Skip to main content
Log in

Smelting and Selective Reduction of Limonitic Laterite Ore in Mini Blast Furnace

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series D Aims and scope Submit manuscript

Abstract

One main source of nickel besides nickel sulfide ore is laterite nickel ore. Laterite ore is more sustainable and has abundant reserves. Nowadays, nickel demands are increasingly needed either for the manufacture of stainless steel or nickel-based batteries. This study aims to study the smelting process of limonitic laterite nickel ore. The smelting process was performed using a Mini Blast Furnace pilot plant with a capacity of ten tons of ore per day or 350 kg per batch. In the interest of modifying the properties of slag and enhance selective reduction, limestone and coal were used. The smelting process was performed by feeding raw material bearing nickel (ore and sinter) as much as 480 kg. The ratio of nickel:sintered:coal:limestone was 1:2.3:2.73:(1.14–1.44). The blast air used was 26 m3/min. Then, the crude ferronickel or nickel pig iron products and the resulting slag were characterized using EDX and XRD. As a result, the resulting crude ferronickel products had relatively high nickel and sulfur contents, namely 24.30% and 1.15%, respectively. In addition, the nickel recovery produced was 64.3%. Selective reduction proved can be enhanced by amount of limestone fed into Mini Blast Furnace.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. F. Knobloch, S.V. Hanssen, A. Lam et al., Net emission reductions from electric cars and heat pumps in 59 world regions over time. Nature Sustain. 3(6), 437–447 (2020). https://doi.org/10.1038/s41893-020-0488-7

    Article  Google Scholar 

  2. C. Xu, Q. Dai, L. Gaines et al., Future material demand for automotive lithium-based batteries. Commun. Mater. 1, 1–10 (2020). https://doi.org/10.1038/s43246-020-00095-x

    Article  Google Scholar 

  3. A. Accardo, G. Dotelli, M.L. Musa, E. Spessa, Life cycle assessment of an NMC battery for application to electric light-duty commercial vehicles and comparison with a sodium-nickel-chloride battery. Appl. Sci. 11, 1160 (2021). https://doi.org/10.3390/APP11031160

    Article  Google Scholar 

  4. D. Kinch, B. Kilbey, Greater nickel usage, vertical integration, now major trends in EV batterymaking: Roskill | S&P Global Platts (2021). https://www.spglobal.com/platts/en/market-insights/latest-news/metals/012021-greater-nickel-usage-vertical-integration-now-major-trends-in-ev-batterymaking-roskill. Accessed 11 Aug 2021

  5. Statista Research Department, • Worldwide—demand for nickel in EV batteries 2025 | Statista (2021). https://www.statista.com/statistics/967700/global-demand-for-nickel-in-ev-batteries/. Accessed 11 Aug 2021

  6. British Geological Survey, Battery raw materials briefing note on raw materials for batteries in electric vehicles background (2018). https://www2.bgs.ac.uk/mineralsuk/download/briefing_papers/batteryRawMaterial.pdf

  7. M.L.C.M. Henckens, E. Worrell, Reviewing the availability of copper and nickel for future generations. The balance between production growth, sustainability and recycling rates. J. Clean. Prod. 264, 121460 (2020). https://doi.org/10.1016/J.JCLEPRO.2020.121460

    Article  Google Scholar 

  8. R. Ferreira, F. Pinto, INSG insight comment on the effect of the COVID-19 pandemic on the global nickel market (2020). https://insg.org/wp-content/uploads/2020/10/INSG_Insight_32-Comment-on-the-effect-of-the-Covid-19-pandemic-on-the-global-nickel-market.pdf

  9. T.E. Norgate, S. Jahanshahi, W.J. Rankin, Alternative routes to stainless steel-a life cycle approach. in: 10th International Ferroalloys Congress, 1–4 Feb 2004 (South African Institute of Mining and Metallurgy, Cape Town, South Africa, Marshalltown, SA, 2004), pp. 693–704. http://hdl.handle.net/102.100.100/188402?index=1

  10. S. Pintowantoro, F. Abdul, Selective reduction of laterite nickel ore. Mater. Trans. 60, 2245–2254 (2019). https://doi.org/10.2320/MATERTRANS.MT-M2019101

    Article  Google Scholar 

  11. B. Widyartha, Y. Setiyorini, F. Abdul et al., Effective beneficiation of low content nickel ferrous laterite using fluxing agent through Na2SO4 selective reduction. Materialwiss. Werkstofftech. 51, 750–757 (2020). https://doi.org/10.1002/MAWE.202000007

    Article  Google Scholar 

  12. A.D. Dalvi, W. Gordon Bacon, M. Robert, C. Osborne, The past and the future of nickel laterites. in: PDAC 2004 International Convention, Trade Show & Investors Exchange. The prospectors and Developers Association of Canada Toronto, (2004), pp. 1–27

  13. J.K.I.J.H. Seo, A study on classification of limonite and saprolite from nickel laterite ores. Resour. Recycl. 25, 40–47 (2016). https://doi.org/10.7844/KIRR.2016.25.1.40

    Article  Google Scholar 

  14. F. Rodrigues, C.A. Pickles, J. Peacey et al., Factors affecting the upgrading of a nickeliferous limonitic laterite ore by reduction roasting, thermal growth and magnetic separation. Minerals 7, 176 (2017). https://doi.org/10.3390/MIN7090176

    Article  Google Scholar 

  15. F. Abdul, S. Pintowantoro, A. Purnamasari, Direct reduction of nickel laterite limonitic ore using a coal-dolomite mixture bed and Na2SO4 as a selective agent. J. Chem. Technol. Metall. 55, 103–110 (2020)

    Google Scholar 

  16. Y.C. Zhai, W.N. Mu, Y. Liu, Q. Xu, A green process for recovering nickel from nickeliferous laterite ores. Trans. Nonferrous Met. Soc. China 20, s65–s70 (2010). https://doi.org/10.1016/S1003-6326(10)60014-3

    Article  Google Scholar 

  17. F. Abdul, S. Pintowantoro, A. Kawigraha, A. Nursidiq, Effects of reduction temperature to Ni and Fe content and the morphology of agglomerate of reduced laterite limonitic nickel ore by coal-bed method. AIP Conf. Proc. 1945, 020034 (2018). https://doi.org/10.1063/1.5030256

    Article  Google Scholar 

  18. F. Abdul, S. Pintowantoro, R.B. Yuwandono, Analysis of holding time variations to Ni and Fe content and morphology in nickel laterite limonitic reduction process by using coal-dolomite bed. AIP Conf. Proc. 1945, 020033 (2018). https://doi.org/10.1063/1.5030255

    Article  Google Scholar 

  19. T. Ogura, K. Kuwayama, A. Ono, Y. Yamada, Production of Fe–Ni by the rotary kiln-electric furnace process at Hyuga Smelter. Int. J. Miner. Process. 19, 189–198 (1987). https://doi.org/10.1016/0301-7516(87)90040-8

    Article  Google Scholar 

  20. D. Zhao, B. Ma, B. Shi et al., Mineralogical characterization of limonitic laterite from Africa and its proposed processing route. J. Sustain. Metall. 6(3), 491–503 (2020). https://doi.org/10.1007/S40831-020-00290-7

    Article  Google Scholar 

  21. L.B. Tsymbulov, M.V. Knyazev, L.S. Tsemekhman, Oxide nickel ores smelting of ferronickel in two-zone Vaniukov Furnace. Canadian Metallurgical Quarterly 50(2), 135–144 (2013). https://doi.org/10.1179/000844311X12949291727772

    Article  Google Scholar 

  22. E. Keskinkilic, Nickel laterite smelting processes and some examples of recent possible modifications to the conventional route. Metals 9, 974 (2019). https://doi.org/10.3390/MET9090974

    Article  Google Scholar 

  23. S. Pintowantoro, R.A.M. Pasha, F. Abdul, Gypsum utilization on selective reduction of limonitic laterite nickel. Results Eng. 12, 100296 (2021). https://doi.org/10.1016/j.rineng.2021.100296

    Article  Google Scholar 

  24. S. Yuan, ZHOU W tao, LI Y jun, HAN Y xin, Efficient enrichment of nickel and iron in laterite nickel ore by deep reduction and magnetic separation. Trans. Nonferrous Met. Soc. China 30, 812–822 (2020). https://doi.org/10.1016/S1003-6326(20)65256-6

    Article  Google Scholar 

  25. J. Xiao, W. Xiong, K. Zou et al., Extraction of nickel from magnesia–nickel silicate ore. J. Sustain. Metall. 7(2), 642–652 (2021). https://doi.org/10.1007/S40831-021-00364-0

    Article  Google Scholar 

  26. W. Astuti, R. Andika, F. Nurjaman, Effect of basicity and reductant amount in the nickel pig iron (NPI) production from Indonesian limonite ore in submerged electric arc furnace (SAF). IOP Conf. Ser. Mater. Sci. Eng. 285, 012023 (2018). https://doi.org/10.1088/1757-899X/285/1/012023

    Article  Google Scholar 

  27. M. Liu, X. Lv, E. Guo et al., Novel process of ferronickel nugget production from nickel laterite by semi-molten state reduction. ISIJ Int. 54, 1749–1754 (2014). https://doi.org/10.2355/ISIJINTERNATIONAL.54.1749

    Article  Google Scholar 

  28. M. Rao, G. Li, T. Jiang et al., Carbothermic reduction of nickeliferous laterite ores for nickel pig iron production in China: a review. JOM 65(11), 1573–1583 (2013). https://doi.org/10.1007/S11837-013-0760-7

    Article  Google Scholar 

  29. S. Pintowantoro, A.B. Widyartha, Y. Setiyorini, F. Abdul, Sodium thiosulfate and natural sulfur: novel potential additives for selective reduction of limonitic laterite ore. J. Sustain. Metall. 7(2), 481–494 (2021). https://doi.org/10.1007/S40831-021-00352-4

    Article  Google Scholar 

  30. M. Haziq Uddin, L. Tafaghodi Khajavi, The effect of sulfur in rotary kiln fuels on nickel laterite calcination. Miner. Eng. 157, 106563 (2020). https://doi.org/10.1016/J.MINENG.2020.106563

    Article  Google Scholar 

  31. F. Abdul, S. Pintowantoro, A. Maulidani, Analysis the effect of charcoal mass variation to Ni content, sinter strength and yield on sintering process of limonitic laterite nickel ore. Key Eng. Mater. 867, 25–31 (2020). https://doi.org/10.4028/WWW.SCIENTIFIC.NET/KEM.867.25

    Article  Google Scholar 

  32. D. Fernández-González, I. Ruiz-Bustinza, J. Mochón et al., Iron ore sintering: process, Mineral Processing and Extractive. Metall. Rev. 38(4), 215–227 (2017). https://doi.org/10.1080/08827508.2017.1288115

    Article  Google Scholar 

  33. S. Pintowantoro, F. Abdul, P.I. Nindhita, A.B. Widyartha, Analysis of flux type variations in the sintering process of limonitic laterite nickel ore. AIP Conf. Proc. 2262, 070002 (2020). https://doi.org/10.1063/5.0016067

    Article  Google Scholar 

  34. F. Abdul, S. Pintowantoro, A. Yurisman, The effect of air flow rate on sinter yield, sinter strength and Ni content in sintering laterite nickel ore. Mater. Res. Commun. 1, 26–33 (2020)

    Article  Google Scholar 

  35. R. Elliott, F. Rodrigues, C.A. Pickles, J. Peacey, A two-stage thermal upgrading process for nickeliferous limonitic laterite ores. Canad. Metall. Quarter. 54(4), 395–405 (2016). https://doi.org/10.1179/1879139515Y.0000000009

    Article  Google Scholar 

  36. J. Yang, G. Zhang, O. Ostrovski, S. Jahanshahi, Selective reduction of an Australian garnieritic laterite ore. Miner. Eng. 131, 79–89 (2019). https://doi.org/10.1016/J.MINENG.2018.10.018

    Article  Google Scholar 

  37. G. Hang, Z. Xue, Y. Wu, Preparation of high-grade ferronickel from low-grade nickel laterite by self-reduction and selective oxidation with CO2-CO gas. Miner. Eng. 151, 106318 (2020). https://doi.org/10.1016/J.MINENG.2020.106318

    Article  Google Scholar 

  38. S. Pournaderi, E. Keskinkiliç, A. Geveci, Y.A. Topkaya, Laboratory-scale smelting of limonitic laterite ore from Central Anatolia. J. South. Afr. Inst. Min. Metall. 117, 695–703 (2017). https://doi.org/10.17159/2411-9717/2017/V117N7A11

    Article  Google Scholar 

  39. D. Wang, Q. Wang, S. Zhuang, J. Yang, Evaluation of alkali-activated blast furnace ferronickel slag as a cementitious material: reaction mechanism, engineering properties and leaching behaviors. Constr. Build. Mater. 188, 860–873 (2018)

    Article  Google Scholar 

  40. Y. Wang, R. Zhu, Q. Chen et al., Recovery of Fe, Ni Co, and Cu from nickel converter slag through oxidation and reduction. ISIJ Int. 58, 2191–2199 (2018). https://doi.org/10.2355/ISIJINTERNATIONAL.ISIJINT-2018-533

    Article  Google Scholar 

  41. G. Sun, B. Li, H. Guo et al., Thermodynamic study on reduction of iron oxides by H2 + CO + CH4 + N2 mixture at 900 °C. Energies 13, 5053 (2020). https://doi.org/10.3390/EN13195053

    Article  Google Scholar 

  42. S. Ilyas, R.R. Srivastava, H. Kim et al., Extraction of nickel and cobalt from a laterite ore using the carbothermic reduction roasting-ammoniacal leaching process. Sep. Purif. Technol. 232, 115971 (2020). https://doi.org/10.1016/J.SEPPUR.2019.115971

    Article  Google Scholar 

  43. J. Chen, P.C. Hayes, Mechanisms and kinetics of reduction of solid NiO in CO/CO2 and CO/Ar gas mixtures. Metall. Mater. Trans. B 50(6), 2623–2635 (2019). https://doi.org/10.1007/S11663-019-01662-5

    Article  Google Scholar 

  44. A.E.M. Warner, C.M. Díaz, A.D. Dalvi et al., JOM world nonferrous smelter survey, part III: nickel: laterite. JOM 58(4), 11–20 (2006). https://doi.org/10.1007/S11837-006-0209-3

    Article  Google Scholar 

  45. M. Solar, I. Candi, B. Wasmund, Selection of optimum ferronickel grade for smelting nickel laterites (2008). https://store.cim.org/en/selection-of-optimum-ferronickel-grade-for-smelting-nickel-laterites. Accessed 11 Aug 2021

  46. D.R. Swinbourne, Understanding ferronickel smelting from laterites through computational thermodynamics modelling. Miner. Process. Extr. Metall. 123(3), 127–140 (2014). https://doi.org/10.1179/1743285514Y.0000000056

    Article  Google Scholar 

  47. S. Harjanto, M.A. Rhamdhani, Sulfides formation in carbothermic reduction of saprolitic nickel laterite ore using low-rank coals and additives: a thermodynamic simulation analysis. Minerals 9, 631 (2019). https://doi.org/10.3390/MIN9100631

    Article  Google Scholar 

  48. Z. Liu, T. Sun, X. Wang, E. Gao, Generation process of FeS and its inhibition mechanism on iron mineral reduction in selective direct reduction of laterite nickel ore. Int. J. Miner. Metall. Mater. 22(9), 901–906 (2015). https://doi.org/10.1007/S12613-015-1148-1

    Article  Google Scholar 

  49. D.Q. Zhu, Y. Cui, K. Vining et al., Upgrading low nickel content laterite ores using selective reduction followed by magnetic separation. Int. J. Miner. Process. 106–109, 1–7 (2012). https://doi.org/10.1016/J.MINPRO.2012.01.003

    Article  Google Scholar 

  50. D. Zhu, L. Pan, Z. Guo et al., Utilization of limonitic nickel laterite to produce ferronickel concentrate by the selective reduction-magnetic separation process. Adv. Powder Technol. 30, 451–460 (2019). https://doi.org/10.1016/J.APT.2018.11.024

    Article  Google Scholar 

  51. F. Nurjaman, K. Saekhan, F. Bahfie et al., Effect of binary basicity (CaO/SiO2) on selective reduction of lateritic nickel ore. Periodico di Mineralogia 90(2), 239–245 (2021). https://doi.org/10.13133/2239-1002/17045

    Article  Google Scholar 

  52. F.K. Crundwell, M.S. Moats, V. Ramachandran et al., Chapter 6-Smelting of laterite ores to ferronickel. in: Extractive metallurgy of nickel, cobalt and platinum group metals, (2011), pp. 67–83. https://doi.org/10.1016/B978-0-08-096809-4.10006-1

  53. M.S. Moats, W.G. Davenport, Nickel and cobalt production. Treatise Process Metall 3, 625–669 (2014). https://doi.org/10.1016/B978-0-08-096988-6.00026-2

    Article  Google Scholar 

  54. G. Hang, Z. Xue, J. Wang, Y. Wu, Mechanism of calcium sulphate on the aggregation and growth of ferronickel particles in the self-reduction of saprolitic nickel laterite ore. Metals 10, 423 (2020). https://doi.org/10.3390/MET10040423

    Article  Google Scholar 

  55. L.-Y. Tian, H. Levämäki, O. Eriksson et al., Density functional theory description of the order-disorder transformation in Fe–Ni. Sci. Rep. 9(1), 1–7 (2019). https://doi.org/10.1038/s41598-019-44506-7

    Article  Google Scholar 

  56. S. Ueki, Y. Mine, K. Takashima, Excellent mechanical properties of taenite in meteoric iron. Sci. Rep. 11(1), 1–8 (2021). https://doi.org/10.1038/s41598-021-83792-y

    Article  Google Scholar 

  57. J. Luo, G. Li, M. Rao et al., Control of slag formation in the electric furnace smelting of ferronickel for an energy-saving production. J. Clean. Prod. 287, 125082 (2021). https://doi.org/10.1016/J.JCLEPRO.2020.125082

    Article  Google Scholar 

  58. F. Nurjaman, I. Amely, W. Astuti, B. Suharno, The effect of ternary basicity (CaO/(Al2O3 + SiO2)) on selective reduction of limonitic nickel ore. Adv. Mater. Process. Technol. 1–11 (2021). https://doi.org/10.1080/2374068X.2021.1949539

  59. M. Meraikib, Activity of silica in the slag of an electric arc furnace using direct reduced iron for steelmaking. ISIJ Int. 35, 845–850 (1995). https://doi.org/10.2355/ISIJINTERNATIONAL.35.845

    Article  Google Scholar 

  60. A. Babich, D. Senk, H.W. Gudenau, K.T. Mavrommatis, Ironmaking (Textbook) (RWTH Aachen University, Department of Ferrous Metallurgy, Wissenschaftsverlag Mainz in Aachen, 2008)

  61. Y.S. Lee, D.J. Min, S.M. Jung, S.H. Yi, Influence of basicity and FeO content on viscosity of blast furnace type slags containing FeO. ISIJ Int. 44, 1283–1290 (2004). https://doi.org/10.2355/ISIJINTERNATIONAL.44.1283

    Article  Google Scholar 

  62. K.C. Mills, L. Yuan, R.T. Jones, Estimating the physical properties of slags. J. South. Afr. Inst. Min. Metall. 111(10), 649–658 (2011). http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S2225-62532011001000002&lng=en&tlng=en. Retrieved 17 Feb 2021

  63. K.C. Mills, Slag Atlas, VDEh, 2nd edn. (Verlag Stahleisen GmbH, Düsseldorf, 1995)

    Google Scholar 

Download references

Acknowledgements

The authors express sincere gratitude to the Ministry of Education, Culture, Research and Technology Republic of Indonesia for the financial funding of this research through Penelitian Terapan Scheme (3/AMD/E1/KP.PTNBH/2020, 1317/PKS/ITS/2020).

Funding

This study was funded by Ministry of Education, Culture, Research and Technology Republic of Indonesia (3/AMD/E1/KP.PTNBH/2020, 1317/PKS/ITS/2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sungging Pintowantoro.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pintowantoro, S., Panggabean, P.C., Setiyorini, Y. et al. Smelting and Selective Reduction of Limonitic Laterite Ore in Mini Blast Furnace. J. Inst. Eng. India Ser. D 103, 591–600 (2022). https://doi.org/10.1007/s40033-022-00348-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40033-022-00348-8

Keywords

Navigation