Skip to main content
Log in

Evolutionary Bi-objective Optimization for Bulldozer and Its Blade in Soil Cutting

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series C Aims and scope Submit manuscript

Abstract

An evolutionary optimization approach is adopted in this paper for simultaneously achieving the economic and productive soil cutting. The economic aspect is defined by minimizing the power requirement from the bulldozer, and the soil cutting is made productive by minimizing the time of soil cutting. For determining the power requirement, two force models are adopted from the literature to quantify the cutting force on the blade. Three domain-specific constraints are also proposed, which are limiting the power from the bulldozer, limiting the maximum force on the bulldozer blade and achieving the desired production rate. The bi-objective optimization problem is solved using five benchmark multi-objective evolutionary algorithms and one classical optimization technique using the ε-constraint method. The Pareto-optimal solutions are obtained with the knee-region. Further, the post-optimal analysis is performed on the obtained solutions to decipher relationships among the objectives and decision variables. Such relationships are later used for making guidelines for selecting the optimal set of input parameters. The obtained results are then compared with the experiment results from the literature that show a close agreement among them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. R.L. Peurifoy, G.J. Schexnayder, A. Shapira, Construction Planning, Equipment and Methods, 7th edn. (McGraw-Hill Higher Education, New York, 2006)

    Google Scholar 

  2. E. McKyes, Soil Cutting and Tillage (Elsevier, New York, 1985)

    Google Scholar 

  3. D.F. Bagster, J. Bridgwater, The measurement of the force needed to move blades through a bed of cohesionless granules. Powder Technol. 1(4), 189–198 (1967)

    Article  Google Scholar 

  4. S. Karmakar, R.L. Kushwaha, Dynamic modeling of soil-tool interaction: an overview from a fluid flow perspective. J. Terrramech. 43(4), 411–425 (2006)

    Article  Google Scholar 

  5. K. Xia, A framework for earthmoving blade/soil model development. J. Terrramech. 45(5), 147–165 (2008)

    Article  Google Scholar 

  6. Y. Qinsen, S. Shuren, A soil-tool interaction model for bulldozer blades. J. Terrramech. 31(2), 55–65 (1994)

    Article  Google Scholar 

  7. A. Wislicki, The influence of soil condition on the performance of a tracklayer operating a bulldozer. J. Terrramech. 6(2), 35–45 (1969)

    Article  Google Scholar 

  8. M. Abo-Elnor, R. Hamilton, J.T. Boyle, Simulation of soil-blade interaction for sandy soil using advanced 3d finite element analysis. Soil Tillage Res. 75(1), 61–73 (2004)

    Article  Google Scholar 

  9. H. Bentaher, A. Ibrahmi, E. Hamza, M. Hbaieb, G. Kantchev, A. Maalej, W. Arnold, Finite element simulation of moldboard–soil interaction. Soil Tillage Res. 134, 11–16 (2013)

    Article  Google Scholar 

  10. A. Armin, R. Fotouhi, W. Szyszkowski, On the FE modeling of soil-blade interaction in tillage operations. Finite Elem. Anal. Des. 92, 1–11 (2014)

    Article  Google Scholar 

  11. I. Shmulevich, Z. Asaf, D. Rubinstein, Interaction between soil and a wide cutting blade using the discrete element method. Soil Tillage Res. 97(1), 37–50 (2007)

    Article  Google Scholar 

  12. T. Tsuji, Y. Nakagawa, N. Matsumoto, Y. Kadono, T. Takayama, T. Tanaka, 3-D DEM simulation of cohesive soil-pushing behavior by bulldozer blade. J. Terrramech. 49(1), 37–47 (2012)

    Article  Google Scholar 

  13. J.V. Perumpral, R.D. Grisso, C. Desai, A soil—tool model based on limited equilibriumanalysis. Trans. Am. Soc. Agric. Eng. 26(4), 991–995 (1983)

    Article  Google Scholar 

  14. D.R.P. Hettiaratchi, A.R. Reece, Symmetrical three-dimensional soil failure. J. Terramech. 4(3), 45–67 (1967)

    Article  Google Scholar 

  15. E. McKyes, O.S. Ali, The cutting of soil by narrow blades. J. Terrramech. 14(2), 43–58 (1977)

    Article  Google Scholar 

  16. A.R. Reece, The fundamental equation of earth-moving mechanics. Proc. Inst. Mech. Eng. 179, 16–22 (1964)

    Google Scholar 

  17. R.L. Kushwaha, L. Chi, J. Shen, Analytical and numerical models for predicting soilforces on narrow tillage tools. Can. Agric. Eng. 35(3), 183–193 (1993)

    Google Scholar 

  18. R.H. King, P.V. Susante, M.A. Gefreh, Analytical models and laboratory measurementsof the soil—blade interaction force to push a narrow tool through JSC-1A lunarsimulant and ottawa sand at different cutting depths. J. Terrramech. 48(1), 85–95 (2011)

    Article  Google Scholar 

  19. N. Barakat, D. Sharma. Towards optimal soil cutting process using a multi-objective genetic algorithm, Proceedings of the National Conference on Sustainable Mechanical Engineering: Today and Beyond, 24–25 March, 2017, Tezpur University, India, 2017

  20. N. Barakat, D. Sharma. Evolutionary bi-objective optimization of soil cutting by bulldozer: a real-world application, IEEE International Conference on Advances in Mechanical, Industrial, Automation and Management Systems, 3–5 February 2017, MNNIT Allahabad, India, 2017

  21. K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  22. N. Barakat, D. Sharma. Modeling and bi-objective optimization of soil cutting and pushing process for bulldozer and its blade. J. Inst. Eng. (India): Ser. C (2017). https://doi.org/10.1007/s40032-017-0421-7

  23. K. Deb, R.B. Agrawal, Simulated binary crossover for continuous search space. Complex Syst. 9(2), 115–148 (1995)

    MathSciNet  MATH  Google Scholar 

  24. E. Zitzler, M. Laumanns, L. Thiele. SPEA2: improving the strength Pareto evolutionary algorithm for multiobjective optimization, in Evolutionary Methods for Design, Optimisation and Control with Application to Industrial Problems (EUROGEN 2001), eds. by K.C. Giannakoglou et al. (International Center for Numerical Methods in Engineering (CIMNE), 2002), pp. 95–100

  25. J. Knowles, D. Corne. The Pareto archived evolution strategy: a new baseline algorithm for Pareto multiobjective optimisation, in Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), vol. 1 (1999), p. 105

  26. A.J. Nebro, J.J. Durillo, J. Garcia-Nieto, C.A. Coello Coello, F. Luna, E. Alba. SMPSO: a new PSO-based metaheuristic for multi-objective optimization, IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making (MCDM) (March 2009), pp. 66–73

  27. S. Kukkonen, J. Lampinen. GDE3: the third evolution step of generalized differential evolution, IEEE Congress on Evolutionary Computation (CEC’2005) (2005), pp. 443–450

  28. E. Jack, C. Liu, Unified soil classification system (uscs). Classif. Soils Eng. Purp. Annu. Book ASTM Stand. 08(1), 395408 (1985)

    Google Scholar 

  29. J. Branke, K. Deb, H. Dierolf, M. Osswald. Parallel problem solving from nature—PPSN VIII: 8th International Conference, Birmingham, UK, September 18–22, 2004. Proceedings, Chapter Finding Knees in Multi-objective Optimization (Springer, Berlin, 2004), pp. 722–731

  30. J.D. Knowles, R.A. Watson, D.W. Corne, Reducing Local Optima in Single-Objective Problems by Multi-Objectification (Springer, Berlin, 2001), pp. 269–283

    Google Scholar 

  31. D. Sharma, K. Deb, N.N. Kishore, Customized evolutionary optimizationprocedure for generating minimum weight compliant mechanisms. Eng. Optim. 6(1), 39–60 (2014)

    Article  Google Scholar 

  32. P.K. Shukla, K. Deb, On finding multiple Pareto-optimal solutions using classical and evolutionary generating methods. Eur. J. Oper. Res. 181(3), 1630–1652 (2007)

    Article  MATH  Google Scholar 

  33. K. Deb, A. Srinivasan. Innovization: innovating design principles through optimization, in Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2006) (The Association of Computing Machinery (ACM), New York 2006), pp. 1629–1636

  34. D. Sharma. On the flexible applied boundary and support conditions of compliant mechanisms using customized evolutionary algorithm, in Proceedings of Simulated Evolution and Learning—8th International Conference, SEAL 2010 (Springer, 2010), pp. 105–114

  35. N.J. Baishya, D. Sharma, U.S. Dixit, Optimization of pressure vessel under thermoelastic condition. J. Inst. Eng. (India): Ser. C 95(4), 389–400 (2014)

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to Indian Council for Cultural Relations and acknowledges the support for studies and research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nada Barakat.

Appendix

Appendix

Model of [6] for Cutting Force on Wide Blade. Nomenclature and description of equations can be found in [22]

$${\text{m}}_{1} {\text{g}} = \frac{1}{2}{{\upgamma }}_{\text{o }} {\text{B}}\left( {{\text{H }} + 2{\text{D tan}}\upvarphi_{\text{o}} } \right)^{2} \cot {{\upvarphi }}_{\text{o}}$$
(14)
$${\text{F}}_{{{\text{f}}1}} = {\text{m}}_{1} {\text{g}}\tan {{\upvarphi }}$$
(15)
$${\text{F}}_{{{\text{c}}1}} = {\text{C}}_{\text{o}} {\text{B}}\left( { {\text{H}} + 2{\text{D tan}}\upvarphi_{\text{o}} } \right)$$
(16)
$${\text{P}}_{{{\text{f}}1}} = \left( {{\text{F}}_{{{\text{f}}1}} + {\text{F}}_{{{\text{C}}1}} } \right)\tan {{\upvarphi }}$$
(17)
$${\text{P}}_{{{\text{c}}1}} = {\text{C}}_{\text{o}} {\text{BR}}\uptheta$$
(18)
$${\text{P}}_{\text{ad}} = {\text{A}}_{\text{d}} {\text{BR}}\uptheta$$
(19)
$${\text{P}}_{{{\text{f}}^{2}}} = \left( {{\text{F}}_{{{\text{f}}1}} + {\text{F}}_{{{\text{C}}1}} } \right)\tan {{\updelta }}$$
(20)
$${\text{m}}_{2} {\text{g}} = 2{{\upgamma }}_{\text{o}} {\text{BHD}}$$
(21)
$${\text{G}} = \frac{1}{6}\gamma{\text{D}}^{3} (1 - \sin {{\upvarphi }})\left( {\cot {{\upalpha }} + \cot {{\upbeta }}} \right)$$
(22)
$${\text{SF}}_{2 } = {\text{G tan}} \upvarphi$$
(23)
$${\text{CF}}_{2 } = \frac{1}{2}{\text{CD}}^{2} \left( {\cot {{\upalpha }} + \cot {{\upbeta }}} \right)$$
(24)
$${\text{m}}_{3} {\text{g}} = \frac{1}{2}\gamma{\text{BD}}^{2} \left( {\cot {{\upalpha }} + \cot {{\upbeta }}} \right)$$
(25)
$${\text{F}}_{\text{ad}} = \frac{{{\text{A}}_{\text{d}} }}{{\sin {{\upalpha }}}} {\text{BD}}$$
(26)
$${\text{W}} = {\text{P}}_{{{\text{f}}1}} + {\text{P}}_{{{\text{f}}2 }} + {\text{P}}_{\text{ad}} + {\text{m}}_{2} {\text{g}} + {\text{m}}_{3} {\text{g}}$$
(27)
$${\text{CF}}_{1} = \frac{\text{C}}{{\sin {{\upbeta }}}} {\text{BD}}$$
(28)
$${\text{SF}}_{1} = {\text{Q}}\tan {{\upvarphi }}$$
(29)
$${\text{P}}_{\text{r}} = \frac{{{\text{W}}\sin \left( {{{\upbeta }} + {{\upvarphi }}} \right) - {\text{F}}_{\text{ad}} \cos \left( {{{\upalpha }} + {{\upbeta }} + {{\upvarphi }}} \right) + 2 {\text{SF}}_{2} \cos \left( {{\upvarphi }} \right) + 2 {\text{CF}}_{2} \cos \left( {{\upvarphi }} \right) + {\text{CF}}_{1} \cos \left( {{\upvarphi }} \right)}}{{{ \sin }\left( {{{\upalpha }} + {{\upbeta }} + {{\upvarphi }} + {{\updelta }}} \right)}}$$
(30)
$${\text{F}}_{\text{x}} = {\text{P}}_{\text{r}} { \sin }\left( {{{\upalpha }} + {{\updelta }}} \right) + {\text{F }}_{{{\text{f}}1}} + {\text{F}}_{{{\text{c}}1}}$$
(31)
$${\text{F}}_{\text{y}} = {\text{P}}_{\text{r}} { \cos }\left( {{{\upalpha }} + {{\updelta }}} \right) - \left( {{\text{P }}_{{{\text{f}}2}} + {\text{P}}_{\text{ad}} } \right)$$
(32)
$${\text{F}} = \sqrt[2]{{{\text{F}}_{\text{x}}^{2} + {\text{F}}_{\text{y}}^{2} }}$$
(33)

Model of [2] Fundamental Equation of Earthmoving Mechanics. Nomenclature and description of equations can be found in [22]

$${\text{P}}_{\text{r}} = \left( {\varUpsilon {\text{gD}}^{2} {\text{N}}_{\varUpsilon } + {\text{CDN}}_{\text{c}} + {\text{qDN}}_{\text{q}} + {\text{A}}_{\text{d}} {\text{DN}}_{\text{Ad }} + \varUpsilon {\text{v}}^{2} {\text{DN}}_{\text{a}} } \right){\text{B}}$$
(34)
$${\text{N}}_{{{\upgamma }}} = \frac{{{\text{cot} \upalpha } + {\text{cot}} \upbeta }}{{2\left[ {{ \cos }\left( {{{\upalpha }} + {{\updelta }}} \right) + {\text{sin}}\left( {{{\upalpha }} + {{\updelta }}} \right) {\text{cot}}\left( {{{\upbeta }} + {{\upvarphi }}} \right)} \right]}}$$
(35)
$${\text{N}}_{\text{c}} = \frac{{{\text{cot} \upalpha } + {\text{cot}} \upbeta }}{{2\left[ {{ \cos }\left( {{{\upalpha }} + {{\updelta }}} \right) + {\text{sin}}\left( {{{\upalpha }} + {{\updelta }}} \right){ \cot }\left( {{{\upbeta }} + {{\upvarphi }}} \right)} \right]}}$$
(36)
$${\text{N}}_{\text{q}} = \frac{{{\text{cot} \upalpha } + {\text{cot}} \upbeta }}{{{ \cos }\left( {{{\upalpha }} + {{\updelta }}} \right) + {\text{sin}}\left( {{{\upalpha }} + {{\updelta }}} \right) {\text{cot}}\left( {{{\upbeta }} + \upphi } \right)}}$$
(37)
$${\text{q}} = \frac{{{\text{P}}_{{{\text{f}}1}} + {\text{P}}_{{{\text{f}}2}} + {\text{P}}_{{{\text{c}}1}} + {\text{m}}_{2} {\text{g}}}}{{2{\text{BD}}}}$$
(38)
$${\text{F }} = {\text{P}}_{\text{r}} {\text{sin }}\left( {{{\upalpha }} + {{\updelta }}} \right)$$
(39)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, D., Barakat, N. Evolutionary Bi-objective Optimization for Bulldozer and Its Blade in Soil Cutting. J. Inst. Eng. India Ser. C 100, 295–310 (2019). https://doi.org/10.1007/s40032-017-0437-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40032-017-0437-z

Keywords

Navigation