Skip to main content
Log in

First-ply Failure Analysis of Delaminated Rotating Composite Conical Shells: A Finite Element Approach

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series C Aims and scope Submit manuscript

Abstract

The present analysis evaluates the first-ply failure load of delaminated composite conical shells. Single and multiple delamination is considered across the thickness of the conical shell. The dynamic equilibrium equation considers only moderate rotational speeds for which Coriolis effect is neglected. Convergence studies are performed in respect of mesh sizes, and comparisons of the present solutions and those reported in open literature are provided to verify the accuracy of the present finite element formulation. Computer codes are developed to obtain the numerical results for the failure loads of delaminated composite conical shells. The first-ply failure load considering different failure criteria namely Maximum stress (independent), Tsai-Hill, Tsai-Wu-Hahn and Tsai-Hill-Hoffman are evaluated. The variation of the failure loads with the position of delamination across the thickness as well as along longitudinal direction are illustrated and presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

[A], [B] and [D]:

Extension, bending extension coupling and bending stiffness coefficients matrix, respectively

{k}:

Curvature vectors

L, b0, h0 :

Length, reference width and thickness of the Conical shell, respectively

{N}, {M}:

In plane stress resultants and moment resultants, respectively

[Q]:

Transformed reduced stiffness matrix

Rx, Ry :

Radius of curvature in x and y direction, respectively

Rxy :

Radius of twist

S:

Slant length

\({\rm u}_{\rm j}^0, {\rm v}_{\rm j}^0, {\rm w}_{\rm j}^0\) :

Mid plane displacements of element j

α, β:

Minor and major radii at any cross section parallel to the reference ellipse, respectively

α0, β0 :

Minor and major radius of the reference ellipse, respectively

θv, θ0 :

Vertex angle and base subtended angle of cone, respectively

ξ, η:

Non dimensional coordinate systems

0}:

Normal strain vector

Ω:

Non dimensional rotational speed

Ψ:

Twist angle

References

  1. R.K. Kapania, Review on the analysis of laminated shells. J. Press. Vessel Technol. 111(2), 88–96 (1989)

    Article  Google Scholar 

  2. A.K. Noor, W.S. Burton, Assessment of computational models for multilayered composite shells. Appl. Mech. Rev. 43(4), 67–97 (1990)

    Article  Google Scholar 

  3. A.K. Noor, W.S. Burton, J.M. Peters, Assessment of computational models for multilayered composite cylinders. Int. J. Solids Struct. 27(10), 1269–1286 (1991)

    Article  Google Scholar 

  4. A.K. Noor, W.S. Burton, Computational models for high-temperature multilayered composite plates and shells. Appl. Mech. Rev. 45(10), 419–446 (1992)

    Article  Google Scholar 

  5. M.S. Qatu, Recent research advances in the dynamic behavior of shells: 1989–2000, Part 1: laminated composite shells. ASME Appl. Mech. Rev. 55(4), 325–349 (2002)

    Article  Google Scholar 

  6. M.S. Qatu, S.R. Warsi, W. Wenchao, Recent research advances on the dynamic analysis of composite shells: 2000–2009. Compos. Struct. 93(1), 14–31 (2010)

    Article  Google Scholar 

  7. A.W. Leissa, Vibration of Shells. NASA SP388 (The Government Printing Office, Washington, 1973)

    Google Scholar 

  8. K.M. Liew, C.W. Lim, L.S. Ong, Vibration of pretwisted cantilever shallow conical shells. Int. J. Solids Struct. 31, 2463–2474 (1994)

    Article  Google Scholar 

  9. M.H.H. Shen, J.E. Grady, Free vibrations of delaminated beams. AIAA J. 30(5), 1361–1370 (1992)

    Article  Google Scholar 

  10. M. Krawczuk, W. Ostachowicz, A. Zak, Dynamics of cracked composite material structures. J. Comput. Mech. 20(1–2), 79–83 (1997)

    Article  Google Scholar 

  11. J.J. Lee, C.H. Yeom, I. Lee, Vibration analysis of twisted cantilever conical composite shells. J. Sound Vib. 255(5), 965–982 (2002)

    Article  Google Scholar 

  12. A. Karmakar, K. Kishimoto, Free vibration analysis of delaminated composite pretwisted rotating shells—a finite element approach. JSME Int. J. Ser. A 49(4), 492–502 (2006)

    Article  Google Scholar 

  13. N. Takeda, S. Ogihara, Initiation and growth of delamination from the tips of transverse cracks in CFRP cross-ply laminates. Compos. Sci. Technol. 52(3), 309–318 (1994)

    Article  Google Scholar 

  14. A. Todoroki, Y. Tanaka, Y. Shimamura, Delamination monitoring of graphite/epoxy laminated composite plate of electric resistance change method. Compos. Sci. Technol. 62(9), 1151–1160 (2002)

    Article  Google Scholar 

  15. J.M. Berthelot, J.F. Le Corre, Statistical analysis of the progression of transverse cracking and delamination in cross-ply laminates. Compos. Sci. Technol. 60(14), 2659–2669 (2000)

    Article  Google Scholar 

  16. N. Toyama, J. Noda, T. Okabe, Quantitative damage detection in cross-ply laminates using Lamb wave method. Compos. Sci. Technol. 63(10), 1473–1479 (2003)

    Article  Google Scholar 

  17. P.K. Parhi, S.K. Bhattacharyya, P.K. Sinha, Failure analysis of multiple delaminated due to bending and impact. Bull. Mater. Sci. 24(2), 143–149 (2001)

    Article  Google Scholar 

  18. F. Aymerich, F. Dore, P. Priolo, Simulation of multiple delamination in impacted cross-ply laminates using a finite element model based on cohesive interface elements. Compos. Sci. Technol. 69(11–12), 1699–1709 (2009)

    Article  Google Scholar 

  19. S. Sreenivasamurthy, V. Ramamurti, Coriolis effect on the vibration of flat rotating low aspect ratio cantilever plates. J. Strain Anal. 16(2), 97–106 (1981)

    Article  Google Scholar 

  20. K.J. Bathe, Finite Element Procedures in Engineering Analysis (PHI, New Delhi, 1990)

    Google Scholar 

  21. R.D. Cook, D.S. Malkus, M.E. Plesha, Concepts and Applications of Finite Element Analysis (Wiley, London, 1989)

    MATH  Google Scholar 

  22. A. Karmakar, T.K. Mishra, K. Kishimoto, Free vibration characteristics of delaminated composite rotating cantilever shallow shells. Proceeding of International Conference on Fracture, Turin, 20–25 March 2005

  23. J.T.S. Wang, D. Shaw, O. Mahrenholtz, Vibration of rotating rectangular plates. J. Sound Vib. 112(3), 455–468 (1987)

    Article  Google Scholar 

  24. D. Shaw, K.Y. Shen, J.T.S. Wang, Flexural vibration of rotating rectangular plates of variable thickness. J. Sound Vib. 126(3), 373–385 (1988)

    Article  Google Scholar 

  25. R. Talreja, Assessment of the fundamentals of failure theories for composite materials. Compos. Sci Technol. 105, 190–201 (2014)

    Article  Google Scholar 

  26. J.N. Reddy, A.K. Pandey, A first-ply failure analysis of composite laminates. Comput. Struct. 25(3), 371–393 (1987)

    Article  Google Scholar 

  27. T.Y. Kam, H.F. Sher, Nonlinear and first-ply failure analyses of laminated composite cross-ply plates. J. Compos. Mater. 29(4), 463–482 (1995)

    Article  Google Scholar 

  28. T.Y. Kam, H.F. Sher, T.N. Chao, R.R. Chang, Predictions of deflection and first-ply failure load of thin laminated composite plates via the finite element approach. Int. J. Solids Struct. 33(3), 375–398 (1996)

    Article  Google Scholar 

  29. A. Karmakar, P.K. Sinha, Failure analysis of laminated composite pretwisted rotating plates. J. Reinf. Plast. Compos. 20, 1326–1357 (2001)

    Article  Google Scholar 

  30. A. Karmakar, P.K. Sinha, Impact induced dynamic failure of laminated composite pretwisted rotating plates. AEAT J. 72(2), 142–155 (2000)

    Google Scholar 

  31. K.S. Krishnamurthy, P. Mahajan, R.K. Mittal, Impact response and damage in laminated composite cylindrical shells. Compos. Struct. 59, 15–36 (2003)

    Article  Google Scholar 

  32. K.S. Krishnamurthy, P. Mahajan, R.K. Mittal, A parametric study of the impact response and damage of laminated cylindrical composite shells. Compos. Sci. Technol. 61, 1655–1669 (2001)

    Article  Google Scholar 

  33. G.P. Zhao, C.D. Cho, Damage initiation and propagation in composite shells subjected to impact. Compos. Struct. 78, 91–100 (2007)

    Article  Google Scholar 

  34. I.M. Daniel, Failure of composite materials under multi-axial static and dynamic loading. Proced. Eng. 88, 10–17 (2014)

    Article  Google Scholar 

  35. J. Cheng, H. Li, S. Zhang, L. Xue, W. Luo, W. Li, Failure behavior investigation of a unidirectional carbon–carbon composite. Mater. Des. 55, 846–850 (2014)

    Article  Google Scholar 

  36. D.H. Li, Y. Liu, X. Zhang, Low-velocity impact responses of the stiffened composite laminated plates based on the progressive failure model and the layerwise/solid-elements method. Compos. Struct. 110, 249–275 (2014)

    Article  Google Scholar 

  37. K. Bakshi, D. Chakravorty, First-ply failure study of thin composite conoidal shells subjected to uniformly distributed load. Thin Walled Struct. 76, 1–7 (2014)

    Article  Google Scholar 

  38. C.K. Gim, Plate finite element modeling of laminated plates. Comput. Struct. 52(1), 157–168 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankuran Saha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, A., Das, A. & Karmakar, A. First-ply Failure Analysis of Delaminated Rotating Composite Conical Shells: A Finite Element Approach. J. Inst. Eng. India Ser. C 99, 657–672 (2018). https://doi.org/10.1007/s40032-017-0373-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40032-017-0373-y

Keywords

Navigation