Skip to main content

Advertisement

Log in

Abstract

Biotechnological tools such as clonal propagation, haploid production, protoplast fusion, marker-assisted selection, and quantitative trait loci mapping are the age-old approaches in commercial forestry. Biotechnology has shown immense guarantee for the subsequent generation of plant breeders to alleviate the rising demand for food, fiber, and wood. The probable social and environmental impacts of the release of transgenic trees become a progressively more debatable issue and call more considerations. The present review is an attempt to summarize how advances in molecular biology i.e., comparative genomics and genome assembly approaches identify numerous polymorphic molecular markers like microsatellite, simple sequence repeats, single-nucleotide polymorphism (SNP), random amplified polymorphic DNA etc. and revolutionize the science of forest tree biotechnology during the last decade. The advent of next-generation sequencing technology identified many microsatellite loci in forest trees. Microsatellite markers play an important role in population genetics, conservation ecology, and phylogenetic analysis. SNP markers provide novel opportunities for the discovery of regulatory elements in the genome and eventually accelerate forest tree breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Tzfira T, Zuker A, Altman A (1998) Forest tree biotechnology: genetic transformation and its application to future forests. Trends Biotechnol 16:439–446

    Article  CAS  Google Scholar 

  2. Plomion C, Bastien C, Bogeat-Triboulot MB, Bouffier L, Dejardin A, Duplessis S et al (2016) Forest tree genomics: 10 achievements from the past 10 years and future prospects. Ann Forest Sci 73(1):77–103

    Article  Google Scholar 

  3. Sedjo RA (2001) From foraging to cropping: the transition to plantation forestry, and implications for wood supply and demand. Unasylva 52:24–27

    Google Scholar 

  4. Bajpai P (2018) Biotechnology in forestry. In: Bajpai P (eds) Biotechnology for pulp and paper processing. Springer, Singapore, pp 39–56

    Chapter  Google Scholar 

  5. Berlyn GP, Beck RC, Rentroe MH (1986) Tissue culture and the propagation and genetic improvement of conifers: problems and possibilities. Tree Physiol 1:227–240

    Article  CAS  Google Scholar 

  6. Payn T, Carnus JM, Freer-Smith P, Kimberley M, Kollert W, Liu S et al (2015) Changes in planted forests and future global implications. For Ecol Manag 352:57–67

    Article  Google Scholar 

  7. Mehta U, Rao IVR, Mohan Ram HY (1982) Somatic embryogenesis in bamboo. In: Fujiwara A (ed) Plant tissue and cell culture, proceedings of the 5th international congress Tokyo, Japan, pp 109–110.

  8. Park YS, Barrett JD, Bonga JM (1998) Application of somatic embryogenesis in high-value clonal forestry: deployment, genetic control, and stability of cryopreserved clones. Vitro Cell Dev Biol Plant 34:231–239. https://doi.org/10.1007/BF02822713

    Article  Google Scholar 

  9. Dickmann DI (1991) Role of physiology in forest tree improvement. Silva Fennica 25:248–256

    Article  Google Scholar 

  10. Maruyama TE, Hosoi Y (2019) Progress in somatic embryogenesis of Japanese pines. Front Plant Sci 10:31. https://doi.org/10.3389/fpls.2019.00031

    Article  Google Scholar 

  11. Kumar A, Tiwari KL, Datta D, Singh M (2014) Marker assisted gene pyramiding for enhanced tomato leaf curl virus disease resistance in tomato cultivars. Biol Plant 58(4):792–797

    Article  CAS  Google Scholar 

  12. Rai N, Kumar A, Singh PK, Singh M, Datta D, Rai M (2010) Genetic relationship among Hyacinth bean (Lablab purpureus) genotypes cultivars from different races based on quantitative traits and random amplified polymorphic DNA marker. Afr J Biotech 9(2):137–144

    CAS  Google Scholar 

  13. Liu JJ, Williams H, Zamany A, Li XR, Gellner S, Sniezko RA (2019) Development and application of marker-assisted selection (MAS) tools for breeding of western white pine (Pinus monticola Douglas ex D. Don) resistance to blister rust (Cronartium ribicola JC Fisch.) in British Columbia. Can J Plant Path. https://doi.org/10.1080/07060661.2019.1638454.

    Article  Google Scholar 

  14. Andolfatto P, Davison D, Erezyilmaz D, Hu TT, Mast J, Sunayama-Morita T et al (2011) Multiplexed shot gun genotyping for rapid and efficient genetic mapping. Genome Res 21:610–617. https://doi.org/10.1101/gr.115402.110

    Article  CAS  Google Scholar 

  15. Pfender WF, Saha MC, Johnson EA, Slabaugh MB (2011) Mapping with RAD (restriction-site associated DNA) markers to rapidly identify QTL for stem rust resistance in Lolium perenne. Theor Appl Genet 122:1467–1480. https://doi.org/10.1007/s00122-011-1546-3

    Article  CAS  Google Scholar 

  16. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES et al (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6(5):e19379. https://doi.org/10.1371/journal.pone.0019379

    Article  CAS  Google Scholar 

  17. Baltunis BS, Gapare WJ, Wu HX (2009) Genetic parameters and genotype by environment interaction in radiata pine for growth and wood quality traits in Australia. Silvae Genetica 59(1–6):113–124

    Google Scholar 

  18. White T, Davis J, Gezan S, Hulcr J, Jokela E, Kirst M, Smith J (2014) Breeding for value in a changing world: past achievements and future prospects. New For 45(3):301–309

    Article  Google Scholar 

  19. Surendran C, Parthiban KT, Vanangamudi K, Balaji S (2000) Vegetative propagation of trees, principles and practices. TNAU Press, Coimbatore, pp 1–154

    Google Scholar 

  20. Resende MDV, Resende MFR, Sansaloni CP, Petroli CD, Missiaggia AA, Aguiar AM et al (2012) Genomic selection for growth and wood quality in Eucalyptus: capturing the missing heritability and accelerating breeding for complex traits in forest trees. New Phytol 194:116–128

    Article  Google Scholar 

  21. Naidoo S, Slippers B, Plett JM, Coles D, Oates CN (2019) The road to resistance in forest trees. Front Plant Sci 10:273. https://doi.org/10.3389/fpls.2019.00273

    Article  Google Scholar 

  22. Ray S, Satya P (2014) Next generation sequencing technologies for next generation plant breeding. Fron Plant Sci 5:367. https://doi.org/10.3389/fpls.2014.00367

    Article  Google Scholar 

  23. Neale DB, Kremer A (2011) Forest tree genomics: growing resources and applications. Nat Rev Genet 12(2):111–122. https://doi.org/10.1038/nrg2931

    Article  CAS  Google Scholar 

  24. Tuskan GA, Difazio S, Jansson S, Bohlman J, Grigoriev I, Hellsten U et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604. https://doi.org/10.1126/science.1128691

    Article  CAS  Google Scholar 

  25. Myburg A, Grattapaglia D, Tuskan G, Hellsten U, Hayes RD, Grimwood J et al (2014) The genome of Eucalyptus grandis. Nature 501:356–362. https://doi.org/10.1038/nature13308

    Article  CAS  Google Scholar 

  26. Plomion C, Aury JM, Amselem J, Alaeitabar T, Barbe V, Belser V et al (2016) Decoding the oak genome: public release of sequence data, assembly, annotation and publication strategies. Mol Ecol Resour 16:254–265. https://doi.org/10.1111/1755-0998.12425

    Article  CAS  Google Scholar 

  27. Perera D, Magbanua ZV, Thummasuwan S, Mukherjee D, Arick M, Chouvarine P et al (2018) Exploring the loblolly pine (Pinus taeda L.) genome by BAC sequencing and Cot analysis. Gene 663:165–177. https://doi.org/10.1016/j.gene.2018.04.024

    Article  CAS  Google Scholar 

  28. Neale DB, Wegrzyn JL, Stevens KA, Zimin AV, Puiu D, Crepeau MW et al (2014) Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies. Genome Biol 15:R59. https://doi.org/10.1186/gb-2014-15-3-r59

    Article  CAS  Google Scholar 

  29. Pavy N, Lamothe M, Pelgas B, Gagnon F, Birol I, Bohlmann J et al (2017) A high-resolution reference genetic map positioning 8.8 K genes for the conifer white spruce: structural genomics implications and correspondence with physical distance. Plant J 90(1):189–203

    Article  CAS  Google Scholar 

  30. Neale DB, McGuire PE, Wheeler NC, Stevens KA, Crepeau MW, Cardeno C, Casola C (2017) The Douglas-fir genome sequence reveals specialization of the photosynthetic apparatus in Pinaceae. G3 Genes Genom Genet 7(9):3157–3167

    CAS  Google Scholar 

  31. Fenning TM, Gershenzon J (2002) Where will the wood come from? Plantation forests and the role of biotechnology. Trends Biotechnol 20(7):291–296

    Article  CAS  Google Scholar 

  32. Chang S, Mahon EL, MacKay HA, Rottmann WH, Strauss SH, Pijut PM, Jones TJ (2018) Genetic engineering of trees: progress and new horizons. Vitro Cell Dev Biol-Plant 54(4):341–376

    Article  CAS  Google Scholar 

  33. Porth I, El-Kassaby YA (2014) Current status of the development of genetically modified (GM) forest trees world-wide: a comparison with the development of other GM plants in agriculture. CAB Rev 9(8):1–12. https://doi.org/10.1079/PAVSNNR20149008

    Article  Google Scholar 

  34. Wang JP, Matthews ML, Williams CM, Shi R, Yang C, Tunlaya-Anukit S et al (2018) Improving wood properties for wood utilization through multi-omics integration in lignin biosynthesis. Nat Commun 9:1579. https://doi.org/10.1038/s41467-018-03863-z

    Article  CAS  Google Scholar 

  35. Myburg AA, Hussey SG, Wang JP, Street NR, Mizrachi E (2019) Systems and synthetic biology of forest trees: a bioengineering paradigm for woody biomass feedstocks. Front Plant Sci 10:775. https://doi.org/10.3389/fpls.2019.00775

    Article  Google Scholar 

  36. Polle A, Chen S, Eckert C, Harfouche A (2018) Engineering drought resistance in forest trees. Front Plant Sci 9:1875. https://doi.org/10.3389/fpls.2018.01875

    Article  Google Scholar 

  37. Canovas FM (2018) Nitrogen metabolism and biomass production in forest trees. Front Plant Sci 9:1449. https://doi.org/10.3389/fpls.2018.01449

    Article  Google Scholar 

  38. Douglas CJ (2017) Populus as a model tree. In: Groover AT, Cronk QCB (eds) Comparative and evolutionary genomics of angiosperm trees. Plant genetics and genomics: crops and models. Springer, New York, pp 61–84. https://doi.org/10.1007/7397_2017_3

    Chapter  Google Scholar 

  39. Li L, Zhou Y, Cheng X, Sun J, Marita JM, Ralph J, Chiang VL (2003) Combinatorial modification of multiple lignin traits in trees through multigene co transformation. Proc Natl Acad Sci USA 100(8):4939–4944

    Article  CAS  Google Scholar 

  40. Hinchee M, Zhang C, Chang S, Cunningham M, Hammond W, Nehra N (2011) Biotech eucalyptus can sustainably address society’s need for wood: the example of freeze tolerant Eucalyptus in the southeastern US. BMC Proc BioMed Cent 5(7):124. https://doi.org/10.1186/1753-6561-5-S7-I24

    Article  Google Scholar 

  41. Gao W, Bai S, Li Q, Gao C, Liu G, Li G, Tan F (2013) Over expression of TaLEA gene from Tamarix androssowii improves salt and drought tolerance in transgenic poplar (Populus simonii × P. nigra). PLoS ONE 8(6):e67462. https://doi.org/10.1371/journal.pone

    Article  CAS  Google Scholar 

  42. Coleman HD, Yan J, Mansfield SD (2009) Sucrose synthase affects carbon partitioning to increase cellulose production and altered cell wall ultrastructure. Proc Natl Acad Sci USA 106(31):13118–13123

    Article  CAS  Google Scholar 

  43. Behnke K, Grote R, Brüggemann N, Zimmer I, Zhou G, Elobeid M, Schnitzler JP (2012) Isoprene emission-free poplars—a chance to reduce the impact from poplar plantations on the atmosphere. New Phytol 194(1):70–82

    Article  CAS  Google Scholar 

  44. Kim HJ, Lee SH (2017) Estimating carbon storage and CO2 absorption by developing allometric equations for Quercus acuta in South Korea. For Sci Technol 13(2):55–60

    Google Scholar 

  45. Kazana V, Tsourgiannis L, Iakovoglou V, Stamatiou C, Alexandrov A, Araujo S et al (2015) Public attitudes towards the use of transgenic forest trees: a cross-country pilot survey. iFor Biogeosci For 9(2):344–353

    Article  Google Scholar 

  46. Yu H, Chen X, Hong YY, Wang Y, Xu P, Ke SD, Liu HY, Zhu JK, Oliver DJ, Xiang CB (2008) Activated expression of an Arabidopsis HD-START protein confers drought tolerance with improved root system and reduced stomatal density. Plant Cell 20:1134–1151

    Article  CAS  Google Scholar 

  47. Dash M, Yordanov YS, Georgieva T, Tschaplinski TJ, Yordanova E, Busov V (2017) Poplar PtabZIP1-like enhances lateral root formation and biomass growth under drought stress. Plant J 89(4):692–705

    Article  CAS  Google Scholar 

  48. Yu D, Wildhagen H, Tylewicz S, Miskolczi PC, Bhalerao RP, Polle A (2019) Abscisic acid signalling mediates biomass trade-off and allocation in poplar. New Phytol 223:1192–1203

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amrita Kumari Panda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Significance Statement The present review is an attempt to summarize how advances based on genomic approaches identified numerous polymorphic molecular markers and revolutionized the science of forest tree biotechnology in the recent past.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panda, A.K., Mishra, R., Bisht, S.S. et al. Technological Advances in Commercial Forestry. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 90, 753–760 (2020). https://doi.org/10.1007/s40011-019-01146-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40011-019-01146-1

Keywords

Navigation