (s, t)−1/αds.

To see that u(t) ∈ C2
b (R

d) we take a t̃ > 0. Using (14) and (7) we have, for t > t̃ ,

u(t, x) = p(K (t̃, t)) ∗ u(t̃)(x) −
∫ t

t̃
h(s)p(K (s, t)) ∗ ϕ(u(s))(x)ds. (22)

Proceeding as in the deduction of (21) we obtain

∂2x u(t, x) = (
∂x p(K (t̃, t))

) ∗ (
∂xu(t̃)

)
(x) −

∫ t

t̃
h(s)(∂x p(K (s, t))) ∗ ϕ′(u(s))∂xu(s)(x)ds. (23)

The second term on the right hand side is well defined because it is bounded by

c
∫ t

t̃
h(s)K (s, t)−1/αϕ′(|||u|||)

(

K (s)−1/α +
∫ s

0
h(r)K (r, s)−1/αdr

)

ds

≤ c

⎧
⎨

⎩
K (t̃)−1/α sup

t∈[0,T 	]

∫ t

0
h(s)K (s, t)−1/αds +

(

sup
t∈[0,T 	]

∫ t

0
h(s)K (s, t)−1/αds

)2
⎫
⎬

⎭

≤ c
(
1 + K (t̃)−1/α)2

(

1 + sup
t∈[0,T 	]

h(s) sup
t∈[0,T 	]

∫ t

0
K (s, t)−1/αds

)2

.

Due to t̃ > 0 is arbitrary we get u(t) ∈ C2
b (R

d), t > 0.
It is worth mentioning that using (10) we can see from (23) that the differentiability of ϕ can be replaced

by the hypothesis

sup
t∈[0,T 	]

∫ t

0
K (s, t)−2/αds < ∞, ∀t > 0.

Step four (temporal regularity of u): We just indicate the main steps, in Section 5.2.2 of [6] a detailed proof for
a similar case is given. The temporal differentiability of u follows from the temporal differentiability of each
term in the right hand side of the equality in (14). Using (13) the differentiability of the first term is given by

∂t p(K (t)) ∗ u0(x) = k(t)�α(p(K (t)) ∗ u0)(x).

To see the differentiability of the second term we proceed as in the spatial case. Applying the Leibniz rule,
for δ > 0, we obtain

∂t

∫ t−δ

0
h(s)p(K (s, t)) ∗ ϕ(u(s))(x)ds =

∫ t−δ

0
h(s)∂t (p(K (s, t)) ∗ ϕ(u(s))) (x)ds

+h(t − δ)p(K (t − δ, t)) ∗ ϕ(u(t − δ))(x). (24)
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Since �α is a closed operator (it is the infinitesimal generator of a C0 semigroup)

∫ t−δ

0
h(s)∂t (p(K (s, t)) ∗ ϕ(u(s)))(x)ds = �α

(

k(t)
∫ t−δ

0
h(s)p(K (s, t)) ∗ ϕ(u(s))ds

)

(x).

What we have done in the spatial regularity allow us to apply Proposition 1 in [5], therefore

∫ t−δ

0
h(s)∂t (p(K (s, t)) ∗ ϕ(u(s)))(x)ds

converges, as δ → 0, to

�α

(

k(t)
∫ t

0
h(s)p(K (s, t)) ∗ ϕ(u(s))ds

)

(x).

The convergence of the second term in the right hand side of (24) follows from the following estimation

|p(K (t − δ, t)) ∗ ϕ(u(t − δ))(x) − ϕ(u(t))(x)|
≤ ϕ′(|||u|||)||u(t − δ) − u(t)||u + |p(K (t − δ, t)) ∗ ϕ(u(t)) − ϕ(u(t))|(x). (25)

In fact, the first term, in above inequality, goes to 0, when δ → 0, because u is continuous in t > 0 uniformly
in x . On the other hand, since ϕ(u(t)) ∈ Cb(R

d) then the convolution operator properties implies that also the
second term in (25) goes to 0, when δ → 0 (in this case K (t − δ, t) → 0).

Therefore, using (14) and the linearity of �α we obtain

∂t u(t, x) = k(t)�α(p(K (t)) ∗ u0)(x)

− k(t)�α

(∫ t

0
h(s)p(K (s, t)) ∗ ϕ(u(s))ds

)

(x) − h(t)ϕ(u(t, x))

= k(t)�αu(t)(x) − h(t)ϕ(u(t, x)).

Step five (u is non-negative): Let us define the function g : [0, T 	] → R as

g(t) = inf
x∈Rd

u(t, x).

The function g is well defined because u(t) ∈ Cb(R
d), for each t ∈ [0, T 	]. The continuity of u in t uniformly

in x implies the continuity of g. Hence there exists a t̃ ∈ [0, T 	] such that

g(t̃) = inf
t∈[0,T 	] g(t).

The convexity of ϕ and ϕ(0) = 0 implies

ϕ(z) ≤ ϕ(R	) + ϕ(−R	)

R	
|z|, ∀z ∈ [−R	, R	]. (26)

Using (14) and (26) we obtain

||u(t)||1 ≤ ||u0||1 + c
∫ t

0
h(s)||u(s)||1ds, 0 ≤ t ≤ T 	.

Gronwall’s lemma allows to obtain

||u(t)||1 ≤ ||u0||1
(

1 + c H(T 	) exp

{

cT 	 max
t∈[0,T 	] h(t)

})

, 0 ≤ t ≤ T 	.

Hence (26) and the above inequality imply

||ϕ(u(t))||1 ≤ c||u(t)||1 ≤ c||u0||1, 0 ≤ t ≤ T 	. (27)
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Since p(K (t)) ∗ u0 integrable, lim sup||x ||→∞ p(K (t)) ∗ u0(x) = 0. Also (27) implies

lim sup
||x ||→∞

ϕ(u(t, y − x)) = lim sup
||x ||→∞

ϕ(u(t, x)) = 0, ∀(t, y) ∈ [0, T 	] × R
d . (28)

Moreover, for each x, y ∈ R
d , 0 ≤ s ≤ t̃ , we have

h(s)p(K (s, t̃), y)ϕ(u(s, y − x)) ≤ p(K (s, t̃), y)ϕ(|||u|||) max
s∈[0,T 	] h(s).

The integrability of p(K (s, t̃)) allows us to use the dominated convergence theorem, then (28) and (14) imply

lim||x ||→∞ |u(t̃, x)| = 0. (29)

Let us suppose that g(t̃) < 0 and t̃ > 0. By (29) there exists a M > 0 such that

|u(t̃, x)| <
|g(t̃)|
3

, ∀||x || > M. (30)

Since u(t̃) ∈ Cb(R
d) there exists a x̃ ∈ R

d , ||x̃ || ≤ M , such that

u(t̃, x̃) = inf||x ||≤M
u(t̃, x) = inf

x∈Rd
u(t̃, x) = g(t̃) = inf

(t,x)∈[0,T 	]×Rd
u(t, x),

where the second equality is due to (30). This implies ∂t u(t̃, x̃) = 0 and �αu(t̃, x̃) ≤ 0, where we used (12).
Then (2) implies (u(t̃, x̃) = g(t̃) < 0)

0 < h(t̃)ϕ(u(t̃, x̃)) = k(t̃)�αu(t̃, x̃) ≤ 0.

Therefore g(t̃) ≥ 0 or t̃ = 0. Such contradiction implies u(t, x) ≥ 0, for each (t, x) ∈ [0, T 	] × R
d .

Step six (global existence): The global existence will be proved using the common technique of extending
the local solution (see for example the proof of Theorem A in [1]). By u1 we denote the positive solution of
(2) obtained in step one (see also step five). Let us consider the Eq. (2) with initial condition u1(T 	). Since
u1(T 	) ≥ 0 we deduce from the a priori estimate (14) that ||u1(T 	)||u ≤ ||u0||u . Repeating the step one
we obtain a solution v2 ∈ B

([0, T 		] × R
d
)
of (14) with initial condition u1(T 	) and |||v2||| ≤ R		, where

R		 = ||u1(T 	)||u + 1 and

T 		 < H−1
(

1

1 + ϕ(R		) + (Dlϕ)(R		)

)

.

Inasmuch as H and ϕ are increasing in (0, ∞), and R		 ≤ R	, then we can take T 		 = T 	. Now combining
u1 and v2 we define, for each x ∈ R

d ,

u2(t, x) =
⎧
⎨

⎩

u1(t, x), 0 ≤ t ≤ T 	,

v2(t − T 	, x), T 	 ≤ t ≤ 2T 	.

The property (22) of the integral equation (14) implies that u2 is the unique solution of (14) on [0, 2T 	],
with initial condition u0. In this way we can apply the steps two–five to obtain the unique non-negative solution
of (2) on [0, 2T 	]. Proceeding inductively we get the global solution to (2). ��
Proof of Theorem 1.3 Integrating the Eq. (14) with respect to x and using (6) we obtain

∫

Rd
u(t, x)dx =

∫

Rd
u0(y)dy −

∫ t

0
h(s)

∫

Rd
ϕ(u(s, y))dyds. (31)

Since u ≥ 0, then (31) implies the function M(t) = ||u(t)||1, t ≥ 0, is bounded and monotone decreasing,
hence M(∞) = limt→∞ M(t) exists.

The convexity of ϕ and ϕ(0) = 0 produces

ϕ(x) ≤ ϕ(||u0||u)
||u0||u x, ∀x ∈ [0, ||u0||u],
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thus (31) and |||u||| ≤ ||u0||u yields

M(t) ≥ ||u0||1 − ϕ(||u0||u)
||u0||u

∫ t

0
h(s)M(s)ds.

Let us denote by y the solution of the ordinary differential equation

d

dt
y(t) = −ϕ(||u0||u)

||u0||u h(t)y(t),

y(0) = ||u0||1. (32)

The comparison theorem for ordinary differential equations implies

M(t) ≥ y(t), ∀t ≥ 0.

Solving (32) we get (4) and the last statement of the result is an immediate consequence of (4). ��
Proof of Theorem 1.4 The proof will be divided in two cases.
Case p = 1: Let us take t > t̃ . The Minkowski inequality yields

||u(t) − M(∞)p(K (t))||1 ≤ ||u(t) − p(K (t̃, t)) ∗ u(t̃)||1
+||p(K (t̃, t)) ∗ u(t̃) − M(t̃)p(K (t̃, t))||1
+||M(t̃)p(K (t̃, t)) − M(t̃)p(K (t))||1
+||M(t̃)p(K (t)) − M(∞)p(K (t))||1. (33)

From (31) and an expression analogous to (22) we have
∫ t

t̃
h(s)||ϕ(u(s))||1ds ≤ ||u(t̃)||1 ≤ ||u0||1, ∀t > t̃,

this and (22) implies

lim sup
t→∞

||u(t) − p(K (t̃, t)) ∗ u(t̃)||1 ≤
∫ ∞

t̃
h(s)||ϕ(u(s))||1ds < ∞. (34)

Given that
∫ ∞
1 k(s)ds = ∞ we can apply (g) in Proposition 2.1 to deduce

lim
t→∞ ||p(K (t̃, t)) ∗ u(t̃) − M(t̃)p(K (t̃, t))||1 = 0, ∀t̃ > 0.

Using again (g) of Proposition 2.1 and (7) we have

lim
t→∞ ||M(t̃)p(K (t̃, t)) − M(t̃)p(K (t))||1

= M(t̃) lim
t→∞

∥
∥
∥
∥p(K (t̃, t)) ∗ p(K (t̃)) − p(K (t̃, t))

∫

Rd
p(K (t̃), x)dx

∥
∥
∥
∥
1

= 0.

In this way from (33) we get

lim sup
t̃→∞

lim sup
t→∞

||u(t) − M(∞)p(K (t))||1 ≤ lim sup
t̃→∞

∫ ∞

t̃
h(s)||ϕ(u(s))||1ds

+ lim sup
t̃→∞

|M(t̃) − M(∞)| = 0,

where we have used (34) and Theorem 1.3.
Case p > 1: From Hölder’s inequality we get

||u(t) − M(∞)p(K (t))||p ≤ ‖u(t) − M(∞)p(K (t))‖1/2p1 ‖u(t) − M(∞)p(K (t))‖1−1/2p
2p−1 . (35)

The Minkowski’s inequality and the elementary inequality

(a + b)δ ≤ 2δ(aδ + bδ), ∀δ, a, b ≥ 0,
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can be used to obtain

||u(t) − M(∞)p(K (t))||1−1/2p
2p−1 ≤ 21−1/2p

(
||u(t)||1−1/2p

2p−1 + ||M(∞)p(K (t))||1−1/2p
2p−1

)
. (36)

From (14) we see
0 ≤ u(t, x) ≤ p(K (t)) ∗ u0(x), ∀(t, x) ∈ (0, ∞) × R

d , (37)

thus Young’s inequality allows to write

||u(t)||2p−1 ≤ ||u0||1||p(K (t))||2p−1.

Substituting this estimation in (36) and using (8) we get

||u(t) − M(∞)p(K (t))||1−1/2p
2p−1 ≤ cK (t)

− d
α

(
1− 1

p

)

, ∀t > 0. (38)

Substituting (38) in (35) we see that the result is consequence of the case p = 1. ��
The next result is important for itself and its scope of application in the study of path behavior of positive

solutions of (2) is broad.

Theorem 3.1 (Comparison) We assume the hypotheses of Theorem 1.1. Moreover we assume u0, v0 ∈
Cb(R

d) ∩ L1(Rd). If u and v are solutions of

∂t u = k(t)�αu(t) − h(t)ϕ(u(t)), u(0) = u0,

and

∂tv = k(t)�αv(t) − h(t)ϕ(v(t)), v(0) = v0,

respectively, and v0 ≥ u0 ≥ 0, then v ≥ u ≥ 0.

Proof Because of u ≥ 0 and v ≥ 0, then |||u||| ≤ ||u0||u and |||v||| ≤ ||v0||u . Let us take an arbitrary T > 0.
Using the mean value theorem we can find η(t, x) ∈ (0, ||v0||u) such that

ϕ(v(t, x)) − ϕ(u(t, x)) = ϕ′(η(t, x))(v(t, x) − u(t, x)).

Let us set w = v − u, then

∂tw(t, x) = k(t)�αw(t, x) − g(t, x)w(t, x),

w(0) = v0 − u0 ≥ 0, (39)

where

g(t, x) = h(t)ϕ′(η(t, x)).

The function c is measurable and

|g(t, x)| ≤ max
s∈[0,T ] h(s)ϕ′(||v0||u), ∀(t, x) ∈ [0, T ] × R

d .

We will consider the function

z(t, x) = w(t, x)eγ t , (t, x) ∈ [0, T ] × R
d ,

where γ = max
{|g(t, x)| : (t, x) ∈ [0, T ] × R

d
} + 1. From (39) we get

∂t z = k(t)�αz − (g − γ )z,

z(0) = w(0).

Proceeding as in step five of Theorem 1.1 we can find a (t̃, x̃) ∈ [0, T ] × R
d such that z(t̃, x̃) =

inf
{
z(t, x) : (t, x) ∈ [0, T ] × R

d
}
, then

0 ≥ k(t̃)�αz(t̃, x̃) = (g(t̃, x̃) − γ )z(t̃, x̃).

From this we deduce z(t̃, x̃) ≥ 0. Hence w(t, x) ≥ 0 for all (t, x) ∈ [0, T ] × R
d . Then we let T → ∞. ��
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As an application of the comparison theorem, we give a different condition of Theorem 1.3 for the conver-
gence of limt→∞

∫
Rd u(t, x)dx when ϕ is a power function.

Proof of Theorem 1.5 From (37) we have

||u(t)||ββ ≤ ||p(K (t)) ∗ u0||ββ.

Applying twice the Young’s inequality

||p(K (t)) ∗ u0||β ≤ ||p(K (t))||β ||u0||1 and ||p(K (t)) ∗ u0||β ≤ ||p(K (t))||1||u0||β.

Thus

||u(t)||ββ ≤ min
{
||p(K (t))||ββ ||u0||β1 , ||p(K (1))||β1 ||u0||ββ

}
.

From (6) and (8) we obtain

||u(t)||ββ ≤ min
{
cK (t)−

d
α (β−1)||u0||β1 , ||u0||ββ

}
. (40)

For each 0 < ε ≤ 1 we denote by uε the solution of the differential equation (2) with initial condition εu0.
Setting

Mε(t) =
∫

Rd
uε(t, x)dx, t ≥ 0,

we see from (31) that

Mε(t) = ε||u0||1 −
∫ t

0
h(s)||uε(s)||ββds, t ≥ 0.

Letting t → ∞,

Mε(∞) = ε

{

||u0||1 − 1

ε

∫ ∞

0
h(s)||uε(s)||ββds

}

. (41)

Using the inequality (40) we have

1

ε

∫ ∞

0
h(s)||uε(s)||ββds ≤ εβ−1

∫ ∞

0
h(s)min

{
cK (s)−

d
α (β−1)||u0||β1 , ||u0||ββ

}
ds.

Since β > 1, then − d
α

(β − 1) < 0, therefore

1

ε

∫ ∞

0
h(s)||uε(s)||ββds ≤ cεβ−1

{∫ t̃

0
h(s)ds +

∫ ∞

t̃
h(s)K (s)−

d
α (β−1)ds

}

,

for some t̃ > 0 large enough. This implies

lim sup
ε→0

1

ε

∫ ∞

0
h(s)||uε(s)||ββds = 0.

Due to ||u0||1 > 0 we can take 0 < ε < ||u0||1/2 such that

1

ε

∫ ∞

0
h(s)||u0(s)||ββds <

||u0||1
2

.

Hence, the expression (41) yields

Mε(∞) ≥ ε

2
||u0||1.

The Theorem 3.1 implies u ≥ uε ≥ 0, then M(∞) ≥ Mε(∞) > 0. ��
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