Skip to main content
Log in

Geometric properties of random disk packings

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Random packings ofN⩽2000 rigid disks in the plane, subject to periodic boundary conditions on a square primitive cell, have been generated by a concurrent construction which treats all disks on an equal footing, as opposed to previously investigated sequential constructions. The particles start with random positions and velocities, and as they move about they grow uniformly in size, from points to jammed disks. The collection of packings displays several striking geometric features. These include (for largeN) typically polycrystalline textures with irregular grain boundaries and linear shear fractures. The packings occasionally contain monovacancies and trapped but unjammed “rattler” disks. The latter appear to be confined to the grain boundaries. The linear shear fractures preserve bond orientational order, but disrupt translational order, within the crystalline grains. A new efficient event-driven simulation algorithm is employed to generate the histories of colliding and jamming disks. On a computer which can process one million floating-point instructions per second the algorithm processes more than one million pairwise collisions per hour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. J. Alder and T. E. Wainwright,J. Chem. Phys. 31(2):459–466 (1959).

    Google Scholar 

  2. H. C. Andersen,J. Chem. Phys. 72:2384 (1980).

    Google Scholar 

  3. C. J. Basheet al., IBM's Early Computers (MIT Press, Cambridge, Massachusetts, 1986).

    Google Scholar 

  4. C. H. Bennett,J. Appl. Phys. 43:2727 (1972).

    Google Scholar 

  5. J. D. Bernal,Proc. R. Soc. A 280:299 (1964).

    Google Scholar 

  6. F. P. Buff and F. H. Stillinger,J. Chem. Phys. 39:1911 (1963).

    Google Scholar 

  7. S. Chapman and T. G. Cowling,The Mathematical Theory of Non-Uniform Gases (Cambridge University Press, Cambridge, 1953), Chapters 5 and 6.

    Google Scholar 

  8. K. E. Davis, W. B. Russel, and W. J. Glantschnig,Science 245:507 (1989).

    Google Scholar 

  9. J. J. Erpenbeck and W. W. Wood, Molecular dynamics techniques for hard-core systems, inStatistical Mechanics. Part B:Time-Dependent Processes, B. J. Berne, ed. (Plenum, New York, 1977).

    Google Scholar 

  10. J. L. Finney,Nature 266:309 (1977), and references therein.

    Google Scholar 

  11. H. L. Frisch,Adv. Chem. Phys. 6:229 (1964).

    Google Scholar 

  12. P. H. Gaskell, inGlassy Metals, Vol. II, H. Beck and H.-J. Güntherodt, eds. (Springer, Berlin, 1983), pp. 5–49.

    Google Scholar 

  13. K. Huang and C. N. Yang,Phys. Rev. 105:767 (1957).

    Google Scholar 

  14. M. G. Kendall,A Course in the Geometry of n Dimensions (Hafner, New York, 1961), p. 36.

    Google Scholar 

  15. D. E. Knuth,Art of Computer Programming, Vol. 3,Sorting and Searching (Addison-Wesley, 1973).

  16. T. D. Lee, K. Huang, and C. N. Yang,Phys. Rev. 106:1135 (1957).

    Google Scholar 

  17. P. W. Leung, C. L. Henley, and G. V. Chester,Phys. Rev. B 39:446 (1989).

    Google Scholar 

  18. B. D. Lubachevsky,J. Comp. Phys. (1990).

  19. G. Mason and W. Clark,Nature 207:512 (1965).

    Google Scholar 

  20. C. A. Murray and D. H. van Winkle,Phys. Rev. A 34:562 (1986).

    Google Scholar 

  21. D. R. Nelson and B. J. Halperin,Phys. Rev. B 19:2457 (1979).

    Google Scholar 

  22. R. Pindak, D. J. Bishop, and W. O. Sprenger,Phys. Rev. Lett. 44:1461 (1980).

    Google Scholar 

  23. C. A. Rogers,Packing and Covering (Cambridge University Press, Cambridge, 1964), p. 3.

    Google Scholar 

  24. G. D. Scott,Nature 194:957 (1962).

    Google Scholar 

  25. N. J. A. Sloane,Sci. Am. 250(1):116 (1984).

    Google Scholar 

  26. W. A. Steele,J. Phys. Chem. 69:3446 (1965).

    Google Scholar 

  27. F. H. Stillinger, E. A. DiMarzio, and R. L. Kornegay,J. Chem. Phys. 40:1564 (1964).

    Google Scholar 

  28. F. H. Stillinger and Z. W. Salsburg,J. Stat. Phys. 1:179 (1969).

    Google Scholar 

  29. F. H. Stillinger and T. A. Weber,J. Chem. Phys. 83:4767 (1985).

    Google Scholar 

  30. J. Vieillard-Baron,J. Chem. Phys. 56:4729 (1972).

    Google Scholar 

  31. M. Widom, K. J. Strandburg, and R. H. Swendsen,Phys. Rev. Lett. 58:706 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lubachevsky, B.D., Stillinger, F.H. Geometric properties of random disk packings. J Stat Phys 60, 561–583 (1990). https://doi.org/10.1007/BF01025983

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01025983

Key words

Navigation