Skip to main content
Log in

Non-minimal D-term hybrid inflation in supergravity

  • Original Paper
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We investigate the effects of logarithmic corrections to the minimal Kähler potential in supergravity. They provide a constant Fayet–Iliopoulos term, but can induce singularities in the “F-term” scalar potential. If a proper superpotential is supplemented, such singularities can be avoided at the minimum of the scalar potential and the relevant U(1) gauge symmetry as well as supersymmetry can be broken. We apply this mechanism to a D-term hybrid inflationary model such that the U(1) gauge symmetry is broken during the inflation era and the resultant cosmic strings are diluted away. We employ a non-minimal form of the gauge kinetic function that includes an inflaton’s contribution such that the spectral index in the minimal D-term inflationary model is cured to the observed value. The tensor-to-scalar ratio is extremely small.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In Refs. [26,27,28,29,30,31,32,33], the construction of effective field-dependent FI terms has been discussed in the SUGRA framework.

  2. With the inclusion of soft SUSY breaking effects, however, \(\phi _0\) and \(\phi _{+(-)}\) can also develop small non-zero vacuum expectation values (VEVs).

  3. It is possible, e.g., due to high-temperature effects before inflation starts in the universe.

  4. In Ref. [37], the inflaton potential in (8) is discussed in the context of the F-term inflationary scenario while we obtain a similar potential by considering the non-minimal gauge kinetic function in the D-term scenario.

  5. Because the gauge kinetic function depends on \(\phi _0\), the size of the U(1)\(_G\) gauge coupling constant and \(V_\mathrm{inf}\) will be affected additionally by \(\phi _0\) via \(g^2\) [except the effect from the overall factor of Eq. (7)]. However, we neglect such an effect with the assumption \(c_0~\mathrm{Re}\phi _0^2/M_P^2\ll 1\). This assumption turns out to be consistent, as seen in Eq. (10).

  6. Were it not for the \(\lambda \) term in the superpotential, an accidental U(1) symmetry under which only \(\phi _\pm \) are charged survives even if U(1)\(_G\) is broken by \(\Phi _\pm \ne 0\).

  7. Note that we set the logarithmic terms for \(\phi _{\pm ,0}\) in the Kähler potential are set to be zero in order to keep the main story of the minimal D-term inflationary model. If we turn on such terms, the first line of the scalar potential in (28) is modified approximately as \(\zeta ^2(\Phi ,\phi )\left[ \left\{ |y|^2|\phi _0|^2\left( |\phi _+|^2+|\phi _-|^2\right) +|y|^2|\phi _+\phi _-|^2\right\} \left| 1+ \tilde{\epsilon }(M\Phi _+\Phi _-/y\phi _0\phi _+\phi _-)\right| ^2 +M^2\left( |\Phi _+|^2+|\Phi _-|^2\right) \right] \), where \(\xi \)s associated with \(\phi _{\pm ,0}\) (\(\equiv \tilde{\xi }_i\), \(i=+,-,0\)) are set to the same, \(\tilde{\xi }_i/M_P^2\equiv \tilde{\epsilon }\) for simplicity, and \(\zeta ^2(\Phi ,\phi )\) is defined as \(\zeta ^2(\Phi )\times (|\phi _+|^2/M_P^2)^{\tilde{\epsilon }}(|\phi _-|^2/M_P^2)^{\tilde{\epsilon }}(|\phi _0|^2/M_P^2)^{\tilde{\epsilon }}\) [39]. In this case, \(y\phi _0\phi _+\phi _-\approx -\tilde{\epsilon }M\Phi _+\Phi _-\) should be satisfied at the minimum for \(\phi _0\gtrsim |M/y|\). Namely, \(\phi _\pm \ne 0\) is allowed during inflation. This correction turns out to leave intact (19) on such a trajectory.

References

  1. For a review, see e.g. D.H. Lyth, A. Riotto, Phys. Rep. 314, 1 (1999). arXiv:hep-ph/9807278

  2. H.P. Nilles, Phys. Rep. 110, 1 (1984)

    Article  ADS  Google Scholar 

  3. G.R. Dvali, Q. Shafi, R.K. Schaefer, Phys. Rev. Lett. 73, 1886 (1994). https://doi.org/10.1103/PhysRevLett.73.1886. arXiv:hep-ph/9406319

  4. E.J. Copeland, A.R. Liddle, D.H. Lyth, E.D. Stewart, D. Wands, Phys. Rev. D 49, 6410 (1994). arXiv:astro-ph/9401011

    Article  ADS  Google Scholar 

  5. K. Kumekawa, T. Moroi, T. Yanagida, Prog. Theor. Phys. 92, 437 (1994). arXiv:hep-ph/9405337

    Article  ADS  Google Scholar 

  6. C. Panagiotakopoulos, Phys. Rev. D 55, 7335 (1997). arXiv:hep-ph/9702433

    Article  ADS  Google Scholar 

  7. A.D. Linde, A. Riotto, Phys. Rev. D 56, 1841 (1997). arXiv:hep-ph/9703209

    Article  ADS  Google Scholar 

  8. C. Panagiotakopoulos, Phys. Lett. B 402, 257 (1997). arXiv:hep-ph/9703443

    Article  ADS  Google Scholar 

  9. See also B. Kyae, Q. Shafi, Phys. Lett. B 635, 247 (2006). https://doi.org/10.1016/j.physletb.2006.03.007. arXiv:hep-ph/0510105

  10. B. Kyae, Q. Shafi, Phys. Rev. D 72, 063515 (2005). https://doi.org/10.1103/PhysRevD.72.063515. arXiv:hep-ph/0504044

  11. B. Kyae, Q. Shafi, Phys. Lett. B 597, 321 (2004). https://doi.org/10.1016/j.physletb.2004.07.030. arXiv:hep-ph/0404168

  12. M. Kawasaki, M. Yamaguchi, T. Yanagida, Phys. Rev. Lett. 85, 3572 (2000). https://doi.org/10.1103/PhysRevLett.85.3572. arXiv:hep-ph/0004243

  13. K.Y. Choi, B. Kyae, Phys. Rev. D 90(2), 023536 (2014). https://doi.org/10.1103/PhysRevD.90.023536. arXiv:1404.7855 [hep-th]

  14. K.Y. Choi, B. Kyae, Phys. Lett. B 735, 391 (2014). https://doi.org/10.1016/j.physletb.2014.06.053. arXiv:1404.3756 [hep-ph]

    Article  ADS  Google Scholar 

  15. K.Y. Choi, B. Kyae, Phys. Lett. B 706, 243 (2012). https://doi.org/10.1016/j.physletb.2011.11.045. arXiv:1109.4245 [astro-ph.CO]

    Article  ADS  Google Scholar 

  16. K.Y. Choi, S.A. Kim, B. Kyae, Nucl. Phys. B 861, 271 (2012). https://doi.org/10.1016/j.nuclphysb.2012.04.004. arXiv:1202.0089 [astro-ph.CO]

    Article  ADS  Google Scholar 

  17. P. Binetruy, G.R. Dvali, Phys. Lett. B 388, 241 (1996). https://doi.org/10.1016/S0370-2693(96)01083-0. arXiv:hep-ph/9606342

  18. P. Fayet, J. Iliopoulos, Phys. Lett. 51B, 461 (1974). https://doi.org/10.1016/0370-2693(74)90310-4

    Article  ADS  Google Scholar 

  19. Y. Akrami et al. [Planck Collaboration], arXiv:1807.06211 [astro-ph.CO]

  20. P. Binetruy, G. Dvali, R. Kallosh, A.V. Proeyen, Class. Quantum Gravity 21, 3137 (2004). https://doi.org/10.1088/0264-9381/21/13/005. arXiv:hep-th/0402046

    Article  ADS  Google Scholar 

  21. F. Catino, G. Villadoro, F. Zwirner, JHEP 1201, 002 (2012). https://doi.org/10.1007/JHEP01(2012)002. arXiv:1110.2174 [hep-th]

    Article  ADS  Google Scholar 

  22. C. Wieck, M.W. Winkler, Phys. Rev. D 90(10), 103507 (2014). https://doi.org/10.1103/PhysRevD.90.103507. arXiv:1408.2826 [hep-th]

  23. Z. Komargodski, N. Seiberg, JHEP 0906, 007 (2009). https://doi.org/10.1088/1126-6708/2009/06/007. arXiv:0904.1159 [hep-th]

    Article  ADS  Google Scholar 

  24. K.R. Dienes, B. Thomas, Phys. Rev. D 81, 065023 (2010). https://doi.org/10.1103/PhysRevD.81.065023. arXiv:0911.0677 [hep-th]

  25. K. Nakayama, K. Saikawa, T. Terada, M. Yamaguchi, JHEP 1605, 067 (2016). https://doi.org/10.1007/JHEP05(2016)067. arXiv:1603.02557 [hep-th]

    Article  ADS  Google Scholar 

  26. M.B. Green, J.H. Schwarz, Phys. Lett. B 149, 117 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  27. M. Dine, N. Seiberg, E. Witten, Nucl. Phys. B 289, 589 (1987)

    Article  ADS  Google Scholar 

  28. J. Atick, L. Dixon, A. Sen, Nucl. Phys. B 292, 109 (1987)

    Article  ADS  Google Scholar 

  29. P. Binetruy, G. Dvali, R. Kallosh, A.V. Proeyen, Class. Quantum Gravity 21, 3137 (2004). arXiv:hep-th/0402046

    Article  ADS  Google Scholar 

  30. Z. Komargodski, N. Seiberg, JHEP 1007, 017 (2010). arXiv:1002.2228

    Article  ADS  Google Scholar 

  31. V. Domcke, K. Schmitz, T. Yanagida, Nucl. Phys. B 891, 230 (2015). arXiv:1410.4641

    Article  ADS  Google Scholar 

  32. J.L. Evans, T. Ghergetta, N. Nagata, M. Peloso, Phys. Rev. D 95, 115027 (2017). arXiv:1704.03695

  33. V. Domcke, K. Schmitz, Phys. Rev. D 97, 115025 (2018). arXiv:1712.08121

  34. S.R. Coleman, E.J. Weinberg, Phys. Rev. D 7, 1888 (1973)

    Article  ADS  Google Scholar 

  35. L. Boubekeur, D.H. Lyth, JCAP 0507, 010 (2005). arXiv:hep-ph/0502047

    Article  ADS  Google Scholar 

  36. K. Kohri, C.M. Lin, D.H. Lyth, JCAP 0712, 004 (2007). arXiv:0707.3826 [hep-ph]

    Article  ADS  Google Scholar 

  37. B. Kyae, Eur. Phys. J. C 72, 1857 (2012). https://doi.org/10.1140/epjc/s10052-012-1857-9. arXiv:0910.4092 [hep-ph]

    Article  ADS  Google Scholar 

  38. M.P. Hertzberg, F. Wilczek, Phys. Rev. D 957, 063516 (2017). arXiv:1407.6010 [hep-ph]

  39. B. Kyae, Work in progress

Download references

Acknowledgements

This work was supported by a 2-year Research Grant of Pusan National University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bumseok Kyae.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kyae, B. Non-minimal D-term hybrid inflation in supergravity. J. Korean Phys. Soc. 79, 438–446 (2021). https://doi.org/10.1007/s40042-021-00250-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00250-8

Keywords

Navigation