Skip to main content
Log in

Free Vibration Characteristics of Functionally Graded Pre-twisted Conical Shells under Rotation

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series C Aims and scope Submit manuscript

Abstract

This article deals with effect of rotation and pretwist angle on free vibration characteristics of functionally graded conical shells. The dynamic equilibrium equation is derived from Lagrange’s equation neglecting the Coriolis effect for moderate rotational speeds. The materials properties of conical shell are varied with a power-law distribution of the volume fractions of their constituents through its thickness. Convergence studies are performed in respect of mesh sizes, and comparisons of the present solutions and those reported in open literature are provided to substantiate the accuracy of the proposed method. Computer codes developed to obtain the numerical results for the combined effects of twist angle and rotational speed on the natural frequencies of functionally graded conical shells. The mode shapes for a typical laminate configuration under different conditions are also illustrated. Numerical results are obtained for the non-dimensional fundamental (NDFF) and second frequencies (NDSF).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

E:

Young’s modulus

G:

Shear modulus

N:

Material property graded index (or power law exponent)

T:

Temperature in Kelvin

NDFF, NDSF:

Non-dimensional fundamental and second natural frequency, respectively

Si :

Material property

Vf :

Volume fraction

Lo :

Length

Qj :

Shape functions

Lo/s:

Aspect ratio

[J]:

Jacobian matrix

[Me], [M]:

Element mass matrix and global mass matrix

[Ce], [C]:

Element coriolis matrix and global coriolis matrix

[Ke], [K]:

Element elastic stiffness matrix and global elastic stiffness matrix

[Kσe], [Kσ]:

Element geometric stiffness matrix, global geometric stiffness matrix

[KRe], [KR]:

Element rotational stiffness matrix and global rotational stiffness matrix

{F(Ω2)}:

Global vector of nodal equivalent centrifugal forces

{Fce}, {Fe}, {F}:

Element load vector due to centrifugal force, element load vector due to externally applied load and global vector of externally applied load, respectively

h:

Thickness

x, y, z:

Local coordinate axes (plate coordinate system)

r1, r2 :

Radius of curvature (r1 < r2)

rx :

Radius of curvature in x-direction

ry :

Radius of curvature in y-direction

rxy :

Radius of twist

bo :

Reference width

Ψ:

Twist angle

Ω:

Non-dimensional speed of rotation (Ω′/ωo)

Ω′:

Actual angular speed of rotation

ς, χ:

Local natural coordinates of the element

υ:

Poisson’s ratio

ρ:

Mass density

ω:

Non-dimensional frequency parameter

λ:

Non-dimensional frequency

\(\upphi_{\text{ve}}\) :

Vertex angle

\(\upphi_{\text{o}}\) :

Base subtended angle of cone

ωo :

Fundamental natural frequency of a non-rotating shell

ωn :

Natural frequency of rotating shell

e},{δ}:

Element displacement vector and global displacement vector

References

  1. C.T. Loy, J.N. Lam, J.N. Reddy, Vibration of functionally graded cylindrical shells. Int. J. Mech. Sci. 41, 309–324 (1999)

    Article  Google Scholar 

  2. T.Y. Ng, K.Y. Lam, K.M. Liew, J.N. Reddy, Dynamic stability analysis of functionally graded cylindrical shells under periodicaxial loading. Int. J. Solids Struct. 38, 1295–1309 (2001)

    Article  Google Scholar 

  3. S.C. Pradhan, C.T. Loy, K.Y. Lam, J.N. Reddy, Vibration characteristics of functionally graded cylindrical shells under various boundary conditions. Appl. Acoust. 61(1), 119–129 (2000)

    Article  Google Scholar 

  4. M. Ahmad, M.N. Naeem, Vibration characteristics of rotating FGM circular cylindrical shells using wave propagation method. Eur. J. Sci. Res. 36, 184–235 (2009)

    Google Scholar 

  5. P. Malekzadeh, Y. Heydarpour, Free vibration analysis of rotating functionally graded cylindrical shells in thermal environment. Compos. Struct. 94, 2971–2981 (2012)

    Article  Google Scholar 

  6. L. Hua, Frequency analysis of rotating truncated circular orthotropic conical shells with different boundary conditions. Compos. Sci Technol. 60, 2945–2955 (2000)

    Article  Google Scholar 

  7. A.R. Setoodeh, M. Tahani, E. Selahi, Transient dynamic and free vibration analysis of functionally graded truncated conical shells with non-uniform thickness subjected to mechanical shock loading. Compos. Part B Eng. 43, 2161–2171 (2012)

    Article  Google Scholar 

  8. A.H. Sofiyev, The vibration and stability behavior of freely supported FGM conical shells subjected to external pressure. Compos. Struct. 89, 356–3566 (2009)

    Article  Google Scholar 

  9. F. Tornabene, E. Viola, D.J. Inman, 2-D differential quadrature solution for vibration analysis of functionally graded conical, cylindrical shell and annular plate structures. J. Sound Vib. 328, 259–290 (2009)

    Article  Google Scholar 

  10. R.K. Bhangale, K. Ganesan, C. Padmanabhan, Linear thermo elastic buckling and free vibration behaviour of functionally graded truncated conical shells. J. Sound Vib. 292, 341–371 (2006)

    Article  Google Scholar 

  11. V. Birman, C.W. Bert, Buckling and post buckling of composite plates and shells subjected to elevated temperature. ASME J. Appl. Mech. 60, 514–519 (1993)

    Article  Google Scholar 

  12. T.R. Tauchert, Thermally induced flexure, buckling, and vibration of plates. Appl. Mech. Rev. 44, 347–360 (1991)

    Article  Google Scholar 

  13. E.A. Thornton, Thermal buckling of plates and shells. Appl. Mech. Rev. 46(10), 485–506 (1993)

    Article  Google Scholar 

  14. P.K. Gotsis, J.D. Guptill, Fiber-composite thin shells subjected to thermal buckling loads. Comput. Struct. 53(6), 1263–1274 (1994)

    Article  Google Scholar 

  15. M.R. Eslami, A.R. Ziaii, A. Chorbarpour, Thermo-elastic buckling of thin cylindrical shells based on improved stability equations. J. Therm. Stress. 19(4), 299–315 (1996)

    Article  Google Scholar 

  16. A.H. Sofiyev, Thermoelastic stability of functionally graded truncated conical shells. Compos. Struct. 77, 56–65 (2007)

    Article  Google Scholar 

  17. E. Ghafoori, M. Asghari, Three-dimensional elasticity analysis of functionally graded rotating cylinders with variable thickness profile. Proc. IME C J. Mech. Eng. Sci. 226, 585–593 (2012)

    Article  Google Scholar 

  18. Y. Heydarpour, P. Malekzadeh, M.R.G. Haghighi, M. Vaghefi, Thermoelastic analysis of rotating laminated functionally graded cylindricalshells using layerwise differential quadrature method. Acta Mech. 223, 81–93 (2012)

    Article  Google Scholar 

  19. K.M. Liew, X.Q. He, S. Kitipornchai, Finite element method for the feedback control of FGM shells in the frequency domain via piezoelectric sensors and actuators. Comput. Methods Appl. Mech. Eng. 193, 257–273 (2004)

    Article  Google Scholar 

  20. T.Y. Ng, X.Q. He, K.M. Liew, Finite element modeling of active control of functionally graded shells in frequency domain via piezoelectric sensors and actuators. Comput. Mech. 28, 1–9 (2002)

    Article  Google Scholar 

  21. X.Q. He, K.M. Liew, T.Y. Ng, S. Sivashanker, A FEM model for the active control of curved FGM shells using piezoelectric sensor/actuator layers. Int. J. Numer. Methods Eng. 54, 853–870 (2002)

    Article  Google Scholar 

  22. N.S. Bardell, J.M. Dunsdon, R.S. Langley, Free vibration of thin, isotropic, open, conical panels. J. Sound Vib. 217, 297–320 (1998)

    Article  Google Scholar 

  23. C. Shu, Free vibration analysis of composite laminated conical shells by generalized differential quadrature. J. Sound Vib. 194, 587–604 (1996)

    Article  Google Scholar 

  24. G.N. Praveen, J.N. Reddy, Nonlinear transient thermoelastic analysis of functionally graded ceramic–metal plates. Int. J. Solids Struct. 33, 4457–4476 (1998)

    Article  Google Scholar 

  25. N. Noda, Thermal stresses in functionally graded materials. J. Therm. Stress. 22, 477–512 (1999)

    Article  Google Scholar 

  26. Y. Fukui, N. Yamanaka, K. Wakashima, The stresses and strains in a thick-walled tube for functionally graded under uniform thermal loading. Int. J. Jpn Soc. Mech. Eng. Ser. A 36, 156–162 (1993)

    Google Scholar 

  27. A.H. Sofiyev, K.A. Korkmaz, Z. Mammadov, M. Kamanli, The vibration and buckling of freely supported non-homogeneous orthotropic conical shells subjected to different uniform pressures. Int. J. Press. Vessels Pip. 86, 661–668 (2009)

    Article  Google Scholar 

  28. L. Librescu, S.-Y. Oh, O. Song, H.-S. Kang, Dynamics of advanced rotating blades made of functionally graded materials and operating in a high-temperature field. J. Eng. Math. 61(1), 1–16 (2008)

    Article  Google Scholar 

  29. K.J. Bathe, Finite Element Procedures in Engineering Analysis (PHI, New Delhi, 1990)

    Google Scholar 

  30. X. Zhao, K.M. Liew, Free vibration analysis of functionally graded conical shell panels by a meshless method. Compos. Struct. 93, 649–664 (2011)

    Article  Google Scholar 

  31. A.W. Leissa, J.K. Lee, A.J. Wang, Vibrations of twisted rotating blades. J. Vib. Acoust. Stress Reliab. Des. Trans. ASME 106(2), 251–257 (1984)

    Article  Google Scholar 

  32. K.M. Liew, C.M. Lim, L.S. Ong, Vibration of pretwisted cantilever shallow conicalshells. Int. J. Solids Struct. 31, 2463–2474 (1994)

    Article  Google Scholar 

  33. A. Karmakar, P.K. Sinha, Failure analysis of laminated composite pretwisted rotating plates. J. Reinf. Plast. Compos. 20, 1326–1357 (2001)

    Article  Google Scholar 

  34. S. Sreenivasamurthy, V. Ramamurti, coriolis effect on the vibration of flat rotating low aspect ratio cantilever plates. J. Strain Anal. 16, 97–106 (1981)

    Article  Google Scholar 

  35. Y.S. Touloukian, Thermophysical Properties of High Temperature Solid Materials (McMillan, New York, 1967)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Karmakar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, A., Karmakar, A. Free Vibration Characteristics of Functionally Graded Pre-twisted Conical Shells under Rotation. J. Inst. Eng. India Ser. C 99, 681–692 (2018). https://doi.org/10.1007/s40032-017-0378-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40032-017-0378-6

Keywords

Navigation