Skip to main content
Log in

On the Application of the Mean-Field Homogenization for Non-isotropic Matrix

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series C Aims and scope Submit manuscript

Abstract

Mean field homogenization methods like the Mori–Tanaka formulation are used to determine the effective response of heterogeneous materials. Typically, these methods are deployed for inclusions within the isotropic matrix. This is due to the availability of closed-form solutions for Eshelby’s tensor when the surrounding medium is isotropic. However, in real life, the matrix can often be transversely isotropic or even orthotropic. This paper proposes a model for the implementation of the Mori–Tanaka formulation for all types of matrices. The proposed method is implemented and validated against full finite element models for three length scales: effective properties (RVE level), phase average stresses (constituent level) and interface stresses. The proposed models are seen to deliver reasonable results at the different length scales for transversely isotropic as well as orthotropic matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A. Jain, S.V. Lomov, Y. Abdin, I. Verpoest, W. Van Paepegem, Pseudo-grain discretization and full Mori Tanaka formulation for random heterogeneous media: predictive abilities for stresses in individual inclusions and the matrix. Compos. Sci. Technol. 87, 86–93 (2013). https://doi.org/10.1016/j.compscitech.2013.08.009

    Article  Google Scholar 

  2. B. Klusemann, H.J. Böhm, B. Svendsen, Homogenization methods for multi-phase elastic composites with non-elliptical reinforcements: comparisons and benchmarks. Eur J Mech A-SOLID 34, 21–37 (2012). https://doi.org/10.1016/j.euromechsol.2011.12.002

    Article  MathSciNet  Google Scholar 

  3. Z. Sekkate, A. Aboutajeddine, A. Seddouki, Elastoplastic mean-field homogenization: recent advances review. Mech. Adv. Mater. Struct. 29(3), 449–547 (2020). https://doi.org/10.1080/15376494.2020.1776431

    Article  Google Scholar 

  4. O. Pierard, C. Friebel, I. Doghri, Mean-field homogenization of multi-phase thermo-elastic composites: a general framework and its validation. Compos. Sci. Technol. 64, 1587–1603 (2004). https://doi.org/10.1016/j.compscitech.2003.11.009

    Article  Google Scholar 

  5. A. Jain, B.C. Jin, S. Nutt, Mean field homogenization methods for strand composites. Compos. B Eng. 124, 31–39 (2017). https://doi.org/10.1016/j.compositesb.2017.05.036

    Article  Google Scholar 

  6. P.A. Hessman, F. Welschinger, K. Hornberger, T. Böhlke, On mean field homogenization schemes for short fiber reinforced composites: unified formulation, application and benchmark. Int. J. Solids Struct. 230–231, 111141 (2021). https://doi.org/10.1016/j.ijsolstr.2021.111141

    Article  Google Scholar 

  7. T. Mori, K. Tanaka, Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21, 571–574 (1973). https://doi.org/10.1016/0001-6160(73)90064-3

    Article  Google Scholar 

  8. J.D. Eshelby, The determination of the elastic field of an ellipsoidal inclusion in an anisotronic medium. Math. Proc. Cambridge Philos. Soc. 81, 283–289 (1957). https://doi.org/10.1017/S0305004100053366

    Article  Google Scholar 

  9. G.J. Weng, The theoretical connection between Mori–Tanaka’s theory and the Hashin–Shtrikman–Walpole bounds. Int. J. Eng. Sci. 28, 1111–1120 (1990). https://doi.org/10.1016/0020-7225(90)90111-U

    Article  MathSciNet  Google Scholar 

  10. Y. Benveniste, A new approach to the application of Mori–Tanaka’s theory in composite materials. Mech. Mater. 6, 147–157 (1987). https://doi.org/10.1016/0167-6636(87)90005-6

    Article  Google Scholar 

  11. M. Ferrari, Asymmetry and the high concentration limit of the Mori–Tanaka effective medium theory. Mech. Mater. 11, 251–256 (1991). https://doi.org/10.1016/0167-6636(91)90006-L

    Article  Google Scholar 

  12. C.W. Camacho, C.L. Tucker, S. Yalvaç, R.L. McGee, Stiffness and thermal expansion predictions for hybrid short fiber composites. Polym. Compos. 11, 229–239 (1990). https://doi.org/10.1002/pc.750110406

    Article  Google Scholar 

  13. C. Naili, I. Doghri, T. Kanit, M.S. Sukiman, A. Aissa-Berraies, A. Imad, Short fiber reinforced composites: unbiased full-field evaluation of various homogenization methods in elasticity. Compos. Sci. Technol. 187, 107942 (2020). https://doi.org/10.1016/j.compscitech.2019.107942

    Article  Google Scholar 

  14. D. Dhar, S.V. Lomov, A. Jain, Predictive abilities of pseudodiscretization and pseudograin discretization schemes of the Mori–Tanaka homogenization, benchmarked against real and virtual RVEs. Mech. Adv. Mater. Struct. 31(13), 2743–2758 (2022). https://doi.org/10.1080/15376494.2022.2163438

    Article  Google Scholar 

  15. Q.S. Yang, X. Tao, H. Yang, A stepping scheme for predicting effective properties of the multi-inclusion composites. Int. J. Eng. Sci. 45, 997–1006 (2007). https://doi.org/10.1016/j.ijengsci.2007.07.005

    Article  MathSciNet  Google Scholar 

  16. S.G. Abaimov, A. Trofimov, I.V. Sergeichev, I.S. Akhatov, Multi-step homogenization in the Mori–Tanaka-Benveniste theory. Compos. Struct. 223, 110801 (2019). https://doi.org/10.1016/j.compstruct.2019.03.073

    Article  Google Scholar 

  17. D. Swaroop, D. Dhar, A. Suriyan, A. Jain, Of spheres and infinite cylinders: a critical relook at multi-step mean-field homogenization formulations. Mech. Mater. 174, 104447 (2022). https://doi.org/10.1016/j.mechmat.2022.104447

    Article  Google Scholar 

  18. G.V. Jagadeesh, S. Gangi Setti, A review on micromechanical methods for evaluation of mechanical behavior of particulate reinforced metal matrix composites. J. Mater. Sci. 55(23), 9848–9882 (2020). https://doi.org/10.1007/s10853-020-04715-2

    Article  Google Scholar 

  19. D. Dhar, A. Jain, Improved micromechanical prediction of short fibre reinforced composites using differential Mori–Tanaka homogenization. Mech. Mater. 185, 104768 (2023). https://doi.org/10.1016/J.MECHMAT.2023.104768

    Article  Google Scholar 

  20. P.J. Withers, The determination of the elastic field of an ellipsoidal inclusion in a transversely isotropic medium, and its relevance to composite materials. Philos Mag A Conden 59, 759–781 (1989). https://doi.org/10.1080/01418618908209819

    Article  Google Scholar 

  21. I. Sevostianov, N. Yilmaz, V. Kushch, V. Levin, Effective elastic properties of matrix composites with transversely-isotropic phases. Int. J. Solids Struct. 42(2), 455–476 (2005). https://doi.org/10.1016/j.ijsolstr.2004.06.047

    Article  Google Scholar 

  22. C.R. Chiang, On Eshelby’s tensor in transversely isotropic materials. Acta Mech. 228, 1819–1833 (2017). https://doi.org/10.1007/s00707-017-1811-x

    Article  MathSciNet  Google Scholar 

  23. C.R. Chiang, Eshelby’s tensor and its connection to ellipsoidal cavity problems with application to 2D transformation problems in orthotropic materials. Acta Mech. 226, 2631–2644 (2015). https://doi.org/10.1007/s00707-015-1343-1

    Article  MathSciNet  Google Scholar 

  24. O. Pierard, I. Doghri, Study of various estimates of the macroscopic tangent operator in the incremental homogenization of elastoplastic. Composites 4(4), 521–543 (2006)

    Google Scholar 

  25. B.D. Lubachevsky, F.H. Stillinger, Geometric properties of random disk packings. J. Stat. Phys. 60, 561–583 (1990). https://doi.org/10.1007/BF01025983

    Article  MathSciNet  Google Scholar 

  26. E. Ghossein, M. Lévesque, A fully automated numerical tool for a comprehensive validation of homogenization models and its application to spherical particles reinforced composites. Int. J. Solids Struct. 49, 1387–1398 (2012). https://doi.org/10.1016/j.ijsolstr.2012.02.021

    Article  Google Scholar 

  27. D.L. McDanels, Analysis of stress-strain, fracture, and ductility behavior of aluminum matrix composites containing discontinuous silicon carbide reinforcement. Metall. and Mater. Trans. A. 16, 1105–1115 (1985)

    Article  Google Scholar 

  28. T. Mura, Micromechanics of Defects in Solids, Second Edition. (Martinus Nijhoff Publishers, Leiden, 2013)

    Google Scholar 

Download references

Funding

Indian Institute of Technology (IIT) Kharagpur is thanked for funding this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepjyoti Dhar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

The calculation of Eshelby’s tensor for prolate spheroid inclusions (\(a_{1} > a_{2} = a_{3}\)) in an isotropic medium has been elaborated here. For the calculation of the Eshelby terms, the integrals are calculated initially that become elementary functions for special shapes of inclusions.

$$\begin{aligned} I_{2} & = I_{3} = \frac{{2\pi a_{1} a_{3}^{2} }}{{(a_{1}^{2} - a_{3}^{2} )^{3/2} }}\left( {\frac{{a_{1} }}{{a_{3} }}\left( {\frac{{a_{1}^{2} }}{{a_{3}^{2} }} - 1} \right)^{1/2} - cosh^{ - 1} \frac{{a_{1} }}{{a_{3} }}} \right) \\ I_{1} & = 4\pi - 2I_{2} \\ I_{12} & = \left( {I_{2} - I_{1} } \right)/\left( {a_{1}^{2} - a_{2}^{2} } \right) \\ 3I_{11} & = 4\pi /a_{1}^{2} - 2I_{12} \\ I_{22} & = I_{33} = I_{23} \\ 3I_{22} & = 4\pi /a_{2}^{2} - I_{23} - \left( {I_{2} - I_{1} } \right)/\left( {a_{1}^{2} - a_{2}^{2} } \right) \\ I_{23} & = \pi /a_{2}^{2} - \left( {I_{2} - I_{1} } \right)/4\left( {a_{1}^{2} - a_{2}^{2} } \right) \\ \end{aligned}$$
(A1)

After the integrals are calculated, the Eshelby terms are expressed in terms of these integrals as shown below.

$$\begin{aligned} S_{1111} & = \frac{3}{{8\pi \left( {1 - \nu } \right)}}a_{1}^{2} I_{11} + \frac{1 - 2\nu }{{8\pi \left( {1 - \nu } \right)}}I_{1} \\ S_{1122} & = \frac{1}{{8\pi \left( {1 - \nu } \right)}}a_{2}^{2} I_{12} + \frac{1 - 2\nu }{{8\pi \left( {1 - \nu } \right)}}I_{1} \\ S_{1133} & = \frac{1}{{8\pi \left( {1 - \nu } \right)}}a_{3}^{2} I_{13} + \frac{1 - 2\nu }{{8\pi \left( {1 - \nu } \right)}}I_{1} \\ S_{1133} & = \frac{1}{{8\pi \left( {1 - \nu } \right)}}a_{3}^{2} I_{13} + \frac{1 - 2\nu }{{8\pi \left( {1 - \nu } \right)}}I_{1} \\ \end{aligned}$$
(A2)

All other non-zero components are obtained by the cyclic permutation of the 1,2 and 3 terms. The components which cannot be obtained by the cyclic permutation such as \(S_{1112} , \,S_{1223} \,and\, S_{1232}\) are zero. For more details, the reader is referred to [28].

Appendix B

The expressions of the Eshelby’s tensor for inclusion in a transversely isotropic medium is reproduced here. In each case, the inclusion has been assumed to be rotationally symmetric (i.e., \(a_{1} = a_{2} = a; a_{3} = c\)) about the axis normal to the plane of isotropy. The notations here denote their usual meaning as identical to those used by Withers et al. [20]. For a detailed derivation of the tensor, the reader is referred to [20].

$$S_{3333} = 2\mathop \sum \limits_{i = 1}^{2} v_{i}^{3} k_{i} A_{i}^{\prime} \left( {C_{13} - C_{33} k_{i} v_{i}^{2} } \right)I_{2} \left( i \right)$$
(B1)
$$S_{1111} = 2\mathop \sum \limits_{i = 1}^{2} C_{44} \left( {1 + k_{i} } \right)A_{i}^{\prime} v_{i}^{3} I_{1} \left( i \right) - C_{66} \mathop \sum \limits_{i = 1}^{2} A_{i}^{\prime} v_{i}^{3} I_{1} \left( i \right) + \frac{1}{2}DC_{66} I_{1} \left( 3 \right)$$
(B2)

By symmetry,

$$\begin{aligned} S_{2222} & = S_{1111} \\ S_{1122} & = 2\mathop \sum \limits_{i = 1}^{2} C_{44} \left( {1 + k_{i} } \right)A_{i}^{\prime} v_{i}^{3} I_{1} \left( i \right) - 3C_{66} \mathop \sum \limits_{i = 1}^{2} A_{i}^{\prime} v_{i} I_{1} \left( i \right) - \frac{1}{2}DC_{66} I_{1} \left( 3 \right) \\ \end{aligned}$$
(B3)

By symmetry,

$$\begin{aligned} S_{2211} & = S_{1122} \\ S_{1133} & = 2\mathop \sum \limits_{i = 1}^{2} A_{i}^{\prime} v_{i} \left( {C_{13} - C_{33} k_{i} v_{i}^{2} } \right)I_{1} \left( i \right) \\ \end{aligned}$$
(B4)

By symmetry,

$$\begin{aligned} S_{2233} & = S_{1133} \\ S_{3311} & = 2\mathop \sum \limits_{i = 1}^{2} C_{44} v_{i}^{5} k_{i} A_{i}^{\prime} \left( {1 + k_{i} } \right)I_{2} \left( i \right) - 2\mathop \sum \limits_{i = 1}^{2} C_{66} v_{i}^{3} k_{i} A_{i}{\prime} I_{2} \left( i \right) \\ \end{aligned}$$
(B5)

By symmetry,

$$\begin{aligned} S_{3322} & = S_{3311} \\ S_{1212} & = C_{66} \mathop \sum \limits_{i = 1}^{2} A_{i}^{\prime} v_{i} I_{1} \left( i \right) + \frac{1}{2}C_{66} DI_{1} \left( 3 \right) \\ \end{aligned}$$
(B5)

By symmetry,

$$\begin{gathered} S_{1212} = S_{1221} = S_{2112} = S_{2121} \hfill \\ S_{1313} = \frac{1}{2}C_{44} \mathop \sum \limits_{i = 1}^{2} A_{i}^{\prime} v_{i}^{3} \left( {1 + k_{i} } \right)\left[ {I_{2} \left( i \right) - 2k_{i} I_{1} \left( i \right)} \right] + \frac{1}{4}DC_{44} I_{2} \left( 3 \right)v_{3}^{2} \hfill \\ \end{gathered}$$
(B6)

By symmetry,

$$S_{1313} = S_{1331} = S_{3113} = S_{3131} = S_{2323} = S_{2332} = S_{3223} = S_{3232}$$
(B7)

The I integrals are given by

$$\begin{array}{*{20}l} {} \hfill & {\begin{array}{*{20}l} {\left\{ {\begin{array}{*{20}c} {I_{1} \left( i \right) = \left( {{\raise0.7ex\hbox{${2\pi c}$} \!\mathord{\left/ {\vphantom {{2\pi c} {G^{3} }}}\right.\kern-0pt} \!\lower0.7ex\hbox{${G^{3} }$}}} \right)\left( {v_{i} cG - a^{2} F} \right)} \\ {I_{2} \left( i \right) = \left( {{\raise0.7ex\hbox{${4\pi a^{2} c}$} \!\mathord{\left/ {\vphantom {{4\pi a^{2} c} {G^{3} }}}\right.\kern-0pt} \!\lower0.7ex\hbox{${G^{3} }$}}} \right)(F - {\raise0.7ex\hbox{$G$} \!\mathord{\left/ {\vphantom {G {v_{i} c}}}\right.\kern-0pt} \!\lower0.7ex\hbox{${v_{i} c}$}}} \\ \end{array} } \right\}} \hfill & {if\, v_{i} c > a} \hfill \\ \end{array} } \hfill \\ {and} \hfill & {\begin{array}{*{20}l} {\left\{ {\begin{array}{*{20}c} {I_{1} \left( i \right) = - \left( {{\raise0.7ex\hbox{${2\pi c}$} \!\mathord{\left/ {\vphantom {{2\pi c} {G^{3} }}}\right.\kern-0pt} \!\lower0.7ex\hbox{${G^{3} }$}}} \right)\left( {v_{i} cG - a^{2} F} \right)} \\ {I_{2} \left( i \right) = - \left( {{\raise0.7ex\hbox{${4\pi a^{2} c}$} \!\mathord{\left/ {\vphantom {{4\pi a^{2} c} {G^{3} }}}\right.\kern-0pt} \!\lower0.7ex\hbox{${G^{3} }$}}} \right)(F - {\raise0.7ex\hbox{$G$} \!\mathord{\left/ {\vphantom {G {v_{i} c}}}\right.\kern-0pt} \!\lower0.7ex\hbox{${v_{i} c}$}}} \\ \end{array} } \right\}} \hfill & {if\, v_{i} c < a} \hfill \\ \end{array} } \hfill \\ \end{array}$$
(B8)

Where

$$G = \sqrt {v_{i}^{2} c^{2} - a^{2} } \quad F = \frac{1}{2}{\text{ln}}\left( {\frac{{v_{i} c + G}}{{v_{i} c - G}}} \right)$$
(B9)
$$C_{13}^{*} = \sqrt {C_{11} C_{33} }$$
(B10)
$$k_{i} = \frac{{{\raise0.7ex\hbox{${C_{11} }$} \!\mathord{\left/ {\vphantom {{C_{11} } {v_{i}^{2} }}}\right.\kern-0pt} \!\lower0.7ex\hbox{${v_{i}^{2} }$}} - C_{44} }}{{C_{13} + C_{44} }}$$
(B11)
$$\rho^{2} = x_{1}^{2} + x_{2}^{2}$$
(B12)
$$\begin{aligned} v_{1} & = \sqrt {\frac{{\left( {C_{13}^{*} - C_{13} } \right)\left( {C_{13}^{*} + C_{13} + 2C_{44} } \right)}}{{4C_{33} C_{44} }}} + \sqrt {\frac{{\left( {C_{13}^{*} + C_{13} } \right)\left( {C_{13}^{*} - C_{13} - 2C_{44} } \right)}}{{4C_{33} C_{44} }}} \\ v_{2} & = \sqrt {\frac{{\left( {C_{13}^{*} - C_{13} } \right)\left( {C_{13}^{*} + C_{13} + 2C_{44} } \right)}}{{4C_{33} C_{44} }}} - \sqrt {\frac{{\left( {C_{13}^{*} + C_{13} } \right)\left( {C_{13}^{*} - C_{13} - 2C_{44} } \right)}}{{4C_{33} C_{44} }}} \\ \end{aligned}$$
(B13)
$$v_{3} = \sqrt {\frac{{C_{66} }}{{C_{44} }}}$$
(B14)
$$D = \frac{1}{{4\pi C_{44} v_{3} }}$$
(B15)
$$C_{66} = \frac{1}{2}\left( {C_{11} - C_{22} } \right)$$
(B16)
$$\begin{aligned} A_{1}^{\prime} & = - \frac{{\left( {C_{44} - C_{33} v_{1}^{2} } \right)}}{{8\pi C_{33} C_{44} \left( {v_{1}^{2} - v_{2}^{2} } \right)v_{1}^{2} }} \\ A_{2}^{\prime} & = \frac{{\left( {C_{44} - C_{33} v_{2}^{2} } \right)}}{{8\pi C_{33} C_{44} \left( {v_{1}^{2} - v_{2}^{2} } \right)v_{2}^{2} }} \\ \end{aligned}$$
(B17)
$$A_{i} = - 2v_{i} k_{i} A_{i}^{\prime}$$
(B18)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lakhera, M., Agrawal, R., Dhar, D. et al. On the Application of the Mean-Field Homogenization for Non-isotropic Matrix. J. Inst. Eng. India Ser. C (2024). https://doi.org/10.1007/s40032-024-01062-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40032-024-01062-y

Keywords

Navigation