Skip to main content
Log in

Abstract

Zinc is one of the most studied minerals of the twenty-first century as it is practically involved in every function of the body. The importance of zinc has earned it the epithet “calcium of twenty-first century.” However, the bioavailability of zinc depends on the source of zinc and the subsequent processes of digestion, absorption and metabolism. Zinc from organic sources tends to be more available to animals than from inorganic sources. The complex gastrointestinal physiology of ruminants makes these processes even more intricate. Zinc in the rumen interacts with other substances altering its fate. Absorption of zinc from the gastrointestinal tract (GIT) was a mystery until the discovery of zinc transporter proteins. These discoveries opened new gates of wisdom and understanding about the tumultuous journey of zinc molecules through the complex GIT of ruminants. The decade-old concepts of zinc homeostasis largely based on the zinc complexes are jostling through the new theories with the focus on the free zinc ions. The present review briefly elucidates the processes of metabolism and homeostasis of zinc in ruminants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Julius MC, Robert EL (2009) Illustrated dictionary of immunology, 3rd edn. CRC Press, USA

    Google Scholar 

  2. Keilin D, Mann T (1940) Carbonic anhydrase: purification and nature of the enzyme. Biochem J 34:1163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Suttle NF (2010) Mineral nutrition of livestock. Cabi, Wallingford

    Book  Google Scholar 

  4. MacDonald RS (2000) The role of zinc in growth and cell proliferation. J Nutr 130:1500S–1508S. https://doi.org/10.1093/jn/130.5.1500S

    Article  CAS  PubMed  Google Scholar 

  5. Welch RM (1993) Zinc concentrations and forms in plants for humans and animals. In: Robson AD (ed) Zinc in soils and plants. Springer, Dordrecht, pp 183–195. https://doi.org/10.1007/978-94-011-0878-2_13

    Chapter  Google Scholar 

  6. Cakmak I (2008) Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant Soil 302:1–17. https://doi.org/10.1007/s11104-007-9466-3

    Article  CAS  Google Scholar 

  7. McDonald P, Edward RA, Greenhalgh JFD, Morgan CA, Sinclair LA, Wilkinson RG (2007) Animal nutrition, 7th edn. Pearson, London

    Google Scholar 

  8. Aliarabi H (2005) Technology refinement for the preparation of chelated zinc and effect of its supplementation on growth and vitamin a utilization in cross bred calves. Doctoral dissertation, ICAR-NDRI, Karnal

  9. Mir SH, Malik TA, Pal RP (2018) Necessitation of zinc supplementation to ruminants. Indian Farmer 5:142–146

    Google Scholar 

  10. White CL (1993) The zinc requirements of grazing ruminants. In: Robson AD (ed) Zinc in soils and plants: developments in plant and soil sciences. Academic Publishers, Dordrecht, pp 197–206

    Chapter  Google Scholar 

  11. ICAR (2013) Nutrient composition of Indian feeds and fodders. Pusa, New Delhi

    Google Scholar 

  12. Malik TA, Mir SH, Pal RP (2017) Chelated versus inorganic zinc supplementation in ruminants. Nutr Food Sci Int J 4:555633. https://doi.org/10.19080/NFSIJ.2017.04.555633

    Article  Google Scholar 

  13. Wright CL, Spears JW (2004) Effect of zinc source and dietary level on zinc metabolism in Holstein Calves. J Dairy Sci 87:1085–1091. https://doi.org/10.3168/jds.S0022-0302(04)73254-3

    Article  CAS  Google Scholar 

  14. Cheng K, Lee S, Bae H (1999) Industrial application of rumen microbes. Asian Australas J Anim Sci 12:84–92

    Article  Google Scholar 

  15. Goel G, Dagar SS, Raghav M, Bansal S (2015) Rumen: an underutilised niche for industrially important enzymes. In: Puniya AK, Singh R, Kamra DN (eds) Rumen microbiology: from evolution to revolution. Springer, New Delhi, pp 247–263. https://doi.org/10.1007/978-81-322-2401-3_17

    Chapter  Google Scholar 

  16. Černík J, Pavlata L, Pechová A, Mišurová Ľ, Jokverová O, Luňáček J, Halouzka R (2013) Effects of peroral supplementation of different forms of zinc on the ruminal mucosa of goat kids—a morphometric study. Acta Vet Brno 82:399–403. https://doi.org/10.2754/avb201382040399

    Article  Google Scholar 

  17. Arelovich H, Amela M, Martínez M, Bravo R, Torrea M (2014) Influence of different sources of zinc and protein supplementation on digestion and rumen fermentation parameters in sheep consuming low-quality hay. Small Rumin Res 121:175–182. https://doi.org/10.1016/j.smallrumres.2014.08.005

    Article  Google Scholar 

  18. Eryavuz A, Dehority B (2009) Effects of supplemental zinc concentration on cellulose digestion and cellulolytic and total bacterial numbers in vitro. Anim Feed Sci Technol 15:175–183. https://doi.org/10.1016/j.anifeedsci.2009.01.008

    Article  CAS  Google Scholar 

  19. Gerber J (2018) A review of mineral absorption with special consideration of chelation as a method to improve bioavailability of mineral supplements. Magnesium 21:27

    Google Scholar 

  20. Underwood E, Suttle N (1999) Zinc. In: Underwood E, Suttle N (eds) The mineral nutrition of livestock, 3rd edn. Cabi Publishing, London, pp 477–512

    Chapter  Google Scholar 

  21. Wright C, Spears J, Webb K (2008) Uptake of zinc from zinc sulfate and zinc proteinate by ovine ruminal and omasal epithelia. J Anim Sci 86:1357–1363. https://doi.org/10.2527/jas.2006-650

    Article  CAS  PubMed  Google Scholar 

  22. Kornegay E, Cheng J, Schell C (1996) Apparent zinc absorption and dry matter digestibility in the stomach, intestine and lower colon of weanling pigs fed an inorganic or organic zinc sources added to adequate and deficient lysine diets. J Anim Sci 74(Suppl 1):182

    Google Scholar 

  23. Quarterman J (1985) Role of intestinal mucus on metal absorption. Trace elements in man and animals: TEMA 5. In: Proceedings of the fifth international symposium on trace elements in man and animals: Farnham Royal. Commonwealth Agricultural Bureaux, Slough, pp 400–401

  24. Menard MP, Cousins RJ (1983) Zinc transport by brush border membrane vesicles from rat intestine. J Nutr 113:1434–1442. https://doi.org/10.1093/jn/113.7.1434

    Article  CAS  PubMed  Google Scholar 

  25. Cousins RJ, Liuzzi JP, Lichten LA (2006) Mammalian zinc transport, trafficking, and signals. J Biol Chem 281:24085–24089

    Article  CAS  PubMed  Google Scholar 

  26. Haney CJ, Grass G, Franke S, Rensing C (2005) New developments in the understanding of the cation diffusion facilitator family. J Ind Microbiol Biotechnol 32:215–226. https://doi.org/10.1007/s10295-005-0224-3

    Article  CAS  PubMed  Google Scholar 

  27. Coudray N, Valvo S, Hu M, Lasala R, Kim C, Vink M, Zhou M, Provasi D, Filizola M, Tao J, Fang J (2013) Inward-facing conformation of the zinc transporter YiiP revealed by cryoelectron microscopy. Proc Natl Acad Sci 110:2140–2145. https://doi.org/10.1073/pnas.1215455110

    Article  PubMed  PubMed Central  Google Scholar 

  28. Podar D, Scherer J, Noordally Z, Herzyk P, Nies D, Sanders D (2012) Metal selectivity determinants in a family of transition metal transporters. J Biol Chem 287:3185–3196. https://doi.org/10.1074/jbc.M111.305649

    Article  CAS  PubMed  Google Scholar 

  29. Nebert DW, Gálvez-Peralta M, Hay EB, Li H, Johansson E, Yin C, Wang B, He L, Soleimani M (2012) ZIP14 and ZIP8 zinc/bicarbonate symporters in Xenopus oocytes: characterization of metal uptake and inhibition. Metallomics 4:1218–1225. https://doi.org/10.1039/c2mt20177a

    Article  CAS  PubMed  Google Scholar 

  30. Taylor KM, Hiscox S, Nicholson RI, Hogstrand C, Kille P (2012) Protein kinase CK2 triggers cytosolic zinc signaling pathways by phosphorylation of zinc channel ZIP7. Sci Signal 5:ra11. https://doi.org/10.1126/scisignal.2002585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yuzbasiyan-Gurkan V, Bartlett E (2006) Identification of a unique splice site variant in SLC39A4 in bovine hereditary zinc deficiency, lethal trait A46: an animal model of acrodermatitis enteropathica. Genomics 88:521–526. https://doi.org/10.1016/j.ygeno.2006.03.018

    Article  CAS  PubMed  Google Scholar 

  32. Liuzzi JP, Bobo JA, Cui L, McMahon RJ, Cousins RJ (2003) Zinc transporters 1, 2 and 4 are differentially expressed and localized in rats during pregnancy and lactation. J Nutr 133:342–351. https://doi.org/10.1093/jn/133.2.342

    Article  CAS  PubMed  Google Scholar 

  33. Huang D, Hu Q, Fang S, Feng J (2016) Dosage effect of zinc glycine chelate on zinc metabolism and gene expression of zinc transporter in intestinal segments on rat. Biol Trace Elem Res 171:363–370. https://doi.org/10.1007/s12011-015-0535-9

    Article  CAS  PubMed  Google Scholar 

  34. Foote J, Delves H (1984) Albumin bound and alpha 2-macroglobulin bound zinc concentrations in the sera of healthy adults. J Clin Pathol 37:1050–1054. https://doi.org/10.1136/jcp.37.9.1050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Handing KB, Shabalin IG, Kassaar O, Khazaipoul S, Blindauer CA, Stewart AJ, Chruszcz M, Minor W (2016) Circulatory zinc transport is controlled by distinct interdomain sites on mammalian albumins. Chem Sci 7:6635–6648. https://doi.org/10.1039/C6SC02267G

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kassaar O, Schwarz-Linek U, Blindauer CA, Stewart AJ (2015) Plasma free fatty acid levels influence Zn2+-dependent histidine-rich glycoprotein–heparin interactions via an allosteric switch on serum albumin. J Thromb Haemost 13:101–110. https://doi.org/10.1111/jth.12771

    Article  CAS  PubMed  Google Scholar 

  37. Harris WR, Keen C (1989) Calculations of the distribution of zinc in a computer model of human serum. J Nutr 119:1677–1682. https://doi.org/10.1093/jn/119.11.1677

    Article  CAS  PubMed  Google Scholar 

  38. Rowe DJ, Bobilya DJ (2000) Albumin facilitates zinc acquisition by endothelial cells. Proc Soc Exp Biol Med 224:178–186. https://doi.org/10.1111/j.1525-1373.2000.22418.x

    Article  CAS  PubMed  Google Scholar 

  39. Mills CF (1989) Zinc in human biology. Springer, New York

    Book  Google Scholar 

  40. Roohani N, Hurrell R, Kelishadi R, Schulin R (2013) Zinc and its importance for human health: an integrative review. J Res Med Sci 18:144

    PubMed  PubMed Central  Google Scholar 

  41. Lowe NM, Fekete K, Decsi T (2009) Methods of assessment of zinc status in humans: a systematic review. Am J Clin Nutr 89:2040S–2051S. https://doi.org/10.3945/ajcn.2009.27230G

    Article  CAS  PubMed  Google Scholar 

  42. Margoshes M, Vallee BL (1957) A cadmium protein from equine kidney cortex. J Am Chem Soc 79:4813–4814. https://doi.org/10.1021/ja01574a064

    Article  CAS  Google Scholar 

  43. Dziegiel P, Pula B, Kobierzycki C, Stasiolek M, Podhorska-Okolow M (eds) (2016) Metallothioneins: structure and functions. In: Metallothioneins in normal and cancer cells. Springer, Cham, pp 3–20. https://doi.org/10.1007/978-3-319-27472-0_2

    Chapter  Google Scholar 

  44. Bellomo EA, Meur G, Rutter GA (2011) Glucose regulates free cytosolic Zn2+ concentration, Slc39 (ZiP), and metallothionein gene expression in primary pancreatic islet beta-cells. J Biol Chem 286:25778–25789. https://doi.org/10.1074/jbc.M111.246082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. National Research Council (2001) Nutrient requirements of dairy cattle: 2001. National Academies Press, Washington

    Google Scholar 

  46. Stake P, Miller W, Blackmon D, Gentry R, Neathery M (1974) Role of pancreas in endogenous zinc excretion in the bovine. J Nutr 104:1279–1284. https://doi.org/10.1093/jn/104.10.1279

    Article  CAS  PubMed  Google Scholar 

  47. King JC, Cousin RJ (2014) Zinc. In: Ross AC, Caballero B, Cousins RJ, Tucker KL, Ziegler TR (eds) Modern nutrition in health and disease, 11th edn. Lippincott, Williams & Wilkins, Baltimore, pp 189–205

    Google Scholar 

  48. Laity JH, Lee BM, Wright PE (2001) Zinc finger proteins: new insights into structural and functional diversity. Curr Opin Struct Biol 11:39–46. https://doi.org/10.1016/S0959-440X(00)00167-6

    Article  CAS  PubMed  Google Scholar 

  49. Colvin RA, Holmes WR, Fontaine CP, Maret W (2010) Cytosolic zinc buffering and muffling: their role in intracellular zinc homeostasis. Metallomics 2:306–317. https://doi.org/10.1039/B926662C

    Article  CAS  PubMed  Google Scholar 

  50. Wellenreuther G, Cianci M, Tucoulou R, Meyer-Klaucke W, Haase H (2009) The ligand environment of zinc stored in vesicles. Biochem Biophys Res Commun 380:198–203. https://doi.org/10.1016/j.bbrc.2009.01.074

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Bibhudatta SK Panda (PhD Scholar), Animal Physiology Division, ICAR-NDRI, Karnal, and anonymous reviewers for critically evaluating the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahid Hassan Mir.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest to publish this manuscript.

Additional information

Significant statement The review presents a comprehensive outlook on the metabolism and homeostasis of zinc in ruminants. It will help to direct our efforts toward optimizing the zinc nutrition in ruminants.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mir, S.H., Mani, V., Pal, R.P. et al. Zinc in Ruminants: Metabolism and Homeostasis. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 90, 9–19 (2020). https://doi.org/10.1007/s40011-018-1048-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40011-018-1048-z

Keywords

Navigation