Skip to main content
Log in

Terahertz generation in quasi-phase-matching structures

  • Review - Atoms, Molecules and Optics
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Quasi-phase-matching (QPM) technology is considered one of the efficient ways to generate a coherent narrowband terahertz (THz) source. This review addresses two main QPM structures, such as periodically poled nonlinear crystals and optically oriented semiconductors. After briefly introducing the basic principles of QPM structures for THz radiation, we present the device specifications of the existing narrowband tunable THz source. In the outlook, we discuss the forthcoming prospective materials and domain engineering challenges that must be overcome in the limit of output power and system size on THz source from the viewpoint of a commercially viable lightweight THz system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. www.scopus.com; as at 9 September 2021

  2. R.A. Lewis, J. Phys D: Appl. Phys. 47, 374001 (2014)

    Article  Google Scholar 

  3. C. Thacker et al., Astrophys. J. 768, 58 (2013)

    Article  ADS  Google Scholar 

  4. V.M. Zolotarev et al., J. Opt. Technol. 74, 378 (2007)

    Article  Google Scholar 

  5. R.A. Friedel, A.G. Sharkey, Rev. Sci. Instrum. 18, 928 (1947)

    Article  ADS  Google Scholar 

  6. K. Charrada, G. Zissis, M. Aubes, J. Phys. D: Appl. Phys. 29, 2432 (1996)

    Article  ADS  Google Scholar 

  7. M. Mineo, C. Paoloni, IEEE Trans. Electron Devices 57, 1481 (2010)

    Article  ADS  Google Scholar 

  8. X. Xu et al., Phys. Plasmas 19, 013113 (2012)

    Article  ADS  Google Scholar 

  9. W. He et al., Phys. Rev. Lett. 110, 165101 (2013)

    Article  ADS  Google Scholar 

  10. Y.M. Shin et al., J. Korean Phys. Soc. 44, 1239 (2004)

    Google Scholar 

  11. S. Bhattacharjee et al., IEEE Trans. Plasma Sci. 32, 1002 (2004)

    Article  ADS  Google Scholar 

  12. V.L. Bratman et al., Phys. Rev. Lett. 102, 245101 (2009)

    Article  ADS  Google Scholar 

  13. T. Idehara et al., Appl. Magn. Reson. 34, 265 (2008)

    Article  Google Scholar 

  14. B.A. Knyazev et al., Meas. Sci. Technol. 21, 054017 (2010)

    Article  ADS  Google Scholar 

  15. M.A. Dem’yanenko et al., Appl. Phys. Lett. 92, 131116 (2008)

    Article  ADS  Google Scholar 

  16. J.M. Byrd et al., Phys. Rev. Lett. 89, 224801 (2002)

    Article  ADS  Google Scholar 

  17. S. Perez et al., J. Appl. Phys. 103, 094516 (2008)

    Article  ADS  Google Scholar 

  18. J. Lusakowski et al., J. Appl. Phys. 97, 064307 (2005)

    Article  ADS  Google Scholar 

  19. A. Maestrini et al., IEEE Trans. Microwave Theory Technol. 58, 1925 (2010)

    Article  ADS  Google Scholar 

  20. L. Ozyuzer et al., Science 318, 1291 (2007)

    Article  ADS  Google Scholar 

  21. G. Dodel, Infrared Phys. Technol. 40, 127 (1999)

    Article  ADS  Google Scholar 

  22. H.W. Hubers et al., Semicond. Sci. Technol. 20, S211 (2005)

    Article  Google Scholar 

  23. Y. Chassagneux et al., Nature 457, 174 (2009)

    Article  ADS  Google Scholar 

  24. R. Kohler et al., Nature 417, 156 (2002)

    Article  ADS  Google Scholar 

  25. B.S. Williams, Nature Photon. 1, 517 (2007)

    Article  ADS  Google Scholar 

  26. K.A. McIntosh et al., Appl. Phys. Lett. 67, 3844 (1995)

    Article  ADS  Google Scholar 

  27. X.L. Wu et al., Nature Nanotechnol. 6, 103 (2011)

    Article  ADS  Google Scholar 

  28. D.H. Auston et al., Appl. Phys. Lett. 83, 3117 (2003)

    Article  Google Scholar 

  29. Y.C. Shen et al., Appl. Phys. Lett. 83, 3117 (2003)

    Article  ADS  Google Scholar 

  30. K.Y. Kim et al., Nature Photon. 2, 605 (2008)

    Article  Google Scholar 

  31. M. Kress et al., Opt. Lett. 29, 1120 (2004)

    Article  ADS  Google Scholar 

  32. E. Beaurepaire et al., Appl. Phys. Lett. 84, 3465 (2004)

    Article  ADS  Google Scholar 

  33. K. Kawase et al., Appl. Phys. Lett. 68, 2483 (1996)

    Article  ADS  Google Scholar 

  34. S. Hargreaves et al., Phys. Rev. B 80, 195323 (2009)

    Article  ADS  Google Scholar 

  35. M. Reid et al., Phys. Rev. B 72, 035201 (2005)

    Article  ADS  Google Scholar 

  36. J.N. Heyman et al., Appl. Phys. Lett. 83, 5476 (2003)

    Article  ADS  Google Scholar 

  37. J. Lloyd-Hughes et al., Appl. Phys. Lett. 89, 232102 (2006)

    Article  ADS  Google Scholar 

  38. E.N. Harvey, Science 89, 460 (1939)

    Article  ADS  Google Scholar 

  39. D.L. Cortie, R.A. Lewis, Surf. Sci. 606, 1573 (2012)

    Article  ADS  Google Scholar 

  40. K. Radhanpura et al., Appl. Phys. Lett. 97, 181921 (2010)

    Article  ADS  Google Scholar 

  41. D. Feng et al., Appl. Phys. Lett. 37, 607 (1980)

    Article  ADS  Google Scholar 

  42. Y. J. Ding, et al., Conference proceedings, SPIE-Photonics-West 1999, San Jose, CA (1999)

  43. K.Y. Lee, et al., J. Infrared Milli Terahz Waves (2014)

  44. Y. Sasakia et al., Appl. Phys. Lett. 81, 3323 (2002)

    Article  ADS  Google Scholar 

  45. N.E. Yu et al., Appl. Phys. Express 7, 012101 (2014)

    Article  ADS  Google Scholar 

  46. Y.H. Avetisyan, J. Opt. Soc. Am. B 38, 1084 (2021)

    Article  ADS  Google Scholar 

  47. N.E. Yu et al., J. Kor. Phys. Soc. 51, 493 (2007)

    Article  ADS  Google Scholar 

  48. N.E. Yu et al., Jap. J. Appl. Phys. 46, 1501 (2007)

    Article  ADS  Google Scholar 

  49. I. Tomita et al., Appl. Phys. Lett. 88, 071118 (2006)

    Article  ADS  Google Scholar 

  50. K.Y. Lee et al., Sci. Report 6, 37912 (2016)

    Article  ADS  Google Scholar 

  51. F. Lemery et al., Comm. Phy. (2020). https://doi.org/10.1038/s42005-020-00421-2

    Article  Google Scholar 

  52. K.Y. Lee et al., Jap. J. Appl. Phy. 56, 040303 (2017)

    Article  ADS  Google Scholar 

  53. N.E. Yu et al., Appl. Phy. Lett. 93, 041104 (2008)

    Article  ADS  Google Scholar 

  54. N.E. Yu et al., Opt. Comm. 284, 1395 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Author would like to thank Mr. Back for the data fitting of Fig. 1. Gratefully acknowledge support by vehicle AI Convergence R& D Program through the National IT Industry Promotion Agency of Korea (NIPA) funded by the Ministry of Science and ICT(S0315-21-1001-C01). Also partially support by the National Research Foundation of Korea (NRF) grant funded by the Korea government MSIT (No 2021R1A2C100713011) and supported by GIST Research Institute (GRI) grant funded by the GIST on 2022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan Ei Yu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, N.E. Terahertz generation in quasi-phase-matching structures. J. Korean Phys. Soc. 81, 580–586 (2022). https://doi.org/10.1007/s40042-022-00486-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-022-00486-y

Keywords

Navigation