Skip to main content

Advertisement

Log in

Effect of Taper on Free Vibration of Functionally Graded Rotating Beam by Mori-Tanaka Method

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series C Aims and scope Submit manuscript

Abstract

Rotating beams are the practical application for aircraft propellers, helicopter blades, wind mill propeller, turbine blades and spinning space structures. In these structures, taper beams are preferred due to optimum weight distribution with uniform strength. Vibration behavior of tapered variable section beams subjected to centrifugal forces is important in analysis of structures. The research work deals with flapwise vibration of functionally graded (FG) rotating taper beam. The material properties of the beam change symmetrically in the direction of thickness from middle surface to the outer surfaces. Mori-Tanaka method estimates these properties of FG beam. The flapwise frequencies are obtained using Differential Transform Method (DTM). The effect of different parameters such as rotating speed, taper ratio, hub radius ratio and gradient index on flapwise frequency is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

A(x):

Area of the beam at a distance x

E(z):

Equivalent young’s_modulus

Iy(x):

Moment of inertia

M:

Mass of the beam per unit length

n:

Gradient index

r:

Hub root radius

Vc :

Ceramic volume fraction

Vm :

Metal volume fraction

w:

Flapwise displacement

x:

Longitudinal coordinate of the beam

z:

Lateral coordinate of the beam

γ:

Non dimensional rotating speed

δ:

Hub radius ratio

ζ:

Non dimensional beam length

ρ(z):

Equivalent density

ω:

Flapwise frequency

Ω:

Rotating speed

References

  1. R. Southwell, F. Gough, The free transverse vibration of airscrew blades. Great Britain Aeronautical Research Committee (ARC) Reports and Memoranda (1922), p. 766

  2. F. Liebers, Contribution to the theory of propeller vibrations. National Advisory Committee for Aeronautics (NACA) Technical Memorandum No. 568 (1929)

  3. T. Theodorsen, Propeller Vibrations and the effect of centrifugal force. National Advisory Committee for Aeronautics (NACA). Technical Notes No. 516 (1935)

  4. M. Schilhansl, Bending frequency of a rotating cantilever beam. J. Appl. Mech. Trans. Am. Soc. Mech. Eng. 25, 28–30 (1958)

    MathSciNet  MATH  Google Scholar 

  5. D.H. Hodges, Vibration and response of non uniform rotating beams with discontinuities. J. Am. Helicopter Soc. 24, 43–50 (1979)

    Article  Google Scholar 

  6. D.H. Hodges, M.J. Rutkowski, Free vibration analysis of rotating beams by a variable order finite element method. AIAA J. 19, 1459–1466 (1981)

    Article  MATH  Google Scholar 

  7. A.D. Wright, C.E. Smith, R.W. Thresher, J.L.C. Wang, Vibration modes of centrifugally stiffened beams. Trans. ASME J. Appl. Mech. 49, 197–202 (1982)

    Article  MATH  Google Scholar 

  8. W.H. Liu, F.H. Yeh, Vibrations of non-uniform rotating beams. J. Sound Vib. 119, 379–384 (1987)

    Article  Google Scholar 

  9. Y. Liu, F.H. Liu, W.H. Liu, Transverse vibrations of non uniform rotating beams with rotational and translational restaints. J. Chin. Soc. Mech. Eng. 10, 393–400 (1989)

    Google Scholar 

  10. H.H. Yoo, S.H.S. Hin, Vibration analysis of rotating cantilever beams. J. Sound Vib. 212, 807–828 (1998)

    Article  Google Scholar 

  11. G. Wang, N.M. Wereley, Free vibration analysis of rotating blades with uniform tapers. AIAA J. 42, 2429–2437 (2004)

    Article  Google Scholar 

  12. A. Bazoune, Effect of tapering on natural frequencies of rotating beams. J. Shock Vib. 14, 169–179 (2007)

    Article  Google Scholar 

  13. J.B. Gunda, A.P. Singh, P.S. Chhabra, R. Ganguli, Free vibration analysis of rotating tapered blades using Fourier-p superelement. Struct. Eng. Mech. 27(2), 1–17 (2007)

    Article  Google Scholar 

  14. A. Gangele, S. Ahmed, Modal analysis of S809 wind turbine blade considering differential geometrical and material properties. J. Inst. Eng. Ser. C 94(3), 225–228 (2013)

    Article  Google Scholar 

  15. A. Saha, A. Das, A. Karmakar, First-ply failure analysis of delaminated rotating composite conical shells: a finite element approach. J. Inst. Eng. Ser. C (2017). https://doi.org/10.1007/s40032-017-0373-y

    Article  Google Scholar 

  16. S. Kapuria, M. Bhattacharyya, A.N. Kumar, Bending and free vibration response of layered functionally-graded beams: a theoretical model and its experimental validation. Compos. Struct. 82(3), 390–402 (2008)

    Article  Google Scholar 

  17. S.A. Sina, H.M. Navaji, H. Haddadpour, An analytical method for free vibration analysis of functionally graded beams. Mater. Des. 30(3), 741–747 (2009)

    Article  Google Scholar 

  18. M.T. Piovan, R. Sampaio, A study on the dynamics of rotating beams with functionally graded properties. J. Sound Vib. 327(1–2), 134–143 (2009)

    Article  Google Scholar 

  19. M. Simsek, T. Kocaturk, Free and forced vibration of a functionally-graded beam subjected to a concentrated moving harmonic load. Compos. Struct. 90(4), 465–473 (2009)

    Article  Google Scholar 

  20. N. Wattanasakulpong, B.G. Prusty, D.W. Kelly, M. Hoffman, A theoretical investigation on the free vibration of functionally graded beams, in Proceedings of the 10th International conference on computational structures technology, Valencia (2010), p. 285

  21. E.A. Amal, M.A. Eltaher, F.F. Mahmoud, Free vibration characteristics of a functionally graded beam by finite element method. Appl. Math. Model. 35(1), 412–425 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. L.-L. Ke, Y.-S. Wang, Size effect on dynamic stability of functionally graded micro beams based on a modified couple stress theory. Compos. Struct. 93, 342–350 (2011)

    Article  Google Scholar 

  23. N. Wattanasakulpong, V. Ungbhakorn, Free vibration analysis of functionally graded beams with general elastically end constraints by DTM. World J. Mech. 2, 297–310 (2012)

    Article  Google Scholar 

  24. M.N.V. Ramesh, N.M. Rao, Free vibration analysis of rotating functionally-graded cantilever beams. Int. J. Acoust. Vib. 19(1), 31–41 (2014)

    Google Scholar 

  25. A. Das, A. Karmakar, Free vibration characteristics of functionally graded pre-twisted conical shells under rotation. J. Inst. Eng. Ser. C (2017). https://doi.org/10.1007/s40032-017-0378-6

    Article  Google Scholar 

  26. J.K. Zhou, Differential Transformation and Its Application for Electrical Circuits (Huazhong University Press, Wuhan, 1986)

    Google Scholar 

  27. O. Ozdemir, M.O. Kaya, Flap wise bending vibration analysis of a rotating tapered cantilever Bernoulli–Euler beam by differential transform method. J. Sound Vib. 289, 413–420 (2005)

    Article  Google Scholar 

  28. O.K. Metin, Free vibration analysis of rotating Timoshenko beam by differential transform method. Int. J. Aircr. Eng. Aerosp. Technol. 78(3), 194–203 (2006)

    Article  Google Scholar 

  29. R. Attarnejad, A. Shahba, Application of differential transform method in free vibration analysis of rotating non-prismatic beams. World Appl. Sci. J. 5(4), 441–448 (2008)

    Google Scholar 

  30. K. Torabi, H. Afshari, E. Zafari, Approximate solution for longitudinal vibration of non-unifrom beams by differential transform method (DTM). J. Mater. Sci. Eng. B 3(1), 63–69 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pacharu Ravi Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P.R., Rao, K.M. & Rao, N.M. Effect of Taper on Free Vibration of Functionally Graded Rotating Beam by Mori-Tanaka Method. J. Inst. Eng. India Ser. C 100, 729–736 (2019). https://doi.org/10.1007/s40032-018-0477-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40032-018-0477-z

Keywords

Navigation